

NEC Network Queuing System V (NQSV) User's Guide

[Operation]

ii

Proprietary Notice

The information disclosed in this document is the property of NEC Corporation (NEC) and/or its

licensors. NEC and/or its licensors, as appropriate, reserve all patent, copyright and other proprietary

rights to this document, including all design, manufacturing, reproduction, use and sales rights

thereto, except to the extent said rights are expressly granted to others.

The information in this document is subject to change at any time, without notice.

iii

Preface

This guide explains how to use NEC Network Queuing System V (NQSV) job management system for

general users.

The manual of NEC Network Queuing System V (NQSV) is composed by following user's guides.

Name Contents

NEC Network Queuing System V (NQSV)

User's Guide [Introduction]

This guide explains the overview of NQSV

and configuration of basic system.

NEC Network Queuing System V (NQSV)

User's Guide [Management]

This guide explains the various

management functions of the system.

NEC Network Queuing System V (NQSV)

User's Guide [Operation]

This guide explains the various functions

that used by general user.

NEC Network Queuing System V (NQSV)

User's Guide [Reference]

The command reference guide.

NEC Network Queuing System V (NQSV)

User's Guide [API]

This guide explains the C programming

interface (API) to control NQSV.

NEC Network Queuing System V (NQSV)

User's Guide [JobManipulator]

This guide explains about the scheduler

component : JobManipulator.

NEC Network Queuing System V (NQSV)

User's Guide [Accounting & Budget

Control]

This guide explains the functions of

accounting.

 February 2018 1st edition

September 2022 15th edition

January 2023 16th edition

March 2023 17th edition

May 2023 18th edition

June 2023 19th edition

iv

Remarks

(1) This manual conforms to Release 1.00 and subsequent releases of the NQSV.

(2) All the functions described in this manual are program products. The functions of them conform

to the following product names and product series numbers:

Product Name product series numbers

NEC Network Queuing System V (NQSV)

/ResourceManager

UWAF00

UWHAF00 (support pack)

NEC Network Queuing System V (NQSV)

/JobServer

UWAG00

UWHAG00 (support pack)

NEC Network Queuing System V (NQSV)

/JobManipulator

UWAH00

UWHAH00 (support pack)

(3) UNIX is a registered trademark of The Open Group.

(4) Intel is a trademark of Intel Corporation in the U.S. and/or other countries.

(5) OpenStack is a trademark of OpenStack Foundation in the U.S. and/or other countries.

(6) Red Hat OpenStack Platform is a trademark of Red Hat, Inc. in the U.S. and/or other countries.

(7) Linux is a trademark of Linus Torvalds in the U.S. and/or other countries.

(8) Docker is a trademark of Docker, Inc. in the U.S. and/or other countries.

(9) InfiniBand is a trademark or service mark of InfiniBand Trade Association.

(10) Zabbix is a trademark of Zabbix LLC that is based in Republic of Latvia.

(11) All other product, brand, or trade names used in this publication are the trademarks or

registered trademarks of their respective trademark owners.

v

About This Manual

Notation Conventions

The following notation rules are used in this manual:

Omission Symbol ... This symbol indicates that the item mentioned previously can be

repeated. The user may input similar items in any desired number.

Vertical Bar | This symbol divides an option and mandatory selection item.

Brackets { } A pair of brackets indicates a series of parameters or keywords from

which one has to be selected.

Braces [] A pair of braces indicate a series of parameters or keywords that can

be omitted.

Glossary

Term Definition

Vector Engine

(VE)

The NEC original PCIe card for vector processing based on SX

architecture. It is connected to x86-64 machine. VE consists

of more than one core and shared memory.

Vector Host

(VH)

The x86-64 architecture machine that VE connected.

Vector Island

(VI)

The general component unit of a single VH and one or more

VEs connected to the VH.

Batch Server

(BSV)

Resident system process running on a Batch server host to

manage entire NQSV system.

Job Server

(JSV)

Resident system process running on each execution host to

manage the execution of jobs.

JobManipulator

(JM)

JobManipulator is the scheduler function of NQSV.

JM manages the computing resources and determines the

execution time of jobs.

Accounting Server Accounting server collects and manages account information

and manages budgets.

Request A unit of user jobs in the NQSV system. It consists of one or

more jobs. Requests are managed by the Batch Server.

Job A job is an execution unit of user job. It is managed by Job

Server.

vi

Logical Host A logical host is a set of logical (virtually) divided resources of

an execution host.

Queue It is a mechanism that pools and manages requests submitted

to BSV.

BMC Board Management Controller for short. It performs server

management based on the Intelligent Platform Management

Interface (IPMI).

HCA Host Channel Adapter for short. The PCIe card installed in

VH to connect to the IB network.

IB InfiniBand for short.

MPI Abbreviation for Message Passing Interface. MPI is a

standard for parallel computing between nodes.

NIC Network Interface Card for short. The hardware to

communicate with other node.

i

Contents

Proprietary Notice ... ii

Preface ... iii

Remarks .. iv

About This Manual ... v

Contents .. i

Contents of Figures .. vi

1. Batch Request Operation .. 1

1.1. Batch Request Create ... 1

1.1.1. Job Script Create .. 1

1.1.2. Job Script Limitation ... 1

1.1.3. How to Specify Input Data ... 1

1.1.4. How to Specify Submit Options ... 2

1.2. Batch Request Submit .. 2

1.2.1. Basic Submitting Method ... 2

1.2.2. Submit Queue Specifying ... 5

1.2.3. Request Name Specifying .. 5

1.2.4. Job Number Specifying .. 5

1.2.5. Submitting of a request with the total number of VEs specified ... 6

1.2.6. HCA Specifying ... 7

1.2.7. Job Type Specifying .. 7

1.2.8. Result Files Options ... 9

1.2.9. Resource Limit Options .. 10

1.2.10. Start Time Specifying ... 13

1.2.11. Mail Notification Options ... 13

1.2.12. Priority Specifying .. 13

1.2.13. Account Code Specifying .. 14

1.2.14. Rerunning Enable/Disable Specifying ... 14

1.2.15. Hold Enable/Disable Specifying ... 14

1.2.16. Use of Environment Variables ... 14

1.2.17. Shell Specifying .. 17

1.2.18. Batch Job Condition Specifying ... 17

1.2.19. Staging Files Options ... 18

1.2.20. Job Migration Options .. 19

1.2.21. Submission Message Changing ... 19

1.2.22. Request Connection Function .. 19

1.2.23. Exclusive execution .. 20

ii

1.2.24. Hybrid request .. 22

1.2.25. User Specifying ... 22

1.2.26. Accept SIGTERM on job execution .. 23

1.3. Status Check of Batch Request ... 23

1.3.1. Check of Basic Information .. 23

1.3.2. Check of Detailed Information ... 24

1.3.3. Customizing Information ... 26

1.4. Attribute Change of Batch Request .. 28

1.5. Batch Request Delete ... 30

1.6. Batch Request Hold .. 30

1.7. Batch Request Release ... 30

1.8. Batch Request Suspend ... 31

1.9. Batch Request Resume .. 31

1.10. Batch Request Rerun .. 31

1.11. Batch Request Move ... 32

1.12. Batch Request Termination Check .. 32

1.12.1. Checking by Mail .. 32

1.12.2. Checking by qwait(1) .. 32

1.13. Batch Request Output File... 33

1.14. Run MPI Request .. 33

1.14.1. Run under the NEC MPI Environment... 33

1.14.2. Run under the OpenMPI Environment ... 34

1.14.3. Run under the Intel MPI Environment ... 35

1.14.4. Run under the MVAPICH2 Environment ... 37

1.14.5. Run under the Platform MPI Environment .. 37

1.15. Display Output file in Request Running ... 38

1.16. Request log .. 39

1.17. Attach to Request .. 40

2. Parametric Request Operation ... 41

2.1. Parametric Request Submit... 41

2.1.1. Submitting Method .. 41

2.1.2. Parameter and Input File .. 41

2.2. State Check of Parametric Request .. 42

2.3. Parametric Request Operation .. 43

2.4. Parametric Request Start, Termination, and Output File .. 44

2.4.1. Mail send .. 44

2.4.2. Waiting Termination .. 44

2.4.3. Output File ... 44

iii

3. Interactive Request Operation .. 46

3.1. Interactive Request Submit ... 46

3.1.1. Submitting method by qlogin ... 46

3.1.2. Submit Option of qlogin ... 47

3.2. State Check of Interactive Request ... 48

3.3. Attribute Change of Interactive Request .. 50

3.4. Operations ... 50

3.5. Interactive Request Start, Termination, and Output File... 51

3.6. Run MPI Request ... 51

3.6.1. Run under the NEC MPI Environment... 51

3.6.2. Run under the OpenMPI Environment ... 52

3.6.3. Run under the Intel MPI Environment ... 52

3.6.4. Run under the MVAPICH2 Environment ... 53

3.6.5. Run under the Platform MPI Environment .. 54

4. Job Operation ... 55

4.1. Job State Check .. 55

4.1.1. Check of Basic Information .. 55

4.1.2. Check of Detail Information... 55

4.1.3. Check of Job information of hybrid request .. 57

4.1.4. Customizing Information ... 57

4.2. Signal Send ... 58

5. Network Request Operation ... 59

5.1. Status Check of Network Request ... 59

5.2. Network Request Status Transition .. 60

5.3. Network Request Delete .. 61

6. System Information Display ... 62

6.1. How to Display System Information ... 62

6.2. Customizing Information ... 63

6.3. Sorting Information .. 69

6.4. Time Display Format ... 70

6.5. Displaying All Information .. 71

6.6. Displaying All Job Serves (Execution Hosts) Information .. 71

7. Workflow ... 72

7.1. Environment for the workflow ... 72

7.2. Workflow description .. 73

7.2.1. Simple example .. 73

7.2.2. Execution order .. 73

7.2.3. Parallel execution ... 74

iv

7.3. Workflow execution .. 75

7.4. Reference of workflow .. 75

7.5. Control of workflow .. 76

7.5.1. Workflow delete .. 76

7.5.2. Request cancel by preceding request error.. 76

8. Group of Request.. 78

8.1. Group of Request and How to Submit... 78

8.2. Display of Information about Group ... 78

8.2.1. Request Information ... 78

8.2.2. Queue Information ... 78

9. Limit per Group and User ... 80

9.1. Limit per Group and User ... 80

9.2. Limit Information Reference per Group and User ... 80

10. Request Submit Using GPU .. 82

11. Request Submit Using Multi-Instance GPU(MIG) .. 83

11.1. Multi-Instance GPU(MIG) ... 83

11.2. Display of Information about MIG .. 84

11.3. Execution of MIG jobs ... 85

12. Submitting a request to specify a User Pre-Post Script .. 87

12.1. UserPP script .. 87

12.2. Specification method when submitting a request .. 88

12.3. Output of UserPP script ... 89

13. Submitting a request using a provisioning environment in conjunction with OpenStack ... 91

13.1. Reference the template information .. 91

13.2. Submitting a request with a template specified ... 92

13.3. Information of a request with a template specified .. 92

13.3.1. Request information ... 92

13.3.2. Job information .. 93

14. Submitting a request using a provisioning environment in conjunction with Docker 95

14.1. Referencing the template information .. 95

14.2. Submitting a request with a template specified ... 95

14.3. Information of a request with a template specified .. 96

14.3.1. Request information ... 96

14.3.2. Job information .. 97

15. Submitting a request using the Custom Resource function ... 98

15.1. Referencing the custom resource information .. 98

15.2. Submitting a request with a custom resource specified .. 99

15.3. Referencing the custom resource usage of a queue .. 99

v

16. Hybrid Request function .. 101

16.1. About Hybrid Request .. 101

16.2. Submitting Hybrid Request ... 101

16.3. Hybrid Request Information .. 105

16.4. Attribute Change of Hybrid Request ... 106

17. Submitting a request using a provisioning environment in conjunction with singularity . 108

17.1. Job execution method ... 108

17.1.1. Executing MPI Job ... 108

17.1.2. Executing distributed Job .. 109

18. Limitations ... 110

18.1. Max Value, Max length and Range of Value ... 110

18.2. Version between Command and Batch Server.. 112

18.3. User-level checkpoint .. 112

18.3.1. Preparing to use user-level checkpoint .. 112

18.3.2. How to submit a request .. 112

18.3.3. When taking a checkpoint .. 112

Appendix.A How to submit NQSV Request ... 114

A.1 Request using VEs ... 114

A.2 Request using x86 .. 115

A.3 Request using GPUs .. 115

A.4 Request using Multi-Instance GPU .. 116

Appendix.B Update history ... 117

Index... 118

vi

Contents of Figures

Figure 1-1 : Execution of a single job ... 8

Figure 1-2 : Execution of distributed jobs .. 8

Figure 1-3 : Execution of MPI jobs ... 9

Figure 7-1 : Execution of a workflow.. 72

Figure 11-1 Example of dividing GI into CIs ... 84

1

1. Batch Request Operation

1.1. Batch Request Create

1.1.1. Job Script Create

In order to create a batch request, create a shell script file for batch requests. This shell script is

submitted to NQSV batch system and executed as a batch request.

Any combination of commands can be described in this job script as well as usual shell scripts.

Additionally, as a shell to interpret this job script can be specified freely, shell scripts for sh, for csh,

or for other shells can be used.

An example of a job script for a batch request is shown below.

Sample batch request

f90 -o prog1 prog1.f90

if [$?-ne 0]

then echo "prog1.f90 compile error"

exit 1

fi

prog1 < in_data

1.1.2. Job Script Limitation

The job scripts for a batch request have the following limits.

 The commands (e.g. the stty(1) command) that requires input/output of terminal devices

cannot be used, because the shell script is executed by NQSV regardless of any terminal

device.

 A shell script that needs interactive operations cannot be executed as a NQSV batch request,

because the standard output (stdout) and error output (stderr) are respectively linked to a

file during execution of the shell script.

1.1.3. How to Specify Input Data

As above, the data cannot be interactively input by the job script for a batch request. Please use

following two ways if there is necessary data for shell commands.

1. Preparing a data file storing input data for the command:

sort < input_data

In this example, the data to be sorted is stored in a file "input_data".

2. Using here-document:

sort << EOF

Rebert Cohn was

2

once middleweight boxing

champion of Princeton

EOF

1.1.4. How to Specify Submit Options

NQSV submit options can be embedded in the comment section of shell scripts. Please specify options

with the prefix character string "#PBS" in the comment section before the first shell command appears.

"#PBS" indicates the line is NQSV submit option. "#PBS" is a default character string and it can be

changed according to the option of qsub(1) command.

All options of qsub(1) command which is used for submitting batch requests can be specified in the

shell script as embedded options. This embedded option will be regarded as comment lines for

ordinary shells, so it does not affect the execution of job scripts.

BATCH request script

Starts at 11:30, Limits CPU time to 21 minutes and 10 seconds.

#PBS -a 1130 -l cputim_prc="21:10"

Submits to the queue batch1.

#PBS -q batch1

make

As the example above, multiple options can be embedded in one line. If embedded option should be

treated as a comment, do not start a line with "#PBS"

##PBS -q batch

Comment Out #PBS -a 1130 -l cputim_prc="21:10"

1.2. Batch Request Submit

1.2.1. Basic Submitting Method

Submit the batch requests using the qsub(1) command. The main specifications of the qsub command

are as follows.

 Options can be specified in the command line. It can be also specified in the job script which

named embedded option. The option in the command line will be valid when the same option

is specified in the embedded option.

 The job script will be read directly from standard input unless a shell script file is specified

in the command line.

An example of submitting batch request is as follows.

$ qsub -q batch1 script1

Request 65.host1 submitted to queue: batch1.

3

This example shows a job script "script1" being submitted to "batch1" queue. The message in the next

line of qsub command shows that NQSV batch system accepted the submitted batch request. This

message indicates following information:

Request 65.host1 submitted to queue: batch1.

(1) (2)

(1) Request ID assigned to the batch request by NQSV

(2) Name of the queue where the batch request is submitted

An example for reading a shell script from standard input is shown as follows.

$ qsub -q batch1

make all

Ctrl-D (EOF)

Request 66.host1 submitted to queue: batch1.

$

Above example submit the job script which execute "make all" command from standard input to the

queue batch1. To finish input from standard input, do Ctrl-D.

Submitting Options

The following options can be specified when submitting batch requests:

(Detailed usage for each option is described after the next chapter.)

1. Options related to result files

This option specifies where to output results of batch requests (results output to standard

output and standard error output). Outputs from a batch request are normally output to an

NQSV spool file and copied to a specified file when the batch request is terminated. If the

destination is not specified, then the output results of batch requests are output to a file in

the directly where batch requests are submitted.

Refer to 1.13. Batch Request Output File.

2. Resource Limit Options

A batch request can limit resources during execution. Resource limits are functions for

forcibly terminating execution when a batch request is executed exceeding predefined

maximum values for resources such as CPU time, memory size and file size to be used by a

batch request.

In NQSV, resource limit values can be specified as submitting options. Unless specified,

resource limit values set in a batch queue by the manager are used for the batch request. If

resource limit options are specified when submitting, NQSV compares the specified value

4

with the values set on the submitted batch queue. If a value specified by submitting option

is larger than a value set for the batch queue, this batch request will be rejected. This is

because this batch queue will not be able to execute a batch request that consumes larger

amount of resources.

3. Mail Options

Starting and termination of batch request execution are not normally notified in the NQSV.

Using the commands explained in 1.3. Status Check of Batch Request, status of a batch

request can be checked.

On the other hand, if this option is specified when submitting a batch request, execution

start and termination of the batch request will be notified by e-mail. The NQSV sends an e-

mail notifying when execution of a batch request specified by this option is started or

terminated. The default destination of e-mail is the person who submitted the batch request,

but it can be also changed.

If the execution of a batch request terminated abnormally, e-mails containing information on

errors are always sent to the person who made the submission whether or not an option is

specified.

4. Batch Job Option

In NQSV, the number and the type of jobs that a batch request creates can be specified.

Single job will be executed as default. Following job types could be selected and distributed

job is default.

 Distributed jobs

Specified batch request shell scripts are executed in each batch job.

 intmpi jobs

Intel MPI processes are executed in each batch job.

 mvapich jobs

MVAPICH processes are executed in each batch job.

 necmpi jobs

NEC MPI processes are executed in each batch job.

 openmpi jobs

OpenMPI processes are executed in each batch job.

 platform mpi jobs

Platform MPI processes are executed in each batch job.

5

5. Other options

There are also other options including an option that specifies time to start batch request

execution, an option to specify a queue to be submitted and an option to specify priorities of

batch requests.

The main options are briefly described below. Refer to Command qsub(1) for detailed descriptions and

options other than those mentioned below.

1.2.2. Submit Queue Specifying

Specify the queue to which a batch request is submitted by the -q option of qsub(1) command.

-q destination

If this option is not specified, the value of environment variable "PBS_QUEUE" will be used as a

queue to be submitted. Even if "PBS_QUEUE" is not defined, requests will not be submitted to queues

and an error message will be output.

1.2.3. Request Name Specifying

Specify the request name by the -N option of qsub(1) command.

-N name

If a request name is not specified with this option, request names will be assigned automatically as

follows.

1. The request name will be "STDIN" when a script is input from standard input.

2. If a script file is used, the file name will be the request name excluding the directory part.

[Example] "script" will become a request name.

$ qsub /usr/nqs/script

A request name starting with a numeral number will be prefixed with "R".

In case of request names with more than 63 characters, up to 63 characters will be included and the

rest will be cut off.

1.2.4. Job Number Specifying

Specify the number of batch jobs to be executed in a request by the -b option of qsub(1) command.

-b job_count

6

1.2.5. Submitting of a request with the total number of VEs specified

This function is available only for the environment whose execution host is SX-Aurora TSUBASA

system.

Specify the total number of VEs required for executing a request by specifying the --venode option for

qsub. If this option is specified, the number of required jobs is automatically calculated based on the

default number of incorporated VE nodes specified for the queue. Because of this, you cannot specify

the number of jobs (by using the -b option) together with this option. This option is used to specify the

number of VEs and number of jobs only. Therefore you need to specify other resource limits too (like

Elapse time limit and CPU number limit) to execute the job.

The format of this option is as follows:

qsub --venode=<venum>

For <venum>, specify the number of VE nodes required for the request.

For <venum>, you can specify an integer between 1 and 2147483647 but within the limited range of

the total number of VEs for the queue (to be described later).

If you specify the number of VEs per logical host (by using the --venum-lhost option for qsub) together

with the --venode option, you can then specify a value different from the default number of

incorporated VE nodes specified for a queue. The format of this option is as follows:

qsub --venode=<venum> --venum-lhost=<venum_lhost>

When specifying with the --venode option, you need to specify a value of 1 or larger for <venum_lhost>,

regardless of the lower limit value of the resources for the queue. In addition, the value needs to be

less or equal to the upper limit value of the resources for the queue.

If the --venum-lhost option is specified at the same time, the number of jobs is automatically

calculated by using the value specified for <venum_lhost> instead of the default number of

incorporated VE nodes. The number of logical hosts is calculated in the same way as calculating the

default number of incorporated VE nodes for a queue.

No error or warning is output even if the value specified for <venum_lhost> is larger than or equal to

the number of VEs actually incorporated on the execution host, but the request is not scheduled.

To refer the value of the --venode option specified, use qstat -f. If you submit a request with --venode

7

option, you can check the number of jobs calculated using the value specified by the --venum-lhost

option in the line of "Number of Jobs."

1.2.6. HCA Specifying

This function is available only for the environment whose execution host is SX-Aurora TSUBASA

system.

When execution host has VE and HCA, HCA can be assigned for the job. You can submit a request

specifying use for direct communication and number of HCA port using --use-hca option.

The format of the --use-hca option is as follows.

qsub --use-hca=[<mode>:]<num>

<num> is the number of HCA port which is used by VE which is assigned to a logical host.

<mode> is use the HCA. You can specify one of the following. If mode is not specified it is treated as

"all".

⚫ io : I/O exclusive use. Only HCA that is specified IO in device resource configuration file is

assigned.

⚫ mpi : MPI exclusive use. Only HCA that is specified MPI in device resource configuration file is

assigned.

⚫ all : IO and MPI sharing use (initial value). Only HCA that is specified IO and MPI in device

resource configuration file is assigned.

This option is only valid for request using VE. This option could be specified to the request that does

not use VE and the request which is executed on the execution host that VE not installed. However

this option has no meaning for the request. In that case, any HCA may be used.

For details of this function, please refer to [JobManipulator].

1.2.7. Job Type Specifying

Specify the type of jobs to be executed in a batch request by the -T option of qsub(1) command.

-T job_type

Parameters for "job_type" can be set as below:

 distrib Batch jobs to be executed are distributed jobs. (Default)

 intmpi Batch jobs to be executed are intmpi jobs.

 mvapich Batch jobs to be executed are mvapich jobs.

 necmpi Batch jobs to be executed are necmpi jobs.

 openmpi Batch jobs to be executed are openmpi jobs.

[Execution of a single job (The number of batch job =1)]

8

Figure 1-1 : Execution of a single job

[Execution of distributed jobs (The number of batch jobs = 3)]

Request can generate distributed jobs.

Distributed jobs are created by a batch request with the number specified by user.

Here is an example of creating three distributed jobs.

$ qsub -T distrib -b 3 script1

Figure 1-2 : Execution of distributed jobs

[Execution of MPI jobs (The number of batch jobs = 3)]

Request can generate MPI jobs.

9

MPI jobs are created by a request with the number specified by user and use MPI communication.

Here is an example of creating three MPI jobs.

$ qsub -T necmpi -b 3 --venum-lhost=1 mpi_script

$ cat mpi_script

mpirun -host 0 -host 1 -host 2 mpi_job

Specify a unique number using the -host option of mpirun command when using the -T necmpi option.

The number of -host option specifications must be equal to the number of batch jobs.

Figure 1-3 : Execution of MPI jobs

1.2.8. Result Files Options

Specify the result files of a request by the -e option, and -o option of qsub(1) command.

-e file_name

Specifies a result file for standard error output from a request.

-o file_name

Specifies a result file for standard output from a request.

The form of file_name can be set as below:

 [hostname:] path_name

The "hostname" is specified a name of a host where results file will be stored. If the "hostname" is

omitted, results file will be stored to the host where a request was submitted. The "path_name" is

specified a name of path where results files will be stored. If the "path_name" is a form of relative

path, the path is assumed as the relative path from the current working directory of qsub.

10

It is also possible to merge standard input and output from a batch request using -j option.

1.2.9. Resource Limit Options

Specify the resource limits of a request by the -l option of qsub(1) command. Some options are listed

below: (For other resource limit, please refer to [Introduction] Resource Limit for Request.)

-l filesz_prc=["]max_limit[,warn_limit"]

Sets maximum and warning value of a file size for each process

-l memsz_prc=["]max_limit[,warn_limit"]

Sets maximum and warning value of a memory size for each process

-l cputim_prc=["]max_limit[,warn_limit"]

Sets maximum and warning value of a CPU time limit for each process

The "max_limit" and "warn_limit" are specified as below:

 Time Limit

Limit values related to time are specified in the following format:

[[hours:] minutes:]seconds[.milliseconds]

[Example]

1234:58:21.29 1234 hours 58 minutes 21.29 seconds

59:01 59 minutes 1 second

12345 12345 seconds

121.1 121.1 seconds

 Size Limit

Limit values related to size are specified by the following format:

[integer][.fraction][units]

The following can be specified as units :

b Byte

kb Kilobyte

mb Megabyte

gb Gigabyte

tb Terabyte

pb Petabyte

eb Exabyte

Numbers are interpreted as bytes unless units is specified. Numerals that are not greater

than or equal to 0 in integer even multiplied by 1024 cannot be specified.

 [Example]

1234 1234 bytes

11

1234kb 1234 kilobytes

1234.5gb 1234.5 Gigabytes

Some limit parameter can be specified both "max_limit" and "warn_limit". The "warn_limit" has to be

below the "max_limit". If the "warn_limit" is omitted, it is considered to be the same as the

"max_limit".

When the use resources of the request exceeded the warning value, a signal set by the respective

limitation of resources (For the limit per process is according to man of setrlimit(2), for the CPU time

limit per logical host is SIGXTERM and the other limit per logical host is SIGTERM) is sent to the

request. When exceeding the maximum, execution of a request will be stopped immediately.

NUMA When execution host of a scalar machine for architecture (Linux) is bound, and socket

scheduling function puts a request in the queue which becomes on, it is possible to designate

socknum_job (the socket number restriction every job) as qsub --l option instead of cpunum_job (CPU

number restriction every) the job.

I move as the one as which the number of CPU cores according to the equipped resources of the

execution host bound by a queue ahead of in case of specified and the investment (the number of CPU

cores per socket) designated the number of sockets in cpunum_job by socknum_job.

[Example]

When a socket of execution host by which 10 cores are be equipped with designated qsub -l

socknum_job=2 as a bound queue and put it in, I move as the one as which qsub -l cpunum_job=20

was designated.

[Note]

When a request is submitted to a queue with socket scheduling enabled, The CPU number limit

is automatically set in the OMP_NUM_THREADS environment variable. In a job that uses VEs,

you have to set the OMP_NUM_THREADS environment variables appropriately according to the

number of VEs in the job script.

When executing MPI with OpenMP, please specify the value of the OMP_NUM_THREADS

environment variable with the -v option when submitting a request.

Resource limits per venode

The resource usage limit can be set to each VE node to be assigned to a job.

--< resource name >-venode=resource

resource : ["]max_limit[,warn_limit"]

The following resource limits of a VE node can be specified.

12

option meaning the range of value

--vecputim-lhost= max_limit[,warn_limit] VE CPU time per

logical host

integer from 0 to 2147483647 or

unlimited

--vememsz-lhost=max_limit[,warn_limit] VE memory size per

logical host

integer from 0 to 2147483647 or

unlimited

*When specifying max_limit and warn_limit in the above table to set the resource limit, use the

format of the -l option described above.

*If the resource that is not installed on the execution host is specified, the request cannot be executed.

Resource limits per logical host

By using a specification method for a job (logical host) that is created with -b job_count specified when

inputting a request, the resource usage limit can be set to each logical host to be assigned to a job.

--venum-lhost=num

Sets the number of VE nodes that must be assigned to each logical host (limit of the number of VE

nodes of a logical host). For num, an integer from 0 to 256 or "unlimited" can be specified.

--< resource name >-lhost=resource

resource : ["]max_limit[,warn_limit"]

Sets the resource amount (resource limit) of a logical host.

This option is equivalent to "-l <resource name>_job". The following resource limits of a logical host

can be specified.

option meaning the range of value

--cpunum-lhost=max_limit The number of CPUs

per logical host

integer from 0 to 2147483647 or

unlimited

--cputim-lhost=max_limit[,warn_limit] CPU time per logical

host

integer from 0 to 2147483647 or

unlimited

--gpunum-lhost=max_limit The number of

GPUs per logical

host

integer from 0 to 256 or

unlimited

--memsz-lhost=max_limit[,warn_limit] Memory size per

logical host

integer from 0 to 2147483647 or

unlimited

--venum-lhost=max_limit The number of VEs

per logical host

integer from 0 to 256 or

unlimited

--vecputim-lhost= max_limit[,warn_limit] VE CPU time per

logical host

integer from 0 to 2147483647 or

unlimited

--vememsz-lhost=max_limit[,warn_limit] VE memory size per

logical host

integer from 0 to 2147483647 or

unlimited

--vmemsz-lhost=max_limit[,warn_limit] Virtual memory size

per logical host

integer from 0 to 2147483647 or

unlimited

--stderrsz-lhost=max_limit[,warn_limit] Stderr size per

logical host

integer from 0 to 2147483647 or

unlimited

--stdoutsz-lhost=max_limit[,warn_limit] Stdout size per integer from 0 to 2147483647 or

13

logical host unlimited

*When specifying max_limit and warn_limit in the above table to set the resource limit, use the

format of the -l option described above.

*If the resource that is not installed on the execution host is specified, the request cannot be executed.

1.2.10. Start Time Specifying

Specify the starting time of a request by the -a option of qsub(1) command.

-a date-time

A request will waits for execution until the specified time.

[Example]

1200 12:00 of the day (if it is already past that time, the next day)

 when a request was submitted

10100900 9:00 on October 10 of year (if it has already passed, the next year)

 when a request was submitted

200301010900 09:00 on January 1 2003

1.2.11. Mail Notification Options

To notify starting or terminating of a request, use the -m option, -M option of qsub(1) command.

-m mail_options

The following character can be specified to the "mail_options".

b E-mail is sent when request execution is started.

e E-mail is sent when request execution is terminated. (includes an abnormal termination)

a E-mail is sent when request execution is abnormally terminated.

Abnormal termination indicates the cases when at least one of the running batch job is

terminated by signal or when forcibly terminated by trouble of the hardware.

n E-mail is not sent.

It is possible to combine the character above-mentioned as follows.

-m eb E-mail is sent when request execution is started and terminated.

-M mail-list

Specify mail send-to destinations. The "mail_list" are specified in the following format:

mail_address[,mail_address ...]

The max length of mail_list is 1023 bytes.

When this option is not specified, a mail is sent to the user on the host who submitted a job.

1.2.12. Priority Specifying

Specify the priority of a batch request in a queue by the -p option of qsub(1) command.

-p priority

Request priority in a queue is specified. The priority must be an integer of the range: [-1024...1023].

14

The larger this number, the higher the priority. The system will allocate 0 as default if the user does

not specify a request priority.

1.2.13. Account Code Specifying

Specify the account code of a request by the -A option of qsub(1) command.

-A account_string

The account code for requests is specified.

1.2.14. Rerunning Enable/Disable Specifying

Specify rerunning enable/disable of a request by the -r option of qsub(1) command.

-r { y | n }

The "y" means enable and the "n" means disable. Please refer to 1.10. Batch Request Rerun.

1.2.15. Hold Enable/Disable Specifying

Specify hold enable/disable of a request by the -H option of qsub(1) command.

-H { y | n }

The "y" means enable and the "n" means disable. Please refer to 1.6. Batch Request Hold.

1.2.16. Use of Environment Variables

The options of qsub(1) command for each following case are shown below.

 Specify -V option in order to export all environment variables in submitting request to the

environment for request execution.

 Specify the environment variable to be used to execute a request by -v option.

-v variable_list

[Example]

#!/bin/sh

#PBS -v NP=4 #The number of MPI processes

#PBS -T necmpi

#PBS -b $ {NP}

#PBS -I "bin/mpi_prog"

#PBS --venum-lhost=1

cd ${STGDIR}

mpirun -np ${NP} mpi_prog

The following environment variables are set by default.

The value can be altered by this option except for PBS_ENVIRONMENT,

15

PBS_JOBID, PBS_SUBREQNO, PBS_JOBNAME and PBS_NODEFILE.

PBS_ENVIRONMENT

Sets "PBS_BATCH" to indicate that the requests is batch processing.

PBS_JOBID

Sets a batch job identifier of the batch request.

PBS_SUBREQNO

Sets a sub-request number of the parametric request.

PBS_JOBNAME

Sets a batch request name

PBS_NODEFILE

Sets a path to the file of execution host list of all jobs in the request.

PBS_O_HOME

Sets Environment Variable "HOME" in a client host.

PBS_O_HOST

Sets a client host name.

PBS_O_LANG

Sets Environment Variable "LANG" in a client host.

PBS_O_LOGNAME

 Sets Environment Variable "LOGNAME" in a client host.

PBS_O_MAIL

Sets Environment Variable "MAIL" in a client host.

PBS_O_PATH

Sets Environment Variable "PATH" in a client host.

PBS_O_SHELL

Sets Environment Variable "SHELL" in a client host.

PBS_O_TZ

Sets Environment Variable "TZ" in a client host.

PBS_O_WORKDIR

Sets a directory for work in a client host.

 Specify the environment variable to be used only in embedded option lines in a script by -w

option.

-w script_variable_list

[Example]

#!/bin/sh

#PBS -N Sample_JOB

16

#PBS -w ELAPS=600

#PBS -m b -m e

#PBS -q batch1 #default

#PBS -l elapstim_req=${ELAPS}

The environment variable and script variable specified by -v,-w can be referred in embedded option

lines. The method to refer is as follows.

$ {variable}

When a same variable name exists, the priority is given in order of the following list.

1. The variable to be used in an embedded option line in a script (specified by -w)

2. The variable specified by qsub command's option (specified by -v)

3. The environment variable

The following environment variables cannot be passed to the job regardless specifying -V or -v option

because NQSV generates them and passes to the job.

CUDA_VISIBLE_DEVICES ENVIRONMENT

FLMOD HOME

HYDRA_LAUNCHER HYDRA_LAUNCHER_EXEC

I_MPI_HYDRA_BOOTSTRAP I_MPI_HYDRA_BOOTSTRAP_EXEC

JMM_COMM_PORT LAM_MPI_SESSION_PREFIX

LAM_MPI_SESSION_SUFFIX LOGNAME

MPICH_PROCESS_GROUP MPI_BATCH_CMD

MPI_MAX_REMSH MPI_REMSH

NMPI_LAUNCHER_EXEC NMPI_TTY_COMPAT

NQSII_ELAPSE_OVER_FILE NQSII_MPINODES

NQSII_MPIOPTS NQSII_MPI_OUTPUT

NQSII_MPI_OUTPUT_STDERR NQSII_MPI_OUTPUT_STDOUT

NQSV_MPIOPTS OMPI_MCA_plm_rsh_agent

OMPI_MCA_plm_rsh_no_tree_spawn P4_RSHCOMMAND

PATH PBS_ENVIRONMENT

PBS_EXCLUSIVE PBS_JOBID

PBS_JOBNAME PBS_JSVNO

PBS_NODEFILE PBS_SUBREQNO

QUEUENAME SHELL

STGDIR TERM

USER VE_LIMIT_OPT

_MPI_RNKFL _NECMPI_JOBTYPE

_NECMPI_MID _NECMPI_REQID

_NECMPI_VH_NODEFILE _NECMPI_VH_NODENUM

17

_NEC_NQSV_JOB

1.2.17. Shell Specifying

Specify the shell to execute the shell script for requests by the -S option of qsub(1) command.

-S path_name

An absolute path name of the shell to execute the script of a request is specified to the "path_name".

A shell will be selected by the following method unless an option is specified:

First, the login shell of the user who owns the request is started in executing the request. Next, the

login shell selects a suitable shell based on the content of script file for request and this shell (which

is not start as login shell) executes a request. (If there is "#!<shell name>" at the top of the script, the

login shell starts <shell name> as the shell that executes the script.) Requests are executed in the

same procedure as that in interactive processing.

1.2.18. Batch Job Condition Specifying

Job condition is a condition for job execution such as which host or job server will execute a job. The

job condition is specified when a request is submitted.

For details of job condition function and scheduling, please refer to [JobManipulator].

Specify the job condition of a request by the -B option of qsub(1), qlogin(1), and qrsh(1) command.

-B ["]job_condition[","job_condition"...]

Specify the conditions for allocating jobs to job servers by the scheduler to job_condition.

The form of job_condition is as follows.

[job_number:]condition.

Specify job_number as target job number that job condition is applied. Following form can be specified.

(1) Single number 0

(2) Two or more numbers using delimiters "," 0,2,5

(3) Consecutive numbers using "-" 0-4

(4) Combination of (2) and (3) 0,2,4-6

(5) All jobs ALL:

(6) Not specify equals (5) ALL

The form of condition is as follows.

type=condition sentence[;type=condition sentence]

The condition sentence for each type is as follows.

Specifying JSV No. :

18

JSV=jsv_no

Specify Job Server Number as jsv_no. Following form can be specified.

(1) Single number 0

(2) Two or more numbers using delimiters "," 0,2,5

(3) Consecutive numbers using "-" 0-4

(4) Combination of (2) and (3) 0,2,4-6

Specifying HW Type :

HW=name[,name....]

Specify HW type name. Example) HW=x86_64

Specifying Node Group:

NGRP=name[,name....]

Specify Node Group name. Example) NGRP=grp1,grp2

[Notes]

⁃ The format that is not match with above job_number specification, it is treated as condition

and job_number is treated as ALL.

⁃ If -B job_condition option multiply specified or job_condition for same job number is specified

multiply like -B "job_condition","job_condition"..., only the last condition is effective.

⁃ If it needs to specify multiple condition for the same job_number, specify it in the condition by

delimit with semi-colon (;).

⁃ Max length of job_condition is 255 bytes.

[Example]

 JSV No:

-B "0:JSV=100"

-B "1-2:JSV=101-102,105"

HW Type:

-B "ALL:HW=x86_64"

Node Group:

-B "ALL:NGRP=node_group"

1.2.19. Staging Files Options

Specify the file transferred by the file staging function by the -I option and -O option of qsub(1)

command.

19

-I "stage_in"[,"stage_in"...]

The files related to the job execution are transferred from the client host to the execution host before

the job execution.

-O "stage_out"[,"stage_out"...]

The files which are the output of the job are transferred from the execution host to the client host

after the job execution. For details, please refer to [Management] File staging.

1.2.20. Job Migration Options

Specify migration enable/disable by the -J option of qsub(1) command.

-J { y | n }

The "y" means enable, and the "n" means disable.

User files to be routed to a destination host during job migration can be specified by the -G option of

qsub(1) command.

-G ["]migration_file_path[","migration_file_path"...]

Specify "migration_file_path" with an absolute path.

For details, please refer to [Management] Job Migration.

1.2.21. Submission Message Changing

Specify the following options of the qsub(1) command to change a message for a successful submission

of a request.

 -z option No message is displayed.

 -Z option Only the request identifier will be displayed.

1.2.22. Request Connection Function

Two or more script files can be specified in submitting requests. In this case, these requests are

associated and controlled the order of execution by Request connection function. Request connection

has two connection types, serial and parallel.

Serial type:

The next request starts to execute after finishing of preceding request execution.

In qsub(1) command, specify the script files delimited by space as script-file[script-file...].

Parallel type:

All connected requests start execution at the same time.

In qsub(1) command, specify the script file delimited by ":" as script1[:script2:...].

By request connection function, all the submitted requests to be connected will be in HELD state of

Manager privilege and excluded from scheduling target. When submitting of all requests is completed,

the first request is released. Therefore, if the error (e.g. option analysis error) occurred while

20

submitting the requests, the submitted requests remain in HELD state.

In the request connection function, options specified for qsub(1) command are effective to all requests

and embedded options specified in the script file are effective only to the corresponding request.

Connected requests cannot be submit to the routing queue that forwards requests to the other batch

server. The connection between the requests cannot be kept because they deviate from management

by the submitted batch server when forwarding to the other batch server.

1.2.23. Exclusive execution

Request can be specified to execute as 1 logical host (job) per 1 host. This execution way calls exclusive

execution, and this specified request calls exclusive execution request.

(1) Exclusive Execution Request Submit

To submit the exclusive execution request, specify --exclusive option to qsub command. --exclusive

take the parameter "host". This "host" parameter can omit. The format of the option is following.

qsub --exclusive[=host]

This option also can be specified by #PBS line in the job script. The command line option is preferred

when it specified with command line option.

This option can't be used with template (--template) option of provisioning function. It will be error

when it used at same time.

The resource limit per logical host (CPU, Memory, Virtual Memory, GPU, and VE) can be specified to

the exclusive execution request. But it resource limit has no effect that the limit is not used for

scheduling and it does not limit the resource usage on the execution host.

The resource limit is treated as following with exclusive execution request.

Resource limit Treat

CPU number limit per logical host All CPUs on the execution host is assigned. Socket

scheduling feature also assigns all Sockets on the host.

Memory size limit per logical host All memory (Memory and Virtual memory) on the

execution host is assigned. Socket scheduling feature

also assigns all memory nodes on the host.

CPU time limit per logical host It is applied as you specified.

Resource limits per process It is applied as you specified.

GPU number limit per logical host All GPUs on the execution host is assigned.

VE and HCA All the VE and HCA on the execution host is assigned

21

The RSG of CPUSET feature is no meaning for exclusive execution request. If the RSG number of the

queue is set to 1 or bigger number, it always assign the RSG0 resources (It means all resources on the

execution host).

At the time of use of this function, please set more than 1 as the Queue's Resource Default of CPU

number limit, Number of GPU Limit and Number of VE node Limit.

(2) Job Execution Using Exclusive Execution

It is possible to assign a specific job in the request to high-performance execution host and carry out.

And a job can occupy whole resources of an execution host and carry out. If using the exclusive

execution function, these can be achieved.

⚫ assignment to a particular execution host of a specific job

In multi-node execution by MPI, we can consider using which gather calculation results of each slave

job in rank 0 and process the gathered result with a master job of rank 0

When there are several execution host which have a lot of CPU or memory, rich node, in a cluster,

performance of the whole processing and efficient use of resources are expected to improve if above-

mentioned high cost calculation of rank 0 is executed on the rich node.

It is possible to do such calculation method using exclusive execution and job condition.

The practical example is as follows

(1) making node group

First, please make node group to which the nodes, rich nodes, which execute a master job belong.

$ qmgr -Pm

Mgr: create node_group = richnode

Please add job servers of nodes which execute a master job.

Mgr: edit node_group add job_server_id = 100-200 richnode

Add Job_Server to Node_group (richnode).

Second, please make node group to which the nodes, non-rich nodes, which execute a slave job belong.

$ qmgr -Pm

Mgr: create node_group = slavenode

22

Please add job servers of nodes which execute a slave job.

Mgr: edit node_group add job_server_id = 300-400 slavenode

Add Job_Server to Node_group (slavenode).

(2) request submitting

For that, please specify job condition so that the 0th job, master job, is carried out by one of a node

which are registered node group richnode and so that the other jobs, slave job, are carried out by one

of a node which are registered node group slavenode. In this example, the request has 64 jobs.

qsub --exclusive -b 64 -B "0:NGRP=richnode","1-63:NGRP=slavenode"

⚫ occupying whole resource of an execution host

We can consider that jobs of a multi-node request occupy whole resource of an execution host and

carry out for high-speed running of the job or prevention of fluctuation of performance. If using the

exclusive execution function, this can be achieved.

Such host's occupation execution of resources is the exclusive execution function itself.

Therefore if you specify only "--exclusive" at the time of request submitting, you can achieve this.

qsub --exclusive script

1.2.24. Hybrid request

The normal request which has more than one job (= logical host), the resources that can be used by

the each job are completely same. On the other hand, the execution form that the different resources

are assigned to each job which included in a request is called "hybrid request".

Please refer to 16 Hybrid for detail of Hybrid request feature.

1.2.25. User Specifying

You can submit a request with specifying user account by using --user=username option of qsub

command, the job will be executed by a specified user. The job is executed by a specified user, and the

execution group is the specified user's primary group.

Only users with Group Manager privileges can submit requests with specifying a user. Only users

whose primary group is managed by own Group Manager privilege.

If you use user mapping to assign different users to a batch server host and a remote host (a

submitting host and an executing host), the --user option cannot be specified.

23

When you use this option with --group option, the --group option can specify not the supplementary

group of the user but the group that matches the following conditions.

⚫ The group must be a supplementary group of the user specified by --user option.

⚫ The group is managed by submit user's Group Manager privilege.

If a user operates a request that submitted with this option such as qalter, qdel, etc. , the -Pg option

for a Group Manager privilege must be specified for the command.

The access control of the queue is checked with the user and the primary group of the submitting user

regardless of whether this option is specified or not. All other limitation with user-specification are

based on the user specified by the --user option.

All files operated in staging function are operated with the permissions of the user specified by the --

user option and their primary group.

1.2.26. Accept SIGTERM on job execution

SIGTERM can be trapped in the job script if you specify the accept sigterm option on qsub command.

Specify --accept-sigterm option to qsub command as following.

qsub --accept-sigterm=<val>

If "yes" is specified to <val>, this option is enabled and "no" disables this option.

The default behavior is "no" (disabled) that this option is not specified.

1.3. Status Check of Batch Request

1.3.1. Check of Basic Information

Check status of a submitted request by the qstat(1) command. A request is specified using request ID.

An example of this direct specification is shown below.

[Example: with request ID]

$ qstat 72.host.example.com

RequestID ReqName UserName Queue Pri STT S Memory CPU Elapse R H M Jobs

--------------- -------- -------- -------- ---- --- - -------- -------- -------- - - - ----

72.host.example STDIN user1 batch1 0 RUN - 1.93M 0.23 26 Y Y Y 1

[Example: without request ID]

$ qstat

RequestID ReqName UserName Queue Pri STT S Memory CPU Elapse R H M Jobs

--------------- -------- -------- -------- ---- --- - -------- -------- -------- - - - ----

72.host.example STDIN user1 batch1 0 RUN - 1.93M 0.23 26 Y Y Y 1

73.host.example STDIN user1 batch1 20 QUE - 0.00B 0.00 0 Y Y Y 1

24

74.host.example STDIN user1 batch2 20 QUE - 0.00B 0.00 0 N N N 2

Column STT will show request status. The meanings of the displayed request states are as follows:

RUN Executing

QUE Waiting for execution

WAT Waiting for start time

HLD Held

HOL Holding

SUS Suspended, Suspending, Resuming (* The same "SUS" is

shown for these three states in summary display.)

ARI Receiving from routing queue

TRS Sending from routing queue

EXT Routing execution result file

PRR Waiting for start of slave request execution (Master request

only)

POR Waiting for end of slave request execution (Master request

only)

MIG Moving of request by dynamic job migration

STG Creating batch jobs or transferring stage-in target file to

execution hosts

See the qstat(1) command for more information on items other than STT.

[Note]

The value of the item “Memory” includes file cache if “enable_memory_cgroup” is “on” in

/etc/opt/nec/nqsv/nqsd.conf.

1.3.2. Check of Detailed Information

More detailed information on requests can be viewed using the qstat(1) command with -f option.

$ qstat -f 72.host1

Request ID: 72.host1

 Request Name = STDIN

 User Name = user1

 User ID = 111

 Group ID = 100

 Current State = Running

 Previous State = Pre-running

 State Transition Time = Mon Aug 26 19:25:13 2017

 State Transition Reason = PRERUN_SUCCESS

 Queue = batch1@host1 (Execution Queue)

 Job Topology = Distribute Job

 Request Privilege = Level 0

25

 Request Priority = 0

 Request Loglevel = 0

 Rerunable = Yes

 Holdable = Yes

 Hold Type = (none)

 Migratable = Yes

 Suspend Type = (none)

 Account Code = (none)

 Stdout = host1:/usr/nec/STDIN.o%s

 Stderr = host1:/usr/nec/STDIN.e%s

 Reqlog = host1:/usr/nec/STDIN.l%s

 Shell = (none)

 Mail Address = (none)

 Mail Option = (none)

 Job Condition:

 Job NO: 0 ""

 Number of Jobs = 1

 Created Request Time = Mon Aug 26 19:23:30 2017

 Entered Queue Time = Mon Aug 26 19:23:30 2017

 Planned Start Time = Mon Aug 26 19:23:32 2017

 Execute Request Time = (none)

 Started Request Time = Mon Aug 26 19:23:32 2017

 Ended Request Time = Mon Aug 26 19:25:13 2017

 Requested Start Time = (none)

 Deadline Time = (none)

 UMASK = 022

 Checkpoint Interval = 0

 Restart File Directory = (none)

 Reservation ID = (none)

 qattach command = Enable

 Attach = No

 Cluster Type Select = NONE

 UserPP Script = (none)

 Exclusive = (none)

 VE Node Number = 1

 HCA Number = (none)

 Accept Sigterm = No

 Execution Hosts(JSVNO):

 ehost101(101)

 Resources Information:

 Memory = 1.932587MB

 CPU Time = 0.225019S

 Accumulated CPU Time = 0.225019S

 Elapse = 11S

 Remaining Elapse = 446S

 Virtual Memory = 355.789062MB

 Logical Host Resources:

 VE Node Number = Max: 1 Warn: ---

 CPU Number = Max: 1 Warn: ---

 GPU Number = Max: 0 Warn: ---

 CPU Time = Max: UNLIMITED Warn: UNLIMITED

26

 Memory Size = Max: UNLIMITED Warn: UNLIMITED

 Virtual Memory Size = Max: UNLIMITED Warn: UNLIMITED

 VE CPU Time = Max: UNLIMITED Warn: UNLIMITED

 VE Memory Size = Max: UNLIMITED Warn: UNLIMITED

 Stdout Size = Max: UNLIMITED Warn: UNLIMITED

 Stderr Size = Max: UNLIMITED Warn: UNLIMITED

 VE Node Resources:

 VE CPU time = Max: UNLIMITED Warn: UNLIMITED

 VE Memory Size = Max: UNLIMITED Warn: UNLIMITED

 Resources Limits:

 (Per-Req) Elapse Time Limit = Max: 600S Warn: 600S

 (Per-Job) CPU Time = Max: UNLIMITED Warn: UNLIMITED

 (Per-Job) CPU Number = Max: 1 Warn: ---

 (Per-Job) Memory Size = Max: UNLIMITED Warn: UNLIMITED

 (Per-Job) Virtual Memory Size = Max: UNLIMITED Warn: UNLIMITED

 (Per-Job) GPU Number = Max: 0 Warn: ---

 (Per-Prc) CPU Time = Max: UNLIMITED Warn: UNLIMITED

 (Per-Prc) Open File Number = Max: UNLIMITED Warn: ---

 (Per-Prc) Memory Size = Max: UNLIMITED Warn: UNLIMITED

 (Per-Prc) Virtual Memory Size = Max: UNLIMITED Warn: UNLIMITED

 (Per-Prc) Data Segment Size = Max: UNLIMITED Warn: UNLIMITED

 (Per-Prc) Stack Segment Size = Max: UNLIMITED Warn: UNLIMITED

 (Per-Prc) Core File Size = Max: UNLIMITED Warn: UNLIMITED

 (Per-Prc) Permanent File Size = Max: UNLIMITED Warn: UNLIMITED

 (Per-Prc) VE CPU Time = Max: UNLIMITED Warn: UNLIMITED

 (Per-Prc) VE Memory Size = Max: UNLIMITED Warn: UNLIMITED

 Kernel Parameter:

 Resource Sharing Group = 0

 Nice Value = 0

 User Attributes:

 (none)

See the qstat(1) command for more information on each item.

Hybrid request specific

There is some specific feature to check the information of hybrid request.

Please refer to 16.3 Hybrid Request for detail.

[Note]

The value of the item “Memory” in the section “Resources Information:” includes file cache if

“enable_memory_cgroup” is “on” in /etc/opt/nec/nqsv/nqsd.conf.

1.3.3. Customizing Information

(1) Time format

Time data in the output of qstat(1) command is displayed by seconds as default. It is also displayed

in the format of d+hh:mm:ss by specifying -d option. This option is valid in following items.

 CPU time (CPU)

27

 Accumulated CPU time (ACCPU)

 Elapse time (Elapse)

An example of specifying -d option is as below.

$ qstat -d

RequestID ReqName UserName Queue Pri STT S Memory CPU Elapse R H M Jobs

--------------- -------- -------- -------- ---- --- - -------- ----------- ----------- - - - ----

80536.host1 STDIN user1 batch1 0 QUE - 7.62M 1+05:21:10 1+16:30:12 Y Y Y 1

(2) Long format

Sometimes there are cases that information such as execution host name is cut off in the basic

information display of qstat(1) command (without -f option) because the viewable number of character

is fixed.

By using -l option, it is possible to show all information without being cut.

An example of specifying -l option is as follows.

$ qstat - l

RequestID ReqName UserName Queue Pri STT

S Memory CPU Elapse R H M Jobs

-------------------------------------- -------------------- --------------- --------------- ---- ---

- ------------ ------------ ------------ - - - ----

80333.host1.example.com STDIN nqstest1 que1 0 QUE

- 0.00B 0.00 0 Y Y Y 1

All information is shown without cutting off. At this time, some displayed contents may run off.

 (For details of qstat -l option, please refer to 6.5. Displaying All Information.)

(3) Selecting Item and Sorting

It is possible to display information by selecting and customizing each item output by -F option of

qstat(1) command. However, it is impossible with -f option for long format.

Items which can be specified for request information are as follows.

item Content Summary display format

rid Request identifier RequestID

reqnm Request name ReqName

own Owner UserName

quenm Name of queue resided by request Queue

pri Priority Pri

stt Request state STT

stall Stall state S

mem Memory size used by request Memory

cpu CPU time of processes during execution CPU

acpu Accumulated CPU time ACCPU

elaps Elapsed time Elapse

28

relaps Remaining Elapsed time RElapse

rflg Re-execution Possible/Not Possible R

hflg Hold Possible/Not Possible H

mflg Job Migration Possible/Not Possible M

jobs Number of jobs residing in request Jobs

ehost* Execution host ExecutionHost

sdate* Date and time when request was submitted Date (SUBMIT)

qdate* Date and time for start of scheduling Date (QUEUED)

rdate* Date and time for start of request Date (RUNNING)

att* Attached or not Att

* This item can be specified in case of displaying information using qstat(1) command -F option.

An example to display batch request information in summary display in order of submitted queue

name (quenm), request ID (rid), request status (stt) and execution host (ehost) is as follows.

$ qstat -F quenm,rid,stt,ehost

Queue RequestID STT ExecutionHost

-------- --------------- --- ---------------

nqstest 80536.host1 RUN exec1.example.com

nqstest 80542.host1 QUE -

nqstest 80543.host1 QUE -

(For details of the qstat -F option, please refer to 6.2. Customizing Information.)

It is possible to sort information by item using -o option or -O option of qstat(1) command.

The following is the example sorting in descending order by the request ID.

$ qstat -O rid

RequestID ReqName UserName Queue Pri STT S Memory CPU R H Jobs

--------------- -------- -------- -------- ---- --- - -------- -------- - - ----

74.host1 STDIN user1 batch2 20 QUE - 0.00B 0.00 N N 2

73.host1 STDIN user1 batch1 20 QUE - 0.00B 0.00 Y Y 1

72.host1 STDIN user1 batch1 0 RUN - 1.93M 0.23 Y Y 1

(For details of qstat -o option and-O option (output at the time of an error), please refer to 6.3. Sorting

Information.)

1.4. Attribute Change of Batch Request

Most batch request attributes can be changed after the batch request is submitted.

Request attributes can be changed using the qalter(1) command.

The qalter command can change attribute value by specifying option for attribute and request ID.

Execute as follows when changing the limit value for a CPU time for each process of a batch request

whose request ID is 72.host1:

29

$ qalter -l cputim_prc=1000 72.host1

Attribute of Request is altered.

Please note the following points concerning attribute changing.

 Some of attributes cannot be changed when a request is executed.

 When change the elapse time limit of running request, all requests that scheduled to after of

that request must be rerun.

 Some of attributes cannot be changed when a request is routed in a routing queue.

 It is not possible to change to values that exceed the resource limit value set on an execution

queue.

 Resource limit values not supported on the system cannot be changed.

 (On Linux system, resource limits per process cannot be changed.)

(About details of the supported restriction value of resources, please refer to [Management]Batch

Queue Configuration (Resource Limit, Kernel Parameter).)

The following are some options for changeable attributes by using the qalter command.

-a Changes batch request execution time.

 [Example]

$ qalter -a 1720 72.host1

Attribute of Request is altered.

-e Changes standard-error output result file.

 [Example]

$ qalter -e host1:/usr/result.e 72.host1

Attribute of Request is altered.

-l memsz_prc

Changes memory-size limit value for each process.

 [Example]

$ qalter -l memsz_prc=2kb 72.host1

Attribute of Request is altered.

-o Changes a standard-output result file.

 [Example]

$ qalter -o host1:/usr/result.o 72.host1

Attribute of Request is altered.

-p Changes a batch request priority.

 [Example]

$ qalter -p 25 72.host1

30

Attribute of Request is altered.

-r n Changes the batch request rerun enable/disable mode.

 [Example]

$ qalter -r n 72.host1

Attribute of Request is altered.

-S Changes a batch request execution shell.

 [Example]

$ qalter -S /bin/csh 72.host1

Attribute of Request is altered.

Attribute change of hybrid request

Please refer to 16.4 Attribute Change of Hybrid Request to change the attribute of hybrid request.

1.5. Batch Request Delete

Batch requests can be deleted by the qdel(1) command.

$ qdel 72.host1

Request 72.host1 has been deleted.

The running batch request will be deleted by SIGKILL signal sent after waiting several seconds

specified by the -g option (default = 5 seconds).

If a request is specified during transferring result files, also the relative network request of the

request will be deleted.

1.6. Batch Request Hold

It is possible to keep a request from executing by setting a request to the HELD state.

Request can be held by qhold(1) command.

$ qhold 72.host1

Hold request 72.host1 is accepted.

Requests can be held in the following four states: (QUEUED, WAITING). It is not possible to hold the

request that is not allowed to be held. To execute this command, hold privilege of the target request

or higher is necessary.

1.7. Batch Request Release

Batch request can be released by the qrls(1) command. By releasing the HELD request, the request

returns in the state before, and is rescheduled again.

$ qrls 72.host1

Release request 72.host1 is accepted.

31

It is not possible to release a request with a lower privilege than the user who executed holding.

However, requests held with Scheduler privilege can be released exceptionally with NQSV Manager

privilege.

1.8. Batch Request Suspend

For the request running on the execution host, it is possible to suspend the request by sending a

SIGSTOP signal to a job. The request will be in the "SUSPEND" state.

Requests can be suspended by the qsig(1) command. A request can be suspended only if it is in the

RUNNING state.

$ qsig -s SIGSTOP 72.host1

Request 72.host1 was sent signal SIGSTOP.

The elapse time limit is valid for the batch request in SUSPENDED state.

To execute this operation, suspend privilege of the target request or higher is necessary.

1.9. Batch Request Resume

Requests can be resumed by the qsig(1) command by sending a SIGCONT signal.

$ qsig -s SIGCONT 72.host1

Request 72.host1 was sent signal SIGCONT.

It is not possible to resume a request with a lower privilege than the user who executed suspending.

However, requests suspended with Scheduler privilege can be resume exceptionally with NQSV

manager privilege.

1.10. Batch Request Rerun

After a request is assigned an execution host and a job was created, the request can be returned to

the QUEUE state from any state by rerun operation. If a running request is rerun, the execution jobs

will be stopped and the request will be in the QUEUE state. At this time, the request ID is not changed.

Request can be rerun by the qrerun(1) command.

$ qrerun 72.host1

Request 72.host1 has been rerun.

It is not possible to rerun a request that did not create any jobs.

$ qrerun 73.host1

NQSrqureq: [BSV EWRNGSTS] Request state isn't suitable. (QUEUED).

A request could be rerun SHRT_MAX (32676) times. It is the max value that the accounting function

can record.

32

1.11. Batch Request Move

It is possible to move (re-submit) a request submitted in one batch queue to another batch queue by

the qmove(1) command. At this time, it is checked whether the resource limit values for the request

exceed those for the move-to queue. If exceeded, rerun operation will be failed.

Only batch requests in QUEUED (only if the request did not create any jobs), WAITING and HELD

state can be moved. If -f option is specified, the batch request that has batch jobs is moved forcibly

after deleting the jobs.

$ qmove batch1 72.host1

Request 72.host1 has been moved.

It is possible to move all the requests in a certain queue to another queue at a time by being specified

a certain queue to qmove(1) command.

$ qmove batch1 -q batch2

Request 72.host1 has been moved.

Request 73.host1 has been moved.

Request 74.host1 has been moved.

1.12. Batch Request Termination Check

When a request terminates, it is not showed any more by the qstat command.

The other ways to check the termination of a request are ways by a mail and by the qwait(1) command.

1.12.1. Checking by Mail

An e-mail is sent when the batch request is terminated, if the "-m e" option of qsub is specified in the

submission of a batch request.

1.12.2. Checking by qwait(1)

It is possible to wait termination of a batch request by qwait(1) command. The qwait(1) command

waits the termination of a request and displays the termination code of a request.

[Example] When a request has terminated with termination code 45:

$ qwait 123.host1

exited 45

[Example] When a request was deleted in the QUEUED state:

$ qwait 124.host1

deleted in the QUEUED state

33

1.13. Batch Request Output File

When the batch request is executed, the following two files are created as the result file.

⚫ Standard output file that stores the contents output to the standard output during the

execution of the request.

⚫ Standard error output file that stores the contents output to the standard error output during

the execution of the request.

The file name of the standard output file and the standard error file are named as follows.

[Standard output file]

< request name>. o< sequence number>

[Example] When a request name is "batreq" and serial request number is 72, "batreq.o72" will be

the result file for standard outputs.

 [Standard error file]

< request name>. e< sequence number>

[Example] When a request name is "batreq" and serial request number is 72, "batreq.e72" will be

the result file for standard error outputs.

A request name can be specified when a request is submitted by the -N option of qsub(1) command.

The name of the submitted script file will become request name if not specified. The request name

will be "STDIN" if a script is input from standard input of qsub(1) command.

1.14. Run MPI Request

NQSV supports following MPI.

• NEC MPI

• OpenMPI (OpenMPI Version 1.8.3, Version 2.0.1, Version 2.1.2,

 Version 3.0.0, Version 4.0.3, Version 4.1.1. Version 4.1.3)

• Intel MPI (Intel(R) MPI Library for Linux OS Version 4.1 Update 3,

 Version 5.1 Update 3, 2017 Update 1, 2018 Update 3, 2019 Update 7

 2021 Update 5)

• Intel OneAPI (Intel(R) OneAPI Toolkits Release 2021.4)

• MVAPICH2 (MVAPICH2 Version 2.0, Version 2.3.4, Version2.3.6, Version 2.3.7)

• Platform MPI (Platform MPI Version 09.01.04.03)

1.14.1. Run under the NEC MPI Environment

This function is available only for the environment whose execution host is SX-Aurora TSUBASA

34

system.

In NQSV, it is possible to select either Hydra or MPD as process manager to execute NEC MPI jobs

for a queue to submit.

* Queue setting can be confirmed by display of qstat -Qf (NEC MPI Process Manager).

To run a job with NEC MPI, submit a request as follows.

- Option in submitting

Specify necmpi to -T option of the qsub(1) command.

An example of the job script to execute MPI program mpi_prog executed into 4 logical host which has

8 VE, 1 process per a VE, is shown as follows.

#!/bin/sh

#PBS -T necmpi

#PBS -b 4

#PBS -I "bin/mpi_prog,"

#PBS --venum-lhost=8

cd ${STGDIR}

source /opt/nec/ve/mpi/1.0.1/bin/necmpivars.sh

mpirun -nnp 8 -nn 4 -ve 0-7 mpi_prog

1.14.2. Run under the OpenMPI Environment

⚫ Submit Method

In NQSV, to execute a job using OpenMPI, submit request as follows.

- Submit Option

Specify openmpi with qsub(1) command -T option.

- mpirun

To execute MPI program, use mpirun command of OpenMPI.

Specify ${NQSV_MPIOPTS} or ${NQSII_MPIOPTS} as mpirun parameter. (With this

parameter, job execution host is provided for MPI.)

[Info]

In case more than one network I/F are available in the jobs, network I/F the jobs use

can be designated by "-mca btl_tcp_if_include" option.

For example when executing jobs in Docker container, please designate an overlay

network I/F by "-mca btl_tcp_if_include" option.

For example, to execute OpenMPI program by creating 64 MPI processes, 2 jobs(nodes), as batch

request, describe job script as follows.

#! /bin/bash

#PBS -T openmpi

35

#PBS -b 2 # The number of Batch Job

mpirun ${NQSV_MPIOPTS} -np 64 ${HOME}/mpi_prog

⚫ Execution with OpenMP

In case of executing the OpenMPI program with OpenMP, specify multiplicity to

OMP_NUM_THREADS in a process as job environment variable.

Note that when a request is submitted to a queue with the socket scheduling feature enabled, the

OMP_NUM_THREADS environment variable is automatically set to the limit value for the

number of CPUs per logical host. This environment variable can be overridden by specifying its

value with the qsub -v option.

When a job script submits a new request with qsub -V, the environment variables that the first

request has are inherited to the second request. Therefore please set the environment variable

OMP_NUM_THREADS with value used in the second request.

For example, to execute OpenMPI program by creating MPI process on each node, 2 jobs(nodes)

and creating 32 threads per each process by OpenMP as batch request, describe job script as

follows.

#! /bin/bash

#PBS -T openmpi

#PBS -b 2 # The number of Batch Job

#PBS --cpunum-lhost=32 # The number of CPUs per logical host

#PBS -v OMP_NUM_THREADS=32

mpirun ${NQSV_MPIOPTS} -np 2 ${HOME}/mpi_prog

[Notes]

 Multiple jobs cannot be executed on a single execution host in the case of OpenMPI.

 When the job does not complete normally, such as when the resource limit is exceeded or when

a node failure occurs, temporary files may remain under /tmp on the master node. There is no

problem with deleting them.

1.14.3. Run under the Intel MPI Environment

⚫ Submit Method

In NQSV, to execute a job using Intel MPI, submit request as follows.

- Submit Option

Specify intmpi with qsub(1) command -T option.

- mpirun

mpirun command of Intel MPI is used to execute MPI program.

Specify ${NQSV_MPIOPTS} or ${NQSII_MPIOPTS} as mpirun parameter. (With this

36

parameter, job execution host is provided for MPI.)

For example, to execute Intel MPI program by creating 64 MPI processes, 2 jobs(nodes), as batch

request, describe job script as follows.

#! /bin/bash

#PBS -T intmpi

#PBS -b 2 # The number of Batch Job

mpirun ${NQSV_MPIOPTS} -np 64 ${HOME}/mpi_prog

 You can also distribute the MPI processes evenly across multiple nodes. For example, to allocate

a total of 64 MPI processes on two nodes, 32 processes each, write the job script as follows.

#! /bin/bash

#PBS -T intmpi

#PBS -b 2 # The number of Batch Job

mpirun -hostfile ${PBS_NODEFILE} -np 64 -ppn 32 ${HOME}/mpi_prog

⚫ Execution with OpenMP

In case of executing Intel MPI program with OpenMP, specify multiplicity to

OMP_NUM_THREADS in a process as job environment variable.

Note that when a request is submitted to a queue with the socket scheduling feature enabled, the

OMP_NUM_THREADS environment variable is automatically set to the limit value for the

number of CPUs per logical host. This environment variable can be overridden by specifying its

value with the qsub -v option.

When a job script submits a new request with qsub -V, the environment variables that the first

request has are inherited to the second request. Therefore please set the environment variable

OMP_NUM_THREADS with value used in the second request.

For example, to execute Intel MPI program by creating a process on each node, 2 jobs(nodes), and

creating 32 threads per each process by OpenMP as batch request, describe job script as follows.

#! /bin/bash

#PBS -T intmpi

#PBS -b 2 # The number of Batch Job

#PBS --cpunum-lhost=32 # The number of CPUs per logical host

#PBS -v OMP_NUM_THREADS=32

mpirun ${NQSV_MPIOPTS} -np 2 ${HOME}/mpi_prog

[Notes]

Multiple jobs cannot be executed on a single execution host in the case of IntelMPI when the socket

37

scheduling feature is enabled.

When a job is deleted by qdel(1) command during job execution, the following message may appear

in the job execution result file (standard error output). But there is no problem in the operation.

[proxy:0:1@host1] proxy_upstream_control_cb (../../../../../src/pm/i_hydra/proxy/proxy_cb.c:69): assert

(!closed) failed

[proxy:0:1@host1]HYDI_dmx_poll_wait_for_event

(../../../../../src/pm/i_hydra/libhydra/demux/hydra_demux_poll.c:80): callback returned error status

[proxy:0:1@host1]main (../../../../../src/pm/i_hydra/proxy/proxy.c:964): error waiting for event

1.14.4. Run under the MVAPICH2 Environment

In NQSV, to execute a job using MVAPICH2, submit request as follows.

⁃ Submit Option

Specify mvapich to with qsub(1) command -T option.

⁃ mpiexec

mpiexec command of MVAPICH2 is used to execute MPI program.

Specify ${NQSV_MPIOPTS} or ${NQSII_MPIOPTS} as mpiexec parameter. (With this

parameter, job execution host is provided for MPI.)

For example, to execute MVAPICH program by creating 64 MPI processes, 2 jobs (nodes), as batch

request, describe job script as follows.

#! /bin/bash

#PBS -T mvapich

#PBS -b 2 # The number of Batch Job

mpiexec ${NQSV_MPIOPTS} -np 64 ${HOME}/mpi_prog

1.14.5. Run under the Platform MPI Environment

⚫ Submit Method

In NQSV, to execute a job using Platform MPI, submit request as follows.

- Submit Option

Specify pltmpi with qsub(1) command -T option.

- mpirun

mpirun command of Platform MPI is used to execute MPI program.

Specify ${NQSV_MPIOPTS} or ${NQSII_MPIOPTS} as mpirun parameter. With this

parameter, job execution host is provided for MPI. If you need to pass environment

variables such as PATH and LD_LIBRARY_PATH to each job, specify them in the option

-envlist of mpirun.

38

For example, to execute Platform MPI program by creating 64 MPI processes, 2 jobs (nodes), as

batch request, describe job script as follows.

#! /bin/bash

#PBS -T pltmpi

#PBS -b 2 # The number of Batch Job

mpirun ${NQSV_MPIOPTS} -np 64 –envlist PATH,LD_LIBRARY_PATH ${HOME}/mpi_prog

[Notes]

 When a job is deleted by qdel command during job execution, the following message may appear

in the job execution result file (standard error output). But there is no problem in the operation.

-15: -c: line 0: unexpected EOF while looking for matching `"'

-15: -c: line 1: syntax error: unexpected end of file

In addition, the following temporary files created at the time of job execution may remain under

/tmp. Please delete them manually.

 mpijob_user1_0, mpiafQeIuGG

1.15. Display Output file in Request Running

The contents of the standard output file/the error output file are displayed by qcat(1) command if the

request is running. In addition, qcat(1) can display the job script and the list of running process in

the job.

The qcat(1) has the following options.

-e Display the standard error output file.

-i (Default) Display the script file.

-o Display the standard output file.

-p Display running process list of the job.

-d Display the request log.

How to display can be specified in combination with -e or -o option.

-f Display the appended data when the file grows.

How to display can be specified in combination with options above.

-n Display the specified number of line. (If this option is not specified, ten lines

39

are displayed.)

-b Display from the top of the file. (If this option is not specified, displayed

from the last line.)

[Example] display 15 lines from the top file input file (job script) of a running job.

$ qcat -b -n 15 123.host1

#!/bin/sh

#PBS -N Sample_JOB

#PBS -m b -m e

#PBS -j o

#PBS -q batch1 #default

#PBS -l cputim_prc=10:00:00

#PBS -l cputim_job=20:00:00

#PBS -l memsz_prc=100mb

#PBS -l memsz_job=200mb

#PBS -l cpunum_prc=1

#PBS -l elapstim_req=600

date

make

$

[Example] display the process list of a running job (batch job id 3:123.host1).

$ qcat -p 3:123.host1

JID PID S SZ TIME COMMAND

77 2025 S 33 0:01 ksh

77 2030 R 523 5:02 a.out

1.16. Request log

The processing state of a batch request can be recorded as request log. The request log is recorded in

case of setting the log level to 1 or above by -D option of qsub(1) command. (The default level is 0, and

the request log is not output.)

The following three levels can be specified as the log level of the request log.

0 The request log is not output. (default)

1 The logs about the request are output.

2 The logs about the request and the batch job are output.

The request log can be referred by -d option of qcat(1) command. Also, the request log can be staged

out to the output location specified by -d option of qsub(1) command after the request is completed.

40

1.17. Attach to Request

It is possible to control a running job from outside program by the qattach(1) command.

Specify a program to -c option of the qattach(1) command and a job ID of the target job to the

qattach(1) command. It is possible to specify a request ID instead of a job ID. At this case, all of the

jobs in the request are the target.

The program specified to -c option is executed as the part of the job on the execution host. Therefore,

the CPU time or the memory usage of the program is accumulated to the usage of the job.

The standard input/output/error of the program can be handled as those of qattach(1) command.

However, the program created does not have the control terminal, so is it not possible to specify a

program that needs the control terminal or control terminal functions.

[Example] debugging a running job

$ qcat -p 0:16303

 SID PID STAT VSZ RSS TIME COMMAND

10073 10073 Ss 22628 2400 00:00:00 nqs_shpd

10073 10074 S 119772 2276 00:00:00 bash

10073 10113 R+ 4164 340 00:00:07 a.out

$ qattach -c "gdb --quiet" 0:16303

(gdb) attach 10113

Attaching to process 10113

 :

It is possible to attach to each job once at the same time.

41

2. Parametric Request Operation

2.1. Parametric Request Submit

2.1.1. Submitting Method

A parametric request is the request that executes the same job script as more than one sub-requests

while changing input parameters or input files.

A job script for parametric request is the same as a batch request.

To submit a parametric request, a batch queue specified to qsub(1) command. At this time, the number

range is also specified to qsub(1) command -t option.

[Example] Specify the number 1 to 5 as a parameter

$ qsub -q batch1 -t 1-5 script1

Request 65[]. bsv1 submitted to queue: batch1.

The ways of the -t option are as follows.

 delimited by comma(,) (ex. -t 1,3,5)

 Using hyphen(-) (ex. -t 1-5 It is same as "-t 1,2,3,4,5")

 Using hyphen(-) and skipping number (:n) (ex. -t 1-5:2 It is same as "-t 1,3,5")

When submission of a parametric request succeeds, a message including the request ID and a queue

name is shown to standard output like submission of a batch request. The request ID is shown as

parametric request ID's, which is sequence number of a usual batch request added "[]" marker.

In above example, five sub-requests are created and each sub-request is scheduled and executed same

as usual batch requests. The number of jobs and resource limits, etc. specified to submitting

parametric request are set to each sub-request.

2.1.2. Parameter and Input File

The "PBS_SUBREQNO" environment variable can be used to refer to the sub-request number

specified by -t option in submitting a parametric request as the input parameter when each sub-

request is executed.

In specifying a transmission file for file staging by -I or -O option of qsub(1) command, it is possible

to include sub-request number in the transmission file path by "%t". For example, each sub-request's

transmission files are respectively /DATA/IN_DATA.001, /DATA/IN_DATA.002,

/DATA/IN_DATA.003 ... as follows.

$ qsub -q batch1 -t 1-5 -I \"/DATA/IN-DATA.%03t,filein\" script1

Request 65[]. bsv1 submitted to queue: batch1.

It is possible to refer to the path name as "$STGDIR/filein" in script file.

42

2.2. State Check of Parametric Request

Check status of a submitted parametric request by the qstat(1) command.

$ qstat

RequestID ReqName UserName Queue Pri STT S Memory CPU Elapse R H M Jobs

--------------- -------- -------- -------- ---- --- - -------- -------- -------- - - - ----

71.bsv1 STDIN user1 batch1 0 RUN - 1.93M 0.23 46 Y Y Y 1

72[].bsv1 STDIN user1 batch1 0 QUE - - - - Y Y Y 1

When a request and a parametric request exist, without options in a request reference by the qstat

command, the information indicates a parametric request. For a certain parametric request, specify

the parametric request ID that is a sequence number added "[]".

$ qstat 72[].bsv1

RequestID ReqName UserName Queue Pri STT S Memory CPU Elapse R H M Jobs

--------------- -------- -------- -------- ---- --- - -------- -------- -------- - - - ----

72[].bsv1 STDIN user1 batch1 0 QUE - - - - Y Y Y 1

When checking the state of the sub-request executed actually as a parametric request, specify -s

option of the qstat(1) command. The information of sub-request instead of its parametric request is

shown.

$ qstat -s

RequestID ReqName UserName Queue Pri STT S Memory CPU Elapse R H M Jobs

--------------- -------- -------- -------- ---- --- - -------- -------- -------- - - - ----

71.bsv1 STDIN user1 batch1 0 RUN - 1.93M 0.23 46 Y Y Y 1

72[1].bsv1 STDIN user1 batch1 0 RUN - 3.87M 0.00 29 Y Y Y 1

72[2].bsv1 STDIN user1 batch1 0 QUE - 0.00B 0.00 0 Y Y Y 1

72[3].bsv1 STDIN user1 batch1 0 QUE - 0.00B 0.00 0 Y Y Y 1

72[4].bsv1 STDIN user1 batch1 0 QUE - 0.00B 0.00 0 Y Y Y 1

72[5].bsv1 STDIN user1 batch1 0 QUE - 0.00B 0.00 0 Y Y Y 1

Request ID of sub-request is form that is parametric request ID and sub-request number clipped by

"[" and "]".

The upper limit is set as the number of the sub-request for parametric request created on the batch

server (Default 100). Therefore, all the sub-requests specified by the "-t" option of the qsub(1)

command may not be shown. In addition, parametric requests suspended by the "-h" or "-a" option of

the qsub(1) command may not be shown because sub-requests have not created yet.

For the summary information of parametric requests, use the qstat(1) command with the "-R" option.

$ qstat -R

RequestID ReqName UserName Queue Pri STT R H M Jobs TOTAL ACTIVE DONE

--------------- -------- -------- -------- ---- --- - - - ---- ------ ------ ------

72[].bsv1 STDIN user1 batch1 0 RUN Y Y Y 1 5 2 3

The number of all sub-requests is shown to TOTAL, the number of sub-requests on the batch server

is shown to ACTIVE and the number of terminated sub-requests (include deleted sub-requests) is

shown to DONE.

43

[Note]

The value of the item “Memory” includes file cache if “enable_memory_cgroup” is “on” in

/etc/opt/nec/nqsv/nqsd.conf.

2.3. Parametric Request Operation

There are operation to the whole parametric request including all sub-requests and operation by the

sub-request unit. For the operation to the whole parametric request, specify parametric request ID.

For the operation by the sub-request unit, specify sub-request ID.

To delete the whole parametric request, specify as below.

$ qdel 72[].bsv1

Request 72[].bsv1 was deleted.

To delete the certain sub-request 72[2], specify as below.

$ qdel 72[2].bsv1

Request 72[2].bsv1 was deleted.

Each operation works as below.

Operation The operation to the whole

parametric request

The operation by the sub-request

unit

Delete

(qdel)

Delete all sub-requests and

parametric request.

Delete a specified sub-request.

Alter Attribute

(qalter)

Alter common attributes among all

sub-requests.

* The change result is effective to sub-

requests executed after altering.

Unable

Hold

(qhold)

Hold all sub-requests.

* It is not assure to hold each sub-

request.

Hold a specified sub-request.

Hold Release

(qrls)

Release all held sub-requests. Release a specified held sub-

request.

Suspend

(qsig -s STOP)

Suspend all sub-requests. Suspend a specified sub-request.

Resume

(qsig -s CONT)

Resume all sub-requests. Resume a specified sub-request.

Rerun

(qrerun)

After deleting all sub-requests, submit

the parametric request again.

Rerun a specified sub-request.

Move queue

(qmove)

Change submit queue for the whole

parametric request.

It is possible only when all sub-

requests have not started.

* When a sub-request has a job, the

"force" option is needed.

Unable

Attach

(qattach)

Unable Attach to a job in a specified sub-

request.

[Notes]

Hold operation for a parametric request is performed for each sub-request. So the hold processing can

44

be failed according to the states of sub-requests. Therefore, the HELD state of the parametric request

does not mean that the states of sub-requests are all HELD.

2.4. Parametric Request Start, Termination, and Output File

2.4.1. Mail send

An e-mail is sent when the batch request is starting or terminated, if the "-m e" option of qsub(1)

command.

It is possible to specify it so that a mail may be sent at the time of start or termination of the

parametric request and at the time of start or termination of the each sub-request.

Mail option At the timing of a mail send

b Parametric request starts.

e Parametric request terminates.

a Sub-request aborts abnormally.

s Each sub-request starts.

d Each sub-request terminates.

2.4.2. Waiting Termination

It is possible to wait termination of a request or each sub-request by qwait(1) command. For waiting

a parametric request, specify the request ID. For waiting a sub-request, specify the sub-request ID.

For the operation to the whole parametric request, specify parametric request ID. For the operation

by the sub-request unit, specify sub-request ID.

To delete the whole parametric request, specify as below.

[Example] waiting parametric request

$ qwait 72[].bsv1

exited (3 subrequests)

[Example] waiting a certain sub-request

$ qwait 72[2].bsv1

exited 0

2.4.3. Output File

To execute a parametric request by the sub-request unit, an output file is also made by each sub-

request. The file name of the standard output file is named as follows.

<request name>.o<sequence number>.< sub-request number>

[Example] When a request name is "preq", serial request number is 72 and sub-request number

is 2, "preq.o72.2" will be the result file for standard output.

When a standard output file is specified by the "-o" option of the qsub(1) command, the file name is

named as follows.

45

<specified file name>.<sub-request number>

The file name of the standard error file is named as follows.

<request name>.e<sequence number>.<sub-request number>

[Example] When a request name is "preq", serial request number is 72 and sub-request number

is 2, "preq.e72.2" will be the result file for standard errors.

When a standard error file is specified by the "-e" option of the qsub(1) command, the file name is

named as follows.

<specified file name>.<sub-request number>

For a parametric request, sub-request number can be expanded in file name specified with qsub -o, -

e and -O options by using "%t".

And the %r in the file name specified with qsub -o, -e, -I and -O options is expanded for each sub-

request as

<sequence-number>[<sub-request-number>].<BSV host name>

When an external staging is used, %r expansion might cause a problem that the "[" and "]" characters

are not recognized as file name characters. In that case, please use %P expansion that uses "_" instead

of "[" and "]" for request ID.

%P is expanded in the file name specified with -o, -e, -I and -O options as

<sequence-number>_<sub-request-number>.<BSV host name>

46

3. Interactive Request Operation

3.1. Interactive Request Submit

To submit interactive request, there are two types of way. One is to use the qlogin command and the

other is to use the remote execution function (the qrsh command). The qlogin command, which is a

session connection type, is explained in this section.

About the remote execution function (the qrsh command), please refer to [Management] Remote

Execution by Interactive Function.

3.1.1. Submitting method by qlogin

To submit interactive request of a session connection type by the qlogin(1) command. Some options

can be specified to the qlogin(1) command. The options which can be specified are the same as the

options of qsub(1) command basically. About the options for only qlogin(1) is explained at 3.1.2.

Submit Option of qlogin.

Below is an example of interactive request by the qlogin command.

$ qlogin -q ique --cpunum-lhost=4 -l elapstim_req=1800

Request 111.bsv1 submitted to queue: ique. <-(1)

Waiting for 111.bsv1 to start. <-(2)

-sh-4.1$ <-(3)

-sh-4.1$ hostname

ehost001

The above example designates resource limits as interactive queue ique and submits interactive

request.

(1) The message display next to the qlogin command means that NQSV accepted the interactive

request, request ID assigned by NQSV and the queue name are displayed.

(2) Showing a message of "Waiting for ...", and wait for a connection of a session with execution host.

After the connection of both standard input/output and error output is established, interactive

request starts.

(3) A prompt of a shell on the execution host is displayed, and it becomes possible to use execution

host interactively.

When an interactive request is submitted with qlogin command, interactive session is connected from

a job server on execution host to the qlogin command. At this time, the host name on which the qlogin

command is executed is used as the destination host.

If the host name of the client host on which qlogin executed cannot be referenced on execution hosts,

you can use NQSV_INTERACTIVE_IP or NQSII_INTERACTIVE_IP environment variable to specify

the qlogin's client host.

47

There are no difference for using NQSV_INTERACTIVE_IP and NQSII_INTERACTIVE_IP. If both

of these environment variables are specified, the value of NQSV_INTERACTIVE_IP is valid. Please

use NQSV_INTERACTIVE_IP as follows.

$ export NQSV_INTERACTIVE_IP=192.168.0.1

$ qlogin -q ique --cpunum-lhost=4 -l elapstim_req=1800

Request 111.bsv1 submitted to queue: ique.

 :

3.1.2. Submit Option of qlogin

(1) Queue Name

-q queue

Specify an interactive queue.

(2) Number of Jobs

-b N

When the type of jobs specified by -T option is "distrib", which means distributed job, "N" has to be

"1". Even if more than "1" is specified, it is assumed that "1" is set.

(3) Waiting of Execution Host Allocation

-W

When waiting setting of execution host allocation for interactive queue is set to "manual", you can

wait for the allocation by the -W option of qlogin command. When not specifying -W option and there

is no execution host to be assigned immediately, the submission will be canceled.

When waiting setting of execution host allocation for interactive queue is not set to "manual", the -W

option is no effect.

(For details of waiting setting of interactive queue, please refer to [Management] Interactive Queue

Configuration (Waiting Option).)

(4) Idle Timer

-l idle_timer=max_limit

If input dose not arrive, after waiting max_limit minutes the shell disconnects its session and deletes

request automatically.

 (For details of idle timer of interactive queue, please refer to [Management] Interactive Queue

Configuration (Idle Timer).)

(5) Others

Interactive request has the following features.

48

1. It does not do staging because input/output of a job is connected with stdin/stdout/stderr of

qlogin.

2. It does not have priority, rerun, and parametric request functions like the batch execution.

Therefore, there are not specifications for following functions.

・ Embedded option for script file

・ Request log

・ Standard output/stderr file

・ Migration

・ Hold, rerun

・ Designation related to

・ Staging

・ Request priority

3.2. State Check of Interactive Request

Check status of a submitted interactive request by the qstat(1) command.

[request ID is specified]

$ qstat 82.host

RequestID ReqName UserName Queue Pri STT S Memory CPU Elapse R H M Jobs

--------------- -------- -------- -------- ---- --- - -------- -------- -------- - - - ----

82.host.example QLOGIN user1 ique 0 RUN - 1.93M 0.23 128 N N N 1

[request ID is not specified]

$ qstat.

RequestID ReqName UserName Queue Pri STT S Memory CPU Elapse R H M Jobs

--------------- -------- -------- -------- ---- --- - -------- -------- -------- - - - ----

73.host.example STDIN user1 batch1 20 QUE - 0.00B 0.00 0 Y Y Y 1

74.host.example STDIN user1 batch2 20 QUE - 0.00B 0.00 0 N N N 2

82.host.example QLOGIN user1 ique 0 RUN - 1.93M 0.23 128 N N N 1

[Detailed information]

$ qstat -f 82.host

Request ID: 82.host.example.com

 Request Name = QLOGIN

 User Name = user1

 User ID = 100

 Group ID = 100

 Current State = Running

 Previous State = Pre-running

 State Transition Time = Sat Feb 8 15:26:35 2017

 State Transition Reason = PRERUN_SUCCESS

 Queue = ique@ host.example.com (Interactive Queue)

49

 Job Topology = Distribute Job

 Request Privilege = Level 0

 Request Priority = 0

 Rerunable = No

 Holdable = No

 Migratable = No

 Suspend Type = (none)

 Account Code = (none)

 Shell = (none)

 Restrict shell = (none)

 Mail Address = user1@client.example.com

 Mail Option = (none)

 Job Condition:

 Job NO: 0 ""

 Number of Jobs = 1

 Created Request Time = Sat Feb 8 15:26:22 2017

 Entered Queue Time = Sat Feb 8 15:26:22 2017

 Planned Start Time = Sat Feb 8 15:26:35 2017

 Execute Request Time = (none)

 Started Request Time = Sat Feb 8 15:26:35 2017

 Ended Request Time = (none)

 Requested Start Time = (none)

 UMASK = 022

 Interactive Host = client.example.com

 Interactive Port = 54467

 Idle Timer = 0

 qattach command = Enable

 Attach = No

 Cluster Type Select = NONE

 UserPP Script = (none)

 Exclusive = (none)

 HCA Number = (none)

 Accept Sigterm = No

Execution Hosts(JSVNO):

 ehost100(100)

 Resources Information:

 Memory = 3.011719MB

 CPU Time = 0.010000S

 Accumulated CPU Time = 0.010000S

 Elapse = 766S

 Remaining Elapse = 2834S

 Virtual Memory = 355.789062MB

Logical Host Resources:

VE Node Number = Max: 1 Warn: ---

CPU Number = Max: 1 Warn: ---

GPU Number = Max: 0 Warn: ---

CPU Time = Max: UNLIMITED Warn: UNLIMITED

Memory Size = Max: UNLIMITED Warn: UNLIMITED

Virtual Memory Size = Max: UNLIMITED Warn: UNLIMITED

VE CPU Time = Max: UNLIMITED Warn: UNLIMITED

VE Memory Size = Max: UNLIMITED Warn: UNLIMITED

50

 VE Node Resources:

 VE CPU Time = Max: UNLIMITED Warn: UNLIMITED

VE Memory Size = Max: UNLIMITED Warn: UNLIMITED

 Resources Limits:

 (Per-Req) Elapse Time Limit = Max: 3600S Warn: 3600S

 (Per-Job) CPU Time = Max: UNLIMITED Warn: UNLIMITED

 (Per-Job) CPU Number = Max: 1 Warn: ---

 (Per-Job) Memory Size = Max: UNLIMITED Warn: UNLIMITED

 (Per-Job) Virtual Memory Size = Max: UNLIMITED Warn: UNLIMITED

 (Per-Job) GPU Number = Max: 0 Warn: ---

 (Per-Prc) CPU Time = Max: UNLIMITED Warn: UNLIMITED

 (Per-Prc) Open File Number = Max: UNLIMITED Warn: ---

 (Per-Prc) Memory Size = Max: UNLIMITED Warn: UNLIMITED

 (Per-Prc) Virtual Memory Size = Max: UNLIMITED Warn: UNLIMITED

 (Per-Prc) Data Segment Size = Max: UNLIMITED Warn: UNLIMITED

 (Per-Prc) Stack Segment Size = Max: UNLIMITED Warn: UNLIMITED

 (Per-Prc) Core File Size = Max: UNLIMITED Warn: UNLIMITED

 (Per-Prc) Permanent File Size = Max: UNLIMITED Warn: UNLIMITED

(Per-Prc) VE CPU Time = Max: UNLIMITED Warn: UNLIMITED

(Per-Prc) VE Memory Size = Max: UNLIMITED Warn: UNLIMITED

 Kernel Parameter:

 Resource Sharing Group = 0

 Nice Value = 0

 User Attributes:

 (none)

Please refer to qstat (1) about the contents of each item.

[Note]

The value of the item "Memory" when basic information and the item "Memory" in the section

"Resources Information:" when detail information includes file cache if "enable_memory_cgroup"

is "on" in /etc/opt/nec/nqsv/nqsd.conf.

3.3. Attribute Change of Interactive Request

It is possible to change the attribute of the interactive request like a batch request by the qalter(1)

command. Attribute that cannot be specified to interactive request cannot be changed.

3.4. Operations

The following operations are also possible like a batch request to interactive request.

Operation Command

Delete qdel

Attribute Change qalter

Suspend qsig -s STOP

51

Resume qsig -s CONT

Attach qattach

It is not possible to do Move, Hold and Rerun of interactive request.

And it is not possible to move a batch request to interactive queue.

[Notes]

 When suspend/resume is performed on an interactive request that is running in an

OpenMPI environment, the running MPI process may be forced to stop.

3.5. Interactive Request Start, Termination, and Output File

It is possible to wait for starting of a request, mail when a request terminates by specified at the time

of request submission by qlogin(1) command. In addition, it is possible to wait for a termination of by

the qwait (1) command.

However, it is not possible to create output file, because the output of the interactive request is

displayed as the output of the qlogin.

3.6. Run MPI Request

3.6.1. Run under the NEC MPI Environment

This function is available only for the environment whose execution host is SX-Aurora TSUBASA

system.

In NQSV, it is possible to select either Hydra or MPD as process manager to execute NEC MPI jobs

for a queue to submit.

* Queue setting can be confirmed by display of qstat -Qf (NEC MPI Process Manager).

To run a job with NEC MPI, submit a request as follows.

- Option in submitting

Specify necmpi to -T option of the qlogin(1) command.

An example to execute MPI program, mpi_prog executed into 2 logical host which has 4 VE, 1

processes per a VE, is shown as follows.

client $ qlogin -q ique -T necmpi -b 4 --venum-lhost=8

Request 28.host1 submitted to queue: ique.

Waiting for 28.host1 to start.

ehost $ source /opt/nec/ve/mpi/1.0.1/bin/necmpivars.sh

ehost $ mpirun -nnp 4 -nn 2 -ve 0-3 ./mpi_prog

 [Notes]

52

It is assumed that mpi_prog is located on the user's home directories on the execution host.

3.6.2. Run under the OpenMPI Environment

On interactive request, in case to execute program using OpenMPI, request is submitted and mpirun

is executed as follows.

- Submit Option

Specify openmpi with qlogin(1) command -T option.

- mpirun

To execute MPI program, use mpirun command of OpenMPI.

Specify ${NQSV_MPIOPTS} or ${NQSII_MPIOPTS} as mpirun parameter. (With this

parameter, job execution host is provided for MPI.)

[Info]

In case more than one network I/F are available in the jobs, network I/F the jobs use

can be designated by "-mca btl_tcp_if_include" option.

For example when executing jobs in Docker container, please designate an overlay

network I/F by "-mca btl_tcp_if_include" option.

For example, to execute OpenMPI program "mpi_prog" by creating 64 MPI processes, 2 jobs(nodes),

execute as follows.

client $ qlogin -q iq1 -T openmpi -b 2

Request 173.bsv submitted to queue: iq1.

Waiting for 173.bsv to start.

-bash-$ mpirun ${NQSV_MPIOPTS} -np 64 ${HOME}/mpi_prog

[Notes]

 Multiple jobs cannot executed on a single execution host in the case of OpenMPI.

 When the job does not complete normally, such as when the resource limit is exceeded or when

a node failure occurs, temporary files may remain under /tmp on the master node. There is no

problem with deleting them.

3.6.3. Run under the Intel MPI Environment

On interactive request, in case to execute program using Intel MPI, request is submitted and mpirun

is executed as follows.

- Submit Option

Specify intmpi with qlogin(1) command -T option.

- mpirun

The mpirun command of Intel MPI is used to execute MPI program.

53

Specify ${NQSV_MPIOPTS} or ${NQSII_MPIOPTS} as mpirun parameter. (With this

parameter, job execution host is provided for MPI.)

For example, to execute Intel MPI program "mpi_prog" by creating 64 MPI processes, 2 jobs(nodes),

as batch request, execute as follows.

client $ qlogin -q iq2 -T intmpi -b 2

Request 174.bsv submitted to queue: iq2.

Waiting for 174.bsv to start.

-bash-$ mpirun ${NQSV_MPIOPTS} -np 64 ${HOME}/mpi_prog

[Notes]

 When a job is deleted by qdel(1) command during job execution, the following message may

appear in the job execution result file (standard error output). But there is no problem in the

operation.

[proxy:0:1@host1] proxy_upstream_control_cb (../../../../../src/pm/i_hydra/proxy/proxy_cb.c:69):

assert (!closed) failed

[proxy:0:1@host1]HYDI_dmx_poll_wait_for_event

(../../../../../src/pm/i_hydra/libhydra/demux/hydra_demux_poll.c:80): callback returned error

status

[proxy:0:1@host1]main (../../../../../src/pm/i_hydra/proxy/proxy.c:964): error waiting for event

3.6.4. Run under the MVAPICH2 Environment

On interactive request, to execute a job using MVAPICH2, submit request as follows.

⁃ Submit Option

Specify mvapich to with qlogin(1) command -T option.

⁃ mpiexec

mpiexec command of MVAPICH2 is used to execute MPI program.

Specify ${NQSV_MPIOPTS} or ${NQSII_MPIOPTS} as mpiexec parameter. (With this

parameter, job execution host is provided for MPI.)

For example, to execute MVAPICH program by creating 64 MPI processes, 2 jobs (nodes), execute as

follows.

client $ qlogin -q iq3 -T mvapich -b 2

Request 175.bsv submitted to queue: iq3.

Waiting for 175.bsv to start.

mpiexec ${NQSV_MPIOPTS} -np 64 ${HOME}/mpi_prog

54

3.6.5. Run under the Platform MPI Environment

On interactive request, in case to execute program using Platform MPI, request is submitted and

mpirun is executed as follows.

- Submit Option

Specify pltmpi with qlogin(1) command -T option.

- mpirun

In case to submit request to queue is set, mpirun command of Platform MPI is used to

execute MPI program.

Specify ${NQSV_MPIOPTS} or ${NQSII_MPIOPTS} as mpirun parameter. (With this

parameter, job execution host is provided for MPI.)

For example, to execute Platform MPI program "mpi_prog" by creating 64 MPI processes, 2

jobs(nodes), as batch request, execute as follows.

client $ qlogin -q iq2 -T pltmpi -b 2

Request 174.bsv submitted to queue: iq2.

Waiting for 174.bsv to start.

-bash-$ mpirun ${NQSV_MPIOPTS} -np 64 ${HOME}/mpi_prog

[Notes]

 When a job is deleted by qdel(1) command during job execution, the following message may

appear in the job execution result file (standard error output). But there is no problem in the

operation.

-15: -c: line 0: unexpected EOF while looking for matching `"'

-15: -c: line 1: syntax error: unexpected end of file

In addition, the following temporary files created at the time of job execution may remain under

/tmp. Please delete them manually.

 mpijob_user1_0, mpiafQeIuGG

55

4. Job Operation

4.1. Job State Check

Job is an execution unit of user jobs, and is created on job servers when an execution host is assigned

to a request and staging is started.

4.1.1. Check of Basic Information

The qstat(1) command with -J option is used to check batch job status. A job is specified as job

ID(request ID + Job number).

An example is shown below.

[Specify Job ID]

$ qstat -J 0:72.host.example.com

JNO RequestID EJID Memory CPU JSVNO ExecutionHost UserName Exit

---- --------------- ----- -------- -------- ----- --------------- -------- ----

0 72.host.example 11366 1.93M 0.23 10 exechost.exampl user1 -

[Not Specify Job ID]

$ qstat -J

JNO RequestID EJID Memory CPU JSVNO ExecutionHost UserName Exit

---- --------------- ----- -------- -------- ----- --------------- -------- ----

0 72.host.example 11366 1.93M 0.23 10 exechost.exampl user1 -

1 72.host.example 11366 2.23M 3.15 11 exechost.exampl user1 -

2 72.host.example 11366 1.01M 2.45 12 exechost.exampl user1 -

If the job is executed on the SX-Aurora TSUBASA system, by specifying the -e option for the qstat -J

command, you can check the VE information in the job. When the -e option is specified, only the job

on the VH are displayed. In the following descriptions, the CPU on VEs is referred to as "VECPU"

and the memory on VEs are referred to as "VE memory."

An example is shown below.

$ qstat -Je

JNO RequestID EJID VEMemory VECPU JSVNO VectorIsland UserName Exit

---- --------------- ----- -------- -------- ----- --------------- -------- ----

0 72.host.example 11366 1.00GB 2.00 10 exechost.exampl user1 -

[Note]

The value of the item “Memory” includes file cache if “enable_memory_cgroup” is “on” in

/etc/opt/nec/nqsv/nqsd.conf.

4.1.2. Check of Detail Information

Execute the qstat(1) command with -f option when more detailed information of a batch job is required.

$ qstat -J -f 0:72.host.example.com

56

Request ID : 72.host.example.com

Batch Job Number = 0

Execution Job ID = 11366

User Name = user1

User ID = 111

Group ID = 100

Job Server Number = 10

Job Server Name = JobServer0033

Execution Host = exechost.example.com

Exit Code = (none)

Resources Information:

Memory = 1.932587MB

CPU Time = 0.225019S

Accumulated CPU Time = 0.225019S

Remaining CPU Time = UNLIMITED

By specifying the -f option for the qstat -Je command, you can check the detailed VE information in

the job.

An example is shown below.

$ qstat -J -f 0: 72.host.example.com

Request ID : 72.host.example.com

Batch Job Number = 0

Execution Job ID = 11366

User Name = user1

User ID = 111

Group ID = 100

Job Server Number = 10

Job Server Name = JobServer0033

Vector Island = exechost.example.com m

VE Node = 0-3,5

Exit Code = (none)

Resources Information:

VEMemory = 1.000000GB

VECPU Time = 2.000000S

Display Scheduler Message in qstat(1) with -f option. This message shows the pending reason of a job.

An example is shown below.

$ qstat –f [Request-ID]

:

Scheduler Message:

 Not enough resources for 1 of 2jobs in a request on available 1 hosts.

 1 of 2 hosts cannot be used due to the scheduling condition mismatching.

 Reason:

 - JSV LINKDOWN

[Note]

The value of the item “Memory” in the section “Resources Information:” includes file cache if

57

“enable_memory_cgroup” is “on” in /etc/opt/nec/nqsv/nqsd.conf.

4.1.3. Check of Job information of hybrid request

There is some specific feature to check the information of hybrid request.

Please refer to 16.3 Hybrid Request for detail.

4.1.4. Customizing Information

(1) Time format

Time data in the output of qstat(1) command is displayed by seconds as default. It is also displayed

in the format of d+hh:mm:ss by specifying -d option. This option is valid in following items.

 CPU time (CPU)

 Accumulated CPU time (with -c option, ACCPU)

 Rest CPU time (with -m option, RCPU)

An example of specifying -d option is as below.

$ qstat -J -d

JNO RequestID EJID Memory CPU JSVNO ExecutionHost UserName Exit

---- --------------- ----- -------- ------------ ----- --------------- -------- ----

0 1249.host1.exam 19710 1.91M 1+05:21:10 1020 host1.example.c user1 -

1 1249.host1.exam 19710 1.90M 1+05:01:10 1030 host2.example.c user1 -

(About details of qstat -d option, please refer to 6.4. Time Display Format.)

(2) Long format

Sometimes there are cases that information such as execution host name is cut off in the basic

information display of qstat(1) command (without -f option) because the viewable number of character

is fixed. By using -l option, it is possible to show all information without being cut.

All information are shown without cutting off. At this time, some displayed contents may run off.

(About details of qstat -l option, please refer to 6.5. Displaying All Information.)

(3) Selecting Item and Sorting

It is possible to display information by selecting and customizing each item output by -F option of

qstat(1) command. However, it is impossible with -f option for long format.

Items which can be specified for request information are as follows.

item Contents Summary display format

jno Job number JNO

rid Request identifier RequestID

jid Job identifier JobID

ejid Execution job identifier (job identifier on an execution EJID

58

host)

mem Memory size used by job Memory

cpu CPU time of processes during execution CPU

acpu Accumulated CPU time (include exited processes) ACCPU

rcpu Rest CPU time RCPU

jsvno Job server number JSVNO

ehost Execution host ExecutionHost

euser Execution user UserName

ecode Exit code (hexadecimal format) Exit

About details of the qstat(1) -F option, please refer to 6.2. Customizing Information.

It is possible to sort information by item using -o option or -O option of qstat(1) command. About

details of the qstat(1) -o option and -O option (output at the time of an error), please refer to 6.3.

Sorting Information.

4.2. Signal Send

It is possible to send a signal to a job by the qsig(1) command specified a job ID. The signal is sent to

all processes in the specified job.

$ qsig -s SIGKILL 0:72.host1

Job 0:72.host1 was sent signal SIGKILL.

When "-s signal " is not specified, SIGTERM will be sent as default.

It is available in case of forcibly aborting a batch job.

59

5. Network Request Operation

Network Request is a request that transmits input/output files or result files of batch jobs between

client hosts and execution host.

5.1. Status Check of Network Request

Check status of a network request by the qstat(1) command with -T option. A network request is

specified using batch request ID that is a file staging target, or parent request ID.

Specify -T option and parent request ID to the qstat (1) command. An example is shown below.

$ qstat -T 92.host1

RequestID UserName Pri Dir STGNO StagingFile STT

--------------- -------- ---- --- ----- ------------------------------ ---

92.host1 user1 0 IN 0 host1:/home/user1/dir1/infile1 QUE

92.host1 user1 0 IN 1 host1:/home/user1/dir1/infile1 QUE

Column STT will show request statuses. The meanings of the displayed request states are as follows:

⚫ RUN..... Executing

⚫ QUE..... Waiting for execution

⚫ WAT..... Waiting for start time

See the qstat(1) command for more information on items other than STT.

When specifying only -T option to qstat(1) command, information on all network requests registered

at present is displayed.

$ qstat -T

RequestID UserName Pri Dir STGNO StagingFile STT

--------------- -------- ---- --- ----- ------------------------------ ---

90.host1 user1 0 IN 0 host1:/home/user1/dir0/infile0 QUE

90.host1 user1 0 IN 1 host1:/home/user1/dir0/infile0 QUE

91.host1 user1 0 IN 0 host1:/home/user1/dir1/infile1 QUE

92.host1 user1 0 IN 0 host1:/home/user1/dir1/infile1 QUE

92.host1 user1 0 IN 1 host1:/home/user1/dir1/infile1 QUE

Execute the qstat(1) command with -T -f option when more detailed information of a network request

is required.

$ qstat -T -f 92.host1

Request ID: 92.host1

User Name = user1

User ID = 500

Group ID = 501

Network Request Priority = 0

Staging Direction = STAGE_IN

Staging Number = 0

60

Staging File = host1:/home/user1/dir1/infile1.txt

Staging Method = Internal

State = Queued

See the qstat(1) command for more information on each item.

It is possible to display information by selecting and customizing each item output by qstat(1)

command. Please specify items to be displayed with -F option of qstat(1) command. Items that can be

specified for network request information are as follows.

Item Contents Summary display style

rid Parent request identifier RequestID

own Owner UserName

pri Network request priority Pri

stgdir Staging direction Dir

stgno Staging file number STGNO

stgf Staging file StagingFile

stt Network request state STT

About details of-F option, please refer to 6.2. Customizing Information.

It is also possible to sort information by any item using -o option or -O option of qstat(1) command.

About details of the qstat (1) command -o option and -O option (output at the time of an error), please

refer to 6.3. Sorting Information.

Sometimes there are cases that information such as execution host name is cut off in the basic

information display of qstat(1) command (without -f option) because the viewable number of character

is fixed. By using -l option, it is possible to show all information without being cut. About details of -l

option, please refer to 6.5. Displaying All Information.

5.2. Network Request Status Transition

A network request is automatically created when the batch request becomes in STAGING or EXITING

state and is submitted to the network queue. A network request is in QUEUED state immediately

after it is submitted. Then, it is scheduled by the batch server, and becomes in RUNNING state. The

file staging is executed when a network request becomes in RUNNING state. (Please refer to

[Management] Network Queue Configuration (Forwarding Host).)

A network request will be in WAITING state if the file staging is failed. The staging-file will be staged

again after an interval set to the batch server or the network queue when a network request is in

WAITING state. (Please refer to [Management] Network Queue Configuration (Waiting Interval).)

61

5.3. Network Request Delete

A network request is deleted along with the parent request deletion. Delete the parent request in

order to delete a network request. It is not possible to delete only network requests. (Please refer to

1.5. Batch Request Delete.)

62

6. System Information Display

6.1. How to Display System Information

Execute the qstat(1) command to see NQSV system information.

Each information is displayed by execution of the qstat command with the following options.

Information Option Additional option

Batch server host -B -l, -F, -o, -O, -d, -x

Scheduler -D -l, -F, -o, -O, -x

Job server -S -l, -F, -o, -O, t, -x

Execution host -E -l, -F, -o, -O, -t

Node group -G -l, -F, -o, -O, -x

Queue
-Q -l, -F, -o, -O, -d, -t,

--group=group_name

Request
No option -l, -F, -o, -O, -d, -x,

--group[=group_name]

Parametric request -R -l, -F, -o, -O, -x

Job -J -l, -F, -o, -O, -d

Network request -T -l, -F, -o, -O

Limit per Group and User --limit --group=group_name

Custom Resource --custom

Template --template -l

VE node --venode

Execute the qstat(1) command with each option and -f option when more detailed information is

required.

According to the type of information, the following options can be specified

⚫ The -F option which customizes the output item (6.2. Customizing Information)

⚫ The -o, -O option which sorts output information by an item (6.3. Sorting Information)

⚫ The -d option which changes the format of the time data (6.4. Time Display Format)

⚫ The -l option which cancels the restriction of number of characters (6.5. Displaying All

Information)

⚫ The -t option which displays information about job server (execution host) that is down (6.6.

Displaying All Job Serves (Execution Hosts) Information)

⚫ The --group option about group (8.2. Display of Information about Group)

Special User privilege or higher is necessary to check request information of other users. User

63

privilege or higher is necessary to check other information.

Please refer to the reference of the qstat(1) command about a peculiar option of each information on

other than above.

6.2. Customizing Information

It is possible to display information by selecting and customizing each item output by qstat(1)

command. Please specify items to be displayed with -F option of qstat(1) command as following format.

Each item will be displayed according to the order specified with -F option.

qstat< option> -F item[,item, ...]

An example to display batch request information in summary display in order of submitted queue

name (quenm), request ID (rid), request status (stt) and execution host (ehost) is as follows.

$ qstat -F quenm,rid,stt,ehost

Queue RequestID STT ExecutionHost

-------- --------------- --- ---------------

nqstest 80536.host1 RUN exec.example.co

nqstest 80542.host1 QUE -

nqstest 80543.host1 QUE -

Items which can be specified are as follows.

Display option Item
Summary display

format
Contents

-B

(Batch server Host

information)

bsvhost BatchServer Batch server host name

mid MachineID Mechanical ID

umax UMAX Request submit limit per user

gmax GMAX Request submit limit per group

rrlm RRL Routing queue run limit

nrlm NRL Network queue run limit

tot TOT
Number of batch requests managed by

the batch server

arr ARR

Number of requests for each state

wai WAI

gqd GQD

que QUE

run RUN

ext EXT

64

Display option Item
Summary display

format
Contents

hld HLD

sus SUS

fwd FWD

bstt Status Batch server status

-D

(Scheduler

information)

schid SCHID Scheduler ID

schnm SCHName Scheduler name

schost ExecutionHost Execution host

ques BindQueue Number of bound execution queue

quenm*
BindQueueNam

e
Bound execution queue name

-S

(Job server

information)

jsvno JSVNO Job server number

jsvnm JobServerName Job server name

bsvhost BatchServer Batch server host name

ehost ExecutionHost Execution host

link LINK Link state

bind BIND Binding state

quenm Queue Queue name

jobs Jobs Number of batch jobs

ldavg1 Load Load average of most recent one minute

cpuavg1 CPU CPU average of most recent one minute

-E

(Running host

information)

ehost ExecutionHost Executionhost

bsvhost BatchServer Batch server host name

osnm OS Name of operating system

rel Release OS release number

hwnm Hardware Hardware name

ldavg1 Load Load average of most recent one minute

cpuavg1 CPU CPU average of most recent one minute

ucpu* Used_CPUs Used CPU number

fcpu* Free_CPUs Free CPU number

umem1* Used_MEM1 Used memory size

fmem1* Free_MEM1 Free memory size

uswap1* Used_SWAP1 Used swap size

fswap1* Free_SWAP1 Free swap size

quenm* QueueName Queue name

65

Display option Item
Summary display

format
Contents

stt STT Status of the execution host

-G

(Node group

Information)

ngrpnm NodeGroup Node group name

ngrptype Type Type of node group

bsvhost BatchServer Batch server host

comment Comment Comment

jsvs JSVs Number of job servers

quenm BindQueue Queue name

-Q [-e]

(Execution queue

information)

quenm QueueName Queue name

schid SCH Scheduler ID bound to the queue

jsvs JSVs
Number of job servers bound to the

queue

stt1 ENA
Queue state (Submit Possible/Not

Possible)

stt2 STS
Queue state (Execute Possible/Not

Possible

pri PRI Queue priority

qtot TOT
Number of batch requests submitted in a

queue

arr ARR

Number of batch requests for each state

wai WAI

que QUE

prr PRR

run RUN

por POR

ext EXT

hld HLD

hol HOL

rst RST

sus SUS

mig MIG

stg STG

chk CHK

ehost* ExecutionHost Execution host bound to the queue

attbl* ATTBL Attach request Possible/Not Possible

-Q -r quenm QueueName Queue name

66

Display option Item
Summary display

format
Contents

(Routing queue

information)
stt1 ENA

Queue state (Submit Possible/Not

Possible)

stt2 STS
Queue state (Execute Possible/Not

Possible)

pri PRI Queue priority

rqrlm RLM Run limit for each queue

qtot TOT
Number of batch requests submitted in a

queue

arr ARR

Number of batch requests for each state

wai WAI

que QUE

hld HLD

trs TRS

-Q -N

(Network Queue

information)

quenm QueueName Queue name

stghost StagingMachine Staging host name

stt1 ENA
Queue state (Submit Possible/Not

Possible)

stt2 STS
Queue state (Execute Possible/Not

Possible)

pri PRI Queue priority

nqrlm RLM Run limit for each queue

qtot TOT
Number of batch requests submitted in a

queue

wai WAI

Number of batch requests for each state que QUE

run RUN

-Q -i

(Interactive queue

information)

quenm QueueName Queue name

schid SCH Scheduler ID bound to the queue

jsvs JSVs
Number of job servers bound to the

queue

stt1 ENA
Queue state (Submit Possible/Not

Possible)

stt2 STS
Queue state (Execute Possible/Not

Possible)

pri PRI Queue priority

67

Display option Item
Summary display

format
Contents

qtot TOT
Number of interactive requests

submitted in a queue

arr ARR

Number of interactive requests for each

state

wai WAI

que QUE

prr PRR

run RUN

por POR

ext EXT

hld HLD

sus SUS

ehost* ExecutionHost Execution host bound to the queue

attbl* ATTBL Attach request Possible/Not Possible

no option

 (Request

Information)

rid RequestID Request ID

reqnm ReqName Request name

own UserName Owner

group GrpName Group name

quenm Queue Queue name

pri Pri Request priority

stt STT Request state

stall S Stall state

mem Memory Memory size used by batch request

cpu CPU CPU time of processes during execution

acpu ACCPU
Accumulated CPU time (include exited

processes)

elaps Elapse Elapsed time

relaps RElapse Remaining Elapsed time

rflg R Re-execution Possible/Not Possible

hflg H Hold Possible/Not Possible

mflg M Job Migration Possible/Not Possible

jobs Jobs Number of jobs residing in request

ehost* ExecutionHost Execution host

sdate* Date (SUBMIT)
Date and time when request was

submitted

qdate* Date (QUEUED) Date and time for start of scheduling

68

Display option Item
Summary display

format
Contents

rdate*
Date

(RUNNING)
Date and time for start of request

att* Att Attach connection Exist/Not exist

-R

(Parametric Request

information)

rid RequestID Parametric request ID

reqnm ReqName Request name

own UserName Owner

group GrpName Group name

quenm Queue Queue name

pri Pri Request priority

stt STT Request state

rflg R Re-execution Possible/Not Possible

hflg H Hold Possible/Not Possible

mflg M Job Migration Possible/Not Possible

jobs Jobs Number of jobs residing in sub-request

tot TOTAL Number of sub-requests

active ACTIVE Number of existing sub-requests

done DONE
Number of sub-requests which have

ended

-J

(Batch job

information)

jno JNO Job number

rid RequestID Request ID

jid* JobID
Job identifier

(Job number + Request ID)

ejid EJID Memory size used by batch jobs

mem Memory Memory size used by batch jobs

cpu CPU CPU time by batch jobs

acpu ACCPU Accumulated CPU time by batch jobs

rcpu RCPU Remaining CPU time for batch jobs

jsvno JSVNO Job server number

ehost ExecutionHost Execution host

euser UserName Batch job executing user

ecode Exit

Batch job exit code used hexadecimal

For detailed values, refer to 1.16 qstat(1)

in NEC Network Queuing System V

(NQSV) User’s Guide [Reference].

-T rid RequestID Parent request identifier

69

Display option Item
Summary display

format
Contents

(Network Request

information)

own UserName Owner

pri Pri Network request priority

stgdir Dir Staging direction

stgno STGNO Staging file number

stgf StagingFile Staging file

stt STT Network request state

* This item can be specified in case of displaying information using qstat(1) command -F option.

When -F option and -f option (Detailed information) are specified at the same time, an error is not

output, and -f option is given priority and -F option is ignored. (Detailed information is output as a

result.)

6.3. Sorting Information

It is possible to sort information by any item using -o option or -O option of qstat(1) command. The

items for sorting are same as the items shown on the table in 6.2. Customizing Information. More

than one item can be specified with delimited by comma ",".

-o item[,item, ...]

Information will be sorted in ascending order with the key specified in item.

-O item[,item, ...]

Information will be sorted in descending order with the key specified in item.

If these options are specified more than once, the sorted results are further sorted according to the

order of items specified. It is also possible to specify like ascending sort for the first key and descending

sort for the second key by combination of -o option and -O option. It can be used with -F option at the

same time, too.

As a sort method, small and large between the numbers are compared if the target information is

numerical number and alphabetical order is used in case of comparing characters.

[Example]

(1) qstat -o rid,quenm,stt

(2) qstat -o rid -o quenm -o stt

(3) qstat -o rid -O quenm -o stt

The display result of (1) and (2) are same and sorted with the order of "rid", "quenm", "stt" in ascending.

In (3), the display result is sorted with the key "rid" by ascending order, next sorted with "quenm" in

70

descending order, and then sorted with "stt" in ascending order.

An error will be shown in the cases below.

⚫ No target items of sorting are specified.

⚫ Items not supported are specified for the target of sorting.

⚫ Items which do not match to each display option are specified for the target of sorting.

When -o, -O option and -f option (Detailed information) are specified at the same time, an error is not

output, and -f option is given priority and -o, -O option is ignored. (Detailed information is output as

a result.)

6.4. Time Display Format

Time data in the output of qstat(1) command is displayed by seconds as default. It is also displayed

in the format of d+hh:mm:ss by specifying -d option. This feature can be used in case digit number of

the time data is very large and it is difficult to understand the time immediately by seconds.

The -d option is valid in following items.

⚫ Elaps time (Elaps)

⚫ CPU time (CPU) and Accumulated CPU time (ACCPU) in batch request information (No

option)

⚫ CPU time (CPU) and Accumulated CPU time (ACCPU) in batch job information (-J option)

Items above are also displayed in d+hh:mm:ss format with detailed information display with -f option.

[Example]

CPU time (CPU) and Elaps time(Elapse) in batch request information

$ qstat - d

RequestID ReqName UserName Queue Pri STT S Memory CPU Elapse R H M Jobs

--------------- -------- -------- -------- ---- --- - -------- ------------ ------------ - - - ----

80536.host1 STDIN nqstest que1 0 QUE - 7.62M 1+05:21:10 1+16:30:12 Y Y Y 1

CPU time (CPU) in batch job information

$ qstat -J -d

JNO RequestID EJID Memory CPU JSVNO ExecutionHost UserName Exit

---- --------------- ----- -------- ------------ ----- --------------- -------- ----

0 1249.bsvhost 19710 1.91M 1+05:21:10 1020 host1 nqstest -

1 1249.bsvhost 28094 1.90M 1+05:01:10 1030 host2 nqstest -

71

6.5. Displaying All Information

Sometimes there are cases that information such as execution host name is cut off in the basic

information display of qstat(1) command (without -f option) because this information is a summary

and its viewable number of character is fixed. By using -l option, it is possible to show all information.

For example, it enables scripts which make use of output of qstat command to be executed without

problems.

If specified with -f option (Detailed information) of qstat command, it is just ignored without error

message. The -l options is ignored and information with -f option will be displayed. (Detailed

information is output as a result.)

Examples of specifying -l option and without -l option are as follows.

$ qstat

RequestID ReqName UserName Queue Pri STT S Memory CPU Elapse R H M Jobs

--------------- -------- -------- -------- ---- --- - -------- -------- -------- - - - ----

80333.host1 STDIN nqstest que1 0 QUE - 0.00B 0.00 0 Y Y Y 1

$ qstat -l

RequestID ReqName UserName Queue

Pri STT S Memory CPU Elapse R H M Jobs

-------------------------------------- -------------------- --------------- ---------------

---- --- - ------------ ------------ ------------ - - - ----

80333.host1.example.com STDIN nqstest1 que1

0 QUE - 0.00B 0.00 0 Y Y Y 1

When the -l option specified, though displayed contents will run off the fixed number of characters,

all information are shown without cutting off.

6.6. Displaying All Job Serves (Execution Hosts) Information

Information of job servers or execution hosts in the output of qstat(1) is about linked up job servers.

However, when the -t option is specified, linked down job servers are displayed.

The -t option is valid with the -S option (for job server information) and the -E option (for execution

host information). For job server information (-E option), job server number and job server state

information are also displayed. When specified together with -f option, linked down job servers'

information is also displayed, which is limited to the information.

For queue information (-Q option), when specified together with -t option, queues that is bound to

linked down job servers are also displayed.

72

7. Workflow

NQSV workflow is made as a shell script described some job execution flow including request

submission. By executing the shell script (workflow script) on a NQSV client host, NQSV treats the

series of requests as a set of requests for the workflow.

For the NQSV workflow, the following functions are enabled.

⚫ Sequential order can be set to the requests in a workflow at the submission. The requests are

executed as specified order.

⚫ In a workflow script, loops and conditionals can be described as a shell script. By the termination

code of a request, the execution flow can be controlled.

⚫ By creating a workflow script, the same execution flow of the requests can be repeated.

⚫ The requests can be referenced or deleted by a workflow unit.

7.1. Environment for the workflow

There are some conditions for NQSV environment to use NQSV workflow.

 In a workflow script, all requests are submitted to the same batch server.

 All queues to which the requests in a workflow script are submitted must be bound to the same

JobManipulator.

Figure 7-1 : Execution of a workflow

73

7.2. Workflow description

NQSV workflow is described as a shell script on a client host. The shell script described as an NQSV

workflow is called as "workflow script".

In a workflow script, NQSV CUI commands as qsub, qstat, qdel, etc. can be used to submit, reference

control the requests.

7.2.1. Simple example

For example, the workflow script that submit a request and waits its termination can be described as

follows.

#!/bin/bash

qsub -q batch1 ./req_A

qwait req_A

In the example above, req_A shows the job script file that is submitted to the batch queue, batch1. In

a job script file, qsub options can be specified as #PBS lines. (Please refer to 1.1. Batch Request

Create.)

In a workflow script, request name can be used to control a request in place of the request ID. In the

example above, the request name "req_A" is used at the qwait command. (When a request name is

not specified explicitly by qsub -N option, the specified job script file name is used as the request

name.)

The commands that a request name can be used in place of the request ID in a workflow script are as

follows.

⚫ qdel

⚫ qhold

⚫ qrls

⚫ qalter

⚫ qmove

⚫ qrerun

⚫ qstat

⚫ qwait

⚫ qwait2

When a request name is used to control a request in a workflow script, all requests in the workflow

must have unique request names.

7.2.2. Execution order

To specify an execution order in a workflow, please use qsub --after option.

For example, to start request B (req_B) after termination of request A (req_A), the requests are

submitted as follows.

74

#!/bin/bash

qsub -q batch1 ./req_A

qsub -q batch2 --after req_A ./req_B

In a workflow script, the requests are submitted as described above, the execution order of the request

A and B is scheduler by scheduler (JobManipulator).

At the qsub --after option, request name can be specified in place of request ID.

When you want to execute a request after terminations of two or more other requests, please specify

requests separated by comma (,) to the qsub --after option.

#!/bin/bash

qsub -q batch1 ./req_A

qsub -q batch2 ./req_B

qsub -q batch1 --after req_A,req_B ./req_C

In the example above, the request C (req_C) is scheduled to start after termination of both of the

requests, req_A and req_B.

When two or more requests are submitted by specifying the execution order and the output files of

the preceding request are used as the input files of the following request, the files must be shared by

the requests using shared file system among execution hosts.

7.2.3. Parallel execution

In a workflow, to start two or more requests simultaneously, use qsub --parallel option.

#!/bin/bash

qsub -q batch1 --parallel ./req_A ./req_B

When --parallel option is used with qsub command and two or more job script files are specified as

the qsub's last arguments, the specified job scripts are submitted as the requests and they are

scheduled to start simultaneously.

In above case, the specified "req_A" and "req_B" are submitted as the parallel requests and they are

scheduled to start simultaneously.

When the --parallel option is specified with qsub command, the request connection function (please

refer to 1.2.22 Request Connection Function) cannot be used.

If a hybrid request (a request submitted using the --job-separator option or --- option with the qsub

command and requests a different resource for each job) is submitted as a concurrent request (a

request submitted using the --parallel option with the qsub command), the request will not be

scheduled.

75

7.3. Workflow execution

The workflow script described above must be executed by wstart command on a client host. To execute

the wstart command, specify a workflow script file as follows.

$ /opt/nec/nqsv/bin/wstart wfl.sh

Workflow 84_bsvhost is start.

Request 163.bsvhost submitted to queue: batch1.

Request 164.bsvhost submitted to queue: batch2.

 :

By executing the wstart command, wstart makes connection with the batch server and notices the

start of a workflow to the batch server. The batch server returns a workflow ID to the wstart and

the wstart prints the workflow ID to STDOUT and then executes the specified workflow script.

The requests submitted in a workflow script that is executed by wstart are managed as related to

the workflow created by the wstart.

The workflow ID can be referenced by the environment variable NQSV_WFID or NQSII_WFID

(they have same value) in the workflow script.

The STDOUT and STDERR of the execution of the workflow script are output to the terminal in

which the wstart has been invoked. And the STDIN of the terminal is passed to the workflow script.

Only batch request can be managed as the request related to a workflow in the batch server.

Interactive request cannot be a part of a workflow.

The workflow created by wstart command is managed as a workflow in the batch server while the

workflow script is executing or a request that is submitted in the workflow script exists. And while a

workflow exists, workflow can be referenced and controlled as follows.

7.4. Reference of workflow

A workflow created by wstart command can be referenced by wstat command. By executing wstat

command without arguments, the list of the workflows which the execution user owns is displayed.

$ wstat

WFL-ID Request Owner Stat

------------ ------- -------- ----

84_bsvhost 3 user1 RUN

86_bsvhost 2 user1 RUN

wstat displays workflow ID, number of requests in the workflow, the owner of the workflow and state

of the workflow (RUN).

By executing wstat command with a workflow ID as an argument, wstat displays the requests related

76

to the workflow.

$ wstat 84_bsvhost

WFL-ID RequestID RequestName Stat Exit

------------ ------------ ------------ ---- ----

84_bsvhost 163.bsvhost Req_A EXT 0

84_bsvhost 164.bsvhost Req_B EXT 9

84_bsvhost 165.bsvhost Req_C RUN -

In this case, wstat displays workflow ID, request ID, request name, state of the request and exit

status of the request for each request which is related to the specified workflow.

The displayed exit status is the exit status of the job whose job number is 0. For the request which

does not terminated yet, "-" is displayed.

7.5. Control of workflow

7.5.1. Workflow delete

A workflow created by wstart command can be deleted by wdel command. By executing the wdel

command specifying the target workflow ID, the specified workflow is deleted.

$ wdel 84_bsvhost

Workflow 84_bsvhost was deleted.

By deleting a workflow, all requests submitted in the workflow script are deleted and workflow

script is also terminated if it is running.

7.5.2. Request cancel by preceding request error

If a preceding request terminated abnormally, following requests can be canceled automatically.

Specify "qsub --cancel-after" option for preceding request submitting.

Request is treated as abnormal termination in the following case.

 Exit code is not 0.

 Request has been deleted by qdel(1).

 Request terminated because HW error.

For example, you can describe a workflow script as follows, in case that you want to execute the

request B (req_B) after termination of the request A (req_A), and that you want to cancel the request

B (req_B) if the preceding request A (req_A) terminates abnormally.

#!/bin/bash

qsub -q batch1 --cancel-after ./req_A

qsub -q batch2 --after req_A ./req_B

In the example above, the workflow performs as follows.

1. Submit req_A and req_B.

2. Start req_A.

3. Wait termination of req_A.

77

 in case of normal termination : Start req_B.

 in case of abnormal termination : Delete req_B.

Further, requests canceled automatically are all following requests as well as just after error request.

Also wstart command with "--cancel-after" option can specify "--cancel-after" to qsub command all

together in workflow script.

Below is an example.

$ /opt/nec/nqsv/bin/wstart --cancel-after wfl.sh

wfl.sh

#!/bin/bash

qsub -q batch1 ./req_A # "--cancel-after" is specified implicitly.

qsub -q batch2 --after req_A ./req_B # "--cancel-after" is specified implicitly.

78

8. Group of Request

8.1. Group of Request and How to Submit

When submitting a request, information of group as well as user are retained in the request

information. This group usually becomes primary group of the user who submitted the request. In

addition, jobs are executed by primary group on execution host.

In case that Designated Group Execution Function of request is set to ON in batch server setting,

the group on executing request submission command such as qsub, qlogin and qrsh becomes the

group of request. In addition, jobs are executed by the group. This is also applicable to the case that

execution group is switched to supplementary group by newgrp command and request submission

command is executed.

It is also possible to specify group name with --group=<group_name> option for submission

command.

Please note that only the group to which the user belongs can be specified.

8.2. Display of Information about Group

8.2.1. Request Information

When displaying request information by qstat, all of requests owned by execution user of qstat are

displayed. In this case, execution group of qstat or group of request doesn't matter.

In case of specifying --group=<group_name> for request information reference, only requests of

specified group among all of owned request are selectively displayed.

In addition, if --group option is specified on displaying summary information of request by qstat, the

group of the request is displayed.

$ qstat --group

RequestID ReqName UserName GrpName Queue Pri STT S Memory CPU Elapse R H M Jobs

--------------- -------- -------- -------- -------- ---- --- - -------- -------- -------- - - - ----

46.bsv1 a.sh user1 grpA bq0 0 HLD - 0.00B 0.00 0 Y Y Y 1

47.bsv1 a.sh user1 grpA bq0 0 QUE - 0.00B 0.00 0 Y Y Y 1

52.bsv1 STDIN user1 grpX bq2 0 RUN - 1.93M 0.23 26 Y Y Y 1

8.2.2. Queue Information

When displaying queue information by qstat -Q, only queues for which user has access privilege are

displayed. For this access privilege check, user name and primary group are usually checked on

executing qstat.

In case that Designated Group Execution Function of request is set to ON in batch server setting,

the user and group on executing qstat command are checked about access privilege. In addition, jobs

79

are executed by the group. It is also possible to display queue information specifying group name

with --group=<group_name> option.

80

9. Limit per Group and User

9.1. Limit per Group and User

On submitting request, request is checked against limits set for batch server and queue to see if any

of limits is not exceeded. Among each limit set for batch server and queue, the following limits can be

set specifying group or user name individually.

• Submit number limit of batch server

➢ Submit number limit for entire batch server

➢ Submit number limit per group

⁃ Submit number limit per one group (in case of no individual designation)

⁃ Submit number limit per individually designated group name

➢ Submit number limit per user

⁃ Submit number limit per one user (in case of no individual designation)

⁃ Submit number limit per individually designated user name

• Submit number limit of batch, interactive and routing queue

➢ Submit number limit for entire queue

➢ Submit number limit per group

⁃ Submit number limit per one group (in case of no individual designation)

⁃ Submit number limit per individually designated group name

➢ Submit number limit per user

⁃ Submit number limit per one user (in case of no individual designation)

⁃ Submit number limit per individually designated user name

• Limitation of the job number of batch and interactive queue

➢ Limitation of the job number per queue

➢ Limitation of the job number specifying group name individually

➢ Limitation of the job number specifying user name individually

• Elapse time limit of batch and interactive queue

➢ Elapse time limit per queue

➢ Elapse time limit specifying group name individually

➢ Elapse time limit specifying user name individually

If any of the above limit is exceeded, submit error occurs. As for limit per group, group of request is

checked. For detail of group of request, please refer to 8.1. Group of Request and How to Submit.

9.2. Limit Information Reference per Group and User

The above limit values can be displayed by qstat --limit. As for batch server, batch queue, interactive

81

queue and routing queue, limit information is displayed for user and primary group on executing

qstat command. (However, limit information of queue for which access privilege is not granted are not

displayed.)

In case that Designated Group Execution Function of request is set to ON in batch server setting, the

limit information of user and group on executing qstat command are displayed.

It is also possible to display limit information specifying group name with --group=<group_name>

option.

Example:

In case of user name, user1 and group name, grpA, limit are checked against the values in bold type.

$qstat --limit

Batch Server: bsv1

 Submit Number Limitation Value = 1000

 Submit User Number Limitation Value = UNLIMITED

 user1 : Limit = 200

 Submit Group Number Limitation Value = 300

 grpA : Limit = 100

Execution Queue: bq0

 Submit Number Limit = 100

 Submit User Number Limit = 10

 user1 : Limit = 30

 Submit Group Number Limit = 50

 grpA : Limit = 40

 Range of Jobs Limit per Batch Request (min,max) = 1,10240

 User Limit:

 user1 : Limit = 1,512

 Group Limit:

 grpA : Limit = 512,1024

 Resources Limits:

 (Per-Req) Elapse Time Limit = Max: UNLIMITED Warn: UNLIMITED

 User Limit:

 user1 : Limit = Max: 3000S Warn: 2940S

 Group Limit:

 grpA : Limit = Max: 600S Warn: 540S

Interactive Queue: iq

 Submit Number Limit = UNLIMITED

 Submit User Number Limit = UNLIMITED

 Submit Group Number Limit = UNLIMITED

 Range of Jobs Limit per Batch Request (min,max) = 1,10240

 Resource Limits:

 (Per-Req) Elapse Time Limit = Max: UNLIMITED Warn: UNLIMITED

Routing Queue: rq

 Submit Number Limit = UNLIMITED

 Submit User Number Limit = UNLIMITED

 Submit Group Number Limit = UNLIMITED

82

10. Request Submit Using GPU

It is possible to set concurrent GPU number limit by specifying "gpunum_job=max_limit" as qsub -l

option. No warning value is to set to concurrent GPU number limit. If concurrent GPU number limit

is not set with this option, default value of concurrent GPU number limit of queue to submit is set to

the request.

[Example]

$ qsub -l gpunum_job=1 -q bq -l elapstim_req=1000

When starting execution of request to which concurrent GPU number limit greater than or equal to

1 is set, JSV selects GPU device which each job can use in execution host, and then job is started with

the environment variable, CUDA_VISIBLE_DEVICES to which the device number of GPU selected

is set.

In case that concurrent GPU number limit is 0 or UNLIMITED, the environment variable,

CUDA_VISIBLE_DEVICES is not set.

To use the GPU-CPU Affinity feature, set the GPU-CPU Affinity feature to ON using qmgr(1M)

command, and submit a request with the GPU limit specified using the --gpunum-lhost option or the

-l gpunum_job option. In this case, the CPU limit is calculated automatically, so do not specify it when

submitting a request. For details on the GPU-CPU Affinity feature, refer to [Management] 18.3 GPU-

CPU Affinity function.

83

11. Request Submit Using Multi-Instance GPU(MIG)

11.1. Multi-Instance GPU(MIG)

When submitting a request to use a multi-instance GPU (hereinafter referred to as MIG), use the

qsub --mig option. If qsub both --mig and --gpunum-lhost are specified at the same time, --gpunum-

lhost is ignored.

Format

$ qsub --mig=gi-name[:ci-slice-count[,ci-slice-count...]]

By specifying the “gi-name” argument to the qsub --mig option, a GPU instance (GI) corresponding

to the “gi-name” is allocated.

By specifying the “ci-slice-count” argument to the -qsub --mig option, the GI can be further divided

into multiple compute instances (CI), and one GI can be used by multiple processes (when CI is

divided, the memory area in the GI is shared by processes).

Multiple GIs can also be assigned to a request by specifying multiple --mig options.

Examples of execution are as follows.

⚫ Submitting a request that uses 1 GI

[Example] 1 GI profile 4g.20gb is used.

$ qsub –-mig=4g.20gb -l cpunum_job=1,elapstim_req=1000

⚫ Submitting a request that uses multiple GIs

Multiple GIs designation can be set at the time of request.

[Example] Using two GI profiles 4g.20gb

$ qsub –-mig=4g.20gb –-mig=4g.20gb -l cpunum_job=1,elapstim_req=1000

[Example] Use GI profiles 4g.20gb and 3g.20gb

$ qsub –-mig=4g.20gb –-mig=3g.20gb -l cpunum_job=1,elapstim_req=1000

⚫ Submitting a request with a specification to split the GI into CI

84

A GI can be divided into multiple compute instances (CI). Specify the number of CIs to be divided in

the “ci-slice-count” of the qsub --mig option.

[Example] Using one GI profile 4g.20gb, divided the GI into 3 CIs as shown in the red box below.

In this case, specify 2,1,1 for “ci-slice-count”.

$ qsub –-mig=4g.20gb:2,1,1 -l cpunum_job=1,elapstim_req=1000

Figure 11-1 Example of dividing GI into CIs

11.2. Display of Information about MIG

GIs that can submit requests can be checked with the qstat -Ef command (information on the

execution host).

$ qstat -Ef

Execution Host: mig1.exsample.local

 Batch Server = bsv.exsample.local

 :

 Resource Information:

 Memory = Assign: 255846400 Using: 889856 Maximum: 255846400

 Swap = Assign: 1047552 Using: 0 Maximum: 1047552

 Number of Cpus = Assign: 128 Using: 0 Maximum: 128

 Multi Instances GPU = {

 GPU0:

 MIG 1g.5gb = Using: 0 Total : 0

 MIG 1g.5gb+me = Using: 0 Total : 0

 MIG 2g.10gb = Using: 0 Total : 0

1g.5gbGPU 1g.5gb 1g.5gb 1g.5gb 1g.5gb1g.5gb 1g.5gb

2g.10gb 4g.20gb

1c.4g.20gb
1c.4g.20gb

2c.4g.20gb

1g.5gb

GPU Instance (GI)

Compute Instance (CI)

85

 MIG 3g.20gb = Using: 0 Total : 1 (4:4)

 MIG 4g.20gb = Using: 0 Total : 1 (0:4)

 MIG 7g.40gb = Using: 0 Total : 0

 GPU1:

 MIG 1g.5gb = Using: 0 Total : 0

 MIG 1g.5gb+me = Using: 0 Total : 0

 MIG 2g.10gb = Using: 0 Total : 0

 MIG 3g.20gb = Using: 0 Total : 1 (4:4)

 MIG 4g.20gb = Using: 0 Total : 1 (0:4)

 MIG 7g.40gb = Using: 0 Total : 0

 }

 …

11.3. Execution of MIG jobs

When the job server executes the job, it sets the specified MIG device in the

CUDA_VISIBLE_DEVICES environment variable and starts the job script.

The CUDA_VISIBLE_DEVICES environment variable is set to multiple MIG devices separated by

commas.

However, due to limitations of the CUDA library on MIG-enabled GPU environments, only the first

MIG device is used by CUDA applications. If multiple MIG devices are to be used in a single

request, each separated item by commas must be reassigned to CUDA_VISIBLE_DEVICES

environment variable and each process executes with reassigned CUDA_VISIBLE_DEVICES

environment variable.

Example:

If CUDA_VISIBLE_DEVICES=device1,device2,device3, reassign each item as following to

CUDA_VISIBLE_DEVICES and execute each process.

export CUDA_VISIBLE_DEVICE=device1

program1

export CUDA_VISIBLE_DEVICE=device2

program2

export CUDA_VISIBLE_DEVICE=device3

program3

86

Example job script:

#! /bin/bash

#PBS -q bq

#PBS -l elapstim_req=1000

#PBS -l cpunum_job=1

#PBS --mig=4g.20gb

#PBS --mig=4g.20gb

function cudamprun(){

 pids=""

 # Replace "," with a space so that it can be used in the for statement

 tmpcuda="${CUDA_VISIBLE_DEVICES//,/ }"

 # Redefine the CUDA_VISIBLE_DEVICES environment variable

 for CUDA_VISIBLE_DEVICES in $tmpcuda;do

 "$@" &

 pids="$pids $!"

 done

 wait $pids

}

cudamprun cudaprogram

87

12. Submitting a request to specify a User Pre-Post Script

The User Pre-Post script function is the function to execute script (It is called a UserPP script.) which

is specified to the request. It is executed when before executing the job (PRE-RUNNING) or after

executing the job (POST-RUNNING).

12.1. UserPP script

For example, using this function, you can check health of a node before starting a job execution and

also delete temporary files in an execution host after the job execution.

A UserPP script can reference the following environment variables.

Environment

variable

Explanation Value

UPP_LOCATION Location (state) where a UserPP

script was started

"PRERUNNING" or

"POSTRUNNING"

UPP_JOBID Job ID <job-number>:<sequence-

number>:<host-name>

UPP_NJOBS Number of jobs Integer of 1 or larger

UPP_USER User name of a request owner to

be used on an execution host

Character string

UPP_GROUP Group name of a request owner to

be used on an execution host, or

group name specified when a

request is submitted if the

function to specify a group of a

request is enabled

Character string

UPP_UID User ID of a request owner to be

used on an execution host

Integer of 0 or larger

UPP_GID Group ID of a request owner to be

used on an execution host, or

group ID of the group specified

when a request is submitted if the

function to specify a group of a

request is enabled

Integer of 0 or larger

UPP_HOME Absolute path name of a home

directory

Character string

UPP_STGDIR Staging file storage directory Absolute path

UPP_RSTPREV Previous request state "QUEUED" (QUEUED state)

"RUNNING" (RUNNING state)

"CHKPNTING" (CHKPNTING state)

88

"HOLDING" (HOLDING state)

"SUSPENDING" (SUSPENDING state)

"SUSPENDED" (SUSPENDED state)

"RESUMING" (RESUMING state)

UPP_RSTRSON State transition reason "RUN" (execution start)

"RERUN" (rerun)

"DELETE" (delete)

"EXIT" (execution end)

"SYSTEM_FAILURE" (system failure)

UPP_JTPLGY Job topology "JTPLGY_DISTRIB" (distribute job)

"JTPLGY_INTMPI" (intmpi job)

"JTPLGY_MVAPICH" (mvapich job)

"JTPLGY_NECMPI" (necmpi job)

"JTPLGY_OPENMPI" (openmpi job)

Other environment variables to be set to a job

The current directory of a UserPP script is a home directory of a job execution user (user of a request

owner on an execution host).

Whether executing a UserPP script is successful is determined by its exit status. When the exit status

is 0, it is determined that the script execution succeeded. When the exit status is other than 0, it is

determined that the script execution failed. If executing a UserPP script fails in PRE-RUNNING, the

script execution does not start and the relevant request enters QUEUED. If executing a UserPP script

fails in POST-RUNNING, the subsequent processes (such as staging out) are executed and the

relevant request ends.

12.2. Specification method when submitting a request

Use the --userpp-script option of the qsub(1), qlogin(1), and qrsh(1) command to specify a UserPP

script.

--userpp-script=<loc>:<script_path>[,<loc>:<script_path>]

For <loc>, specify the location (state) in which to execute a UserPP script. The following states can be

specified.

• prr Executes a UserPP script in PRE-RUNNING.

• por Executes a UserPP script in POST-RUNNING.

For <script_path>, specify the path of a script to be executed.

89

The following shows an example to specify test.sh in the current directory to be executed before

executing a job.

$ qsub --userpp-script=prr:test.sh

Use the -f option of the qstat(1) command to check the UserPP script that was specified when

submitting a request.

[Display example]

$ qstat -f 123.bsv1

Request ID:123.bsv1

 Request Name = STDIN

 User Name = user1

:

 Attach = No

Cluster Type Select = NONE

UserPP Script = {

 Pre-running = /home/user1/test.sh

}

:

Use the --userpp-script option of qalter(1) to change or delete a UserPP script. However, a script

cannot be deleted after the execution of the relevant request has started.

12.3. Output of UserPP script

Use the --userpp-script option of qcat(1) to reference the execution result (standard output and

standard error output) of a UserPP script.

For a batch request, the detailed result information (such as an execution result, standard output,

standard error output) can be referenced in a request log by setting the log level of the request log to

2.

The following shows a request log output example.

...OMIT...

----- UserPP Information -----

Location: PRE-RUNNING

Path: clhost:/home/user1/test.sh

===== Job 0 =====

Result: Success (exited 0)

Session ID: 8739

Stdout:

<The contents of standard output of a UserPP script>

90

Stderr:

<The contents of stderr of a UserPP script>

Location shows the state in which a UserPP script was executed. (PRE-RUNNING or POST-

RUNNING)

Path shows the path on the submission host to which a UserPP script that was specified when

submitting a request.

Result shows the UserPP script execution result. Any of the following is displayed.

Output of Result Meaning

Success (exited 0) The UserPP script execution succeeded.

Failure (exited+exitcode) The UserPP script execution failed.

Killed by signal + signal number The UserPP script execution was terminated by a

signal.

Deleted The UserPP script execution was interrupted by

qdel.

Timeout The UserPP script execution was terminated due to

a timeout.

Not Running The UserPP script could not be executed because

the job server entered LINKDOWN state.

System Error An NQSV system error occurred.

Session ID shows the process session ID of a UserPP script. (This is displayed only when the UserPP

script execution succeeded.)

Stdout and Stderr show the contents of the standard output and standard error output of a UserPP

script.

91

13. Submitting a request using a provisioning environment in conjunction with

OpenStack

This function is NOT available for the environment whose execution host is SX-Aurora TSUBASA

system.

NQSV defines and manages information of an OS image and resources used by a job in a provisioning

environment in conjunction with OpenStack as a template.

A job can be executed in a provisioning environment in conjunction with OpenStack by specifying the

template for the --template option of a submit command (qsub(1), qlogin(1), or qrsh(1)).

13.1. Reference the template information

Use the --template option of the qstat(1) command to reference the template information defined in a

system.

[Indication example]

$qstat --template

[OpenStack Template]

===

Template L Image Flavor CPU Memory GPU Custom Comment

---------- - ---------- ------ ---- ------ ---- -------------------- --------------------

os_70_smal - rhel70 small 1 1.0G 0 (none) RHEL7 Small.

os_70_medi - rhel70 medium 2 2.0G 0 (none) (none)

 :

Use qstat --template -f to reference the more detailed information.

[Indication example]

$qstat --template -f

OpenStack Template: os_70_small

 Lock State = UNLOCK

 OS Image = rhel70

 Flavor = small

 CPU Number = 1

 Memory Size = 1GB

 GPU Number = 0

 Boot Timeout = 900

 Stop Timeout = 900

 Custom = (none)

 Comment = RHEL7 Small.

 Requests = 0

OpenStack Template: os_70_medium

 Lock State = UNLOCK

 :

92

13.2. Submitting a request with a template specified

Use the --template option of qsub(1), qlogin(1), and qrsh(1) to submit a request with a template

specified.

 [Example]

$qsub --template= os_70_small -q bq -l elapstim_req=1000

When a request is submitted with the --template option specified, the number of CPUs, memory size,

and number of GPUs that are defined in the specified template are used as the limits on resources

(number of CPUs, memory size, number of GPUs) per job of the submitted request. These limits are

used to check the resources (number of CPUs, memory size, and number of GPUs per job) of a queue

when the queue is submitted. However, the queue standard values are not applied.

13.3. Information of a request with a template specified

13.3.1. Request information

When submitting a request, if a template is specified by using the --template option, qstat -f shows

the following.

[Example]

$ qstat -f

Request ID: 3.bsvhost

 Request Name = STDIN

 User Name = user1

 :

 Attach = No

 OpenStack Template = os_70_small

 CPU Number = 1

 Memory Size = unused

 GPU Number = 0

 :

 Resources Information:

 Memory = 0.000000B

 :

 Resources Limits:

 (Per-Req) Elapse Time Limit = Max: 1000S Warn: 1000S

 :

 (Per-Job) CPU Number = Max: 1 Warn: ---

 :

 (Per-Job) Memory Size = Max: 1G Warn: 1G

 :

 (Per-Job) GPU Number = Max: 0 Warn: ---

 :

OpenStack Template shows information of the specified template. The limits on the number of CPUs,

93

memory size, and number of GPUs that are defined in the specified template are used as those

(number of CPUs, memory size, number of GPUs) per job.

13.3.2. Job information

When a job of the request that was submitted with --template specified is running on a virtual

machine, qstat -J displays an asterisk (*) at the beginning of the ExecutionHost item. This

information is displayed while the request state is from PRERUNNING to POSTRUNNING and a

virtual machine is running.

[Example]

$qstat -J

NO RequestID EJID Memory CPU JSVNO ExecutionHost UserName Exit

---- --------------- ----- -------- -------- ----- --------------- -------- ----

 0 3.bsvhost 100 0.00B 0.00 100 *exec1 user1 -

When the details of the above job is displayed by qstat -Jf, a virtual machine host name is displayed

after an execution host name as follows.

[Example]

$qstat -Jf

Request ID: 3.bsvhost

 Batch Job Number = 0

 Execution Job ID = (none)

 User Name = user1

 User ID = 111

 Group ID = 111

 Job Server Number = 100

 Job Server Name = JobServer0100

 Execution Host = exec1(vmhost1)

 :

When a job of the request that was submitted with --template specified is running on a bare metal

server, qstat -J displays [B] at the beginning of the ExecutionHost item.

[Example]

$qstat -J

NO RequestID EJID Memory CPU JSVNO ExecutionHost UserName Exit

---- --------------- ----- -------- -------- ----- --------------- -------- ----

 0 4.bsvhost 100 0.00B 0.00 1000 [B]bhost user1 -

When the details of the above job is displayed by qstat -Jf, [Baremetal] is displayed after an execution

host name.

[Example]

$qstat -Jf

Request ID: 4.bsvhost

 Batch Job Number = 0

94

 Execution Job ID = (none)

 User Name = user1

 User ID = 111

 Group ID = 111

 Job Server Number = 1000

 Job Server Name = JobServer1000

 Execution Host = bhost [Baremetal]

 :

95

14. Submitting a request using a provisioning environment in conjunction with

Docker

NQSV defines and manages information of an OS image and resources used by a job of a provisioning

environment in conjunction with Docker as a template.

A job can be executed in a provisioning environment in conjunction with Docker by specifying the

template for the --template option of a submit command (qsub(1), qlogin(1), or qrsh(1)).

14.1. Referencing the template information

Use the --template option of the qstat(1) command to reference the template information defined in a

system.

[Display example]

$qstat --template

[Container Template]

==

Template L Image CPU Memory GPU Custom Comment

---------- - ---------- ---- ------ ---- -------------------- --------------------

App_A - App_A_Img 2 1.0G 0 (none) For App_A

Use qstat --template -f to reference the more detailed information.

[Display example]

$qstat --template -f

Container Template: App_A

 Lock State = UNLOCK

 Image = App_A_Img

 CPU Number = 2

 Memory Size = 1GB

 GPU Number = 0

 VE Number = 2

 HCA Number = {

 For I/O = 0

 For MPI = 0

 For ALL = 1

 }

 Boot Timeout = 900

 Stop Timeout = 900

 Custom = (none)

 Comment = For App_A

 Requests = 5

14.2. Submitting a request with a template specified

Use the --template option of qsub(1), qlogin(1), and qrsh(1) to submit a request with a template

specified.

96

 [Example]

$qsub --template=App_A -q batch1 -l elapstim_req=1000

When a request is submitted with the --template option specified, the number of CPUs, memory size,

and number of GPUs that are defined in the specified template are used as the limits on resources

(number of CPUs, memory size, number of GPUs) per job of the submitted request. These limits are

used to check the resources (number of CPUs, memory size, and number of GPUs per job) of a queue

when the queue is submitted. However, the queue standard values are not applied.

14.3. Information of a request with a template specified

14.3.1. Request information

When submitting a request, if a template is specified by using the --template option, qstat -f shows

the following.

[Example]

$ qstat -f

Request ID: 443.bsvhost

 Request Name = STDIN

 User Name = user1

 :

 Container Template = App_A

 CPU Number = 2

 Memory Size = 1GB

 GPU Number = 0

 VE Number = 2

 HCA Number = {

 For I/O = 0

 For MPI = 0

 For ALL = 1

 }

 :

 Resources Information:

 :

 Logical Host Resources:

 VE Node Number = Max: 2 Warn: ---

 CPU Number = Max: 2 Warn: ---

 :

 Resources Limits:

 (Per-Req) Elapse Time Limit = Max: 1000S Warn: 1000S

 :

 (Per-Job) CPU Time = Max: UNLIMITED Warn: UNLIMITED

 (Per-Job) CPU Number = Max: 2 Warn: ---

 (Per-Job) Tape Number = Max: UNLIMITED Warn: ---

 :

 (Per-Job) Process Number = Max: UNLIMITED Warn: ---

97

 (Per-Job) Memory Size = Max: 1G Warn: 1G

 (Per-Job) Virtual Memory Size = Max: UNLIMITED Warn: UNLIMITED

 (Per-Job) GPU Number = Max: 0 Warn: ---

 (Per-Prc) CPU Time = Max: UNLIMITED Warn: UNLIMITED

 :

Container Template shows information of the specified template. The limits on the number of CPUs,

memory size, and number of GPUs that are defined in the specified template are used as those

(number of CPUs, memory size, number of GPUs) per job.

14.3.2. Job information

When a job of the request that was submitted with --template specified is running in a container,

qstat -J displays an asterisk (*) at the beginning of the ExecutionHost item. This information is

displayed while the request state is from PRERUNNING to POSTRUNNING and a container is

running.

[Example]

$qstat -J

NO RequestID EJID Memory CPU JSVNO ExecutionHost UserName Exit

---- --------------- ----- -------- -------- ----- --------------- -------- ----

 0 443.bsvhost 100 0.00B 0.00 100 *exec1 user1 -

When the details of the above job is displayed by qstat -Jf, a container host name is displayed after

an execution host name as follows.

[Example]

$qstat -Jf

Request ID: 443.bsvhost

 Batch Job Number = 0

 Execution Job ID = (none)

 User Name = user1

 User ID = 111

 Group ID = 111

 Job Server Number = 100

 Job Server Name = JobServer0100

 Execution Host = exec1(NQSV-0-443-10)

 :

98

15. Submitting a request using the Custom Resource function

The custom resource function is a function to control the custom resource amount that is used

concurrently in scheduling according to the defined custom resource information.

In an environment on which the custom resource function is used, use the --custom option of a job

submit command (qsub(1), qlogin(1), qrsh(1)) to specify a custom resource name and its usable

amount. In addition, the custom resource usage limit information is set to a queue. This information

includes the default usage, usage specification range, and setting of whether it is possible to specify

the usage of a request to be uncontrolled.

[Notes]

The custom resource function is available only for a batch request (local request) and interactive

request.

15.1. Referencing the custom resource information

Use the --template option of the qstat(1) command to reference the custom resource information

defined in a system.

[Example]

$ qstat --custom

Custom Resource : Power

 Consumer = job

 Type = bsv : Available Resource Limit = 5000

 Type = host: Target = (default) Available Resource Limit = 100

 Target = host_a Available Resource Limit = 120

Custom Resource : License

 Consumer = request

 Type = bsv : Available Resource Limit = 50

Custom Resource : Virtual

 Consumer = job

 Type = bsv : Available Resource Limit = 100

 Type = host: Target = (default) Available Resource Limit = 1

Use qstat -Qf to check the custom resource usage limit information of a queue. The displayed

information includes the default usage, usage specification range, and setting of whether it is possible

to specify the usage of a request to be uncontrolled.

[Example]

$ qstat -Qf

Execution Queue: bq@bsv

 Run State = Active

 Submit State = Enable

99

 :

 UserExit Script:

 (none)

 Custom Resources:

 Power : Range (min,max) = 10,50 Std = 30 : Permit Unused = No

 License : Range (min,max) = 1,20 Std = unused : Permit Unused = Yes

 Virtual : Range (min,max) = 1,1 Std = 1 : Permit Unused = No

 Resources Limits:

 (Per-Req) Elapse Time Limit = Max: UNLIMITED Warn: UNLIMITED Std: 3600S

 (Per-Job) CPU Time = Max: UNLIMITED Warn: UNLIMITED Std: UNLIMITED

 :

15.2. Submitting a request with a custom resource specified

The following shows the details of how to specify a custom resource at the request submit commands

qsub(1), qlogin(1) and qrsh(1).

--custom cr_name=n[,cr_name=n...]

For cr_name, specify a custom resource name. For n, specify the custom resource amount to be used

concurrently. The usage of multiple custom resources can be specified by delimiting with a comma.

Do not enter any space after a comma.

For n, specify an integer from 1 to 2147483647 or unused (or 0). unused (or 0) means that the specified

custom resource will not be used (the usage is 0) and its usage will be uncontrolled. However, unused

(or 0) cannot be specified if it is not possible for a submission host to specify the usage of a request to

be uncontrolled. If the usage specified with an integer exceeds the specification range set to the

submission queue, a submit error occurs.

If the usable amount of the custom resource is not specified when submitting a request, the default

resource usage set to the submission queue is used.

[Example]

$ qsub --custom Power=20,License=unused -q bq script

Request 6.bsv submitted to queue: bq.

15.3. Referencing the custom resource usage of a queue

Use qstat -f to reference the custom resource usage set to a queue.

[Example]

$ qstat -f

Request ID: 6.bsv

 Request Name = STDIN

 User Name = user1

 :

 Custom Resources:

 Power = 20

100

 License = unused

 Virtual = 1

 Execution Hosts(JSVNO):

 ehost100(100)

 Resources Information:

 Memory = 1.932587MB

 CPU Time = 0.225019S

 :

For the custom resource usage information of a request, set the environment variables of a job as

follows. There are 2 kinds of naming rule for the environment variable but both of them have same

value. This allows to reference the usage of all custom resources of a request in a job or UserPP script.

(For details, see "12. Submitting a request to specify a User Pre-Post Script".)

NQSV_CR_<custom resource name>=<amount>

or

NQSII_CR_<custom resource name>=<amount>

[Setting example of an environment variable]

NQSV_CR_Power = 20

NQSV_CR_License = unused

NQSV_CR_Virtual = 1

101

16. Hybrid Request function

16.1. About Hybrid Request

A normal (non-hybrid) request consists of one or more jobs (= logic hosts). But the resources

assigned for each job were the same. In a hybrid request, different amount of resources can be used

for each job.

For example a request with the following six jobs can be realized by hybrid request.

- Job 0 and Job 1 : Number of CPU : 1 and number of VEs : 2

- Job 2 and Job 3 : Number of CPU : 1 and number of GPUs : 4

- Job 4 and Job 5 : Number of CPU : 8

The MPI which can be executed by hybrid request is only NEC MPI.

16.2. Submitting Hybrid Request

A hybrid request has multiple jobs and it composes two or more group of job. Each group has one or

more jobs. All jobs in one group has the same resource limitation value. A different group can have

the different resource limitation value. A request which has only one group is treated as normal

(non-hybrid) request.

A hybrid request can be submitted in the same way as a normal request. The batch request is

submitted by qsub command, and an interactive request is submitted by qlogin command or qrsh

command. The --job-separator option is used to specify the different options to every job group. (It is

possible to omit --job-separator by using "---".)

It can be specified like as follows.

qsub < common options for whole jobs> \

 --job-separator < the option for job group0> \

--job-separator < the option for job group1> \

 :

 <job script>

The option which can be used to specify different values for each job group is as follows. It is

possible to specify an individual option to each group divided in --job-separator option.

102

Option Use

--cpunum-lhost The number of CPUs per logical host

--cputim-lhost CPU time per logical host

--gpunum-lhost The number of GPUs per logical host

--memsz-lhost Memory size per logical host

--venum-lhost The number of VE nodes per logical host

--vmemsz-lhost Virtual memory size per logical host

--use-hca HCA port number

--venode total number of VEs

-l cpunum_job The number of CPUs per job (logical host)

-l cputim_job CPU time per job (logical host)

-l gpunum_job The number of GPUs per job (logical host)

-l memsz_job Memory size per job (logical host)

-l vmemsz_job Virtual memory size per job (logical host)

-l coresz_prc Core file size per process

-l cputim_prc CPU time per process

-l datasz_prc Data segment size per process

-l filenum_prc The number of open file per process

-l filesz_prc File size per process file size

-l stacksz_prc Stack size per process

-l vmemsz_prc Virtual memory size per process

-b The number of jobs

-B Job Condition

-v Environment Variables

-y Reservation ID (*)

(*) All job groups in the hybrid request must be specified the Reservation ID if the hybrid request is

submitted into the reservation area. Some job in the hybrid request is specified the reservation id

and the others is not specified could not submit.

The options described above are able to specify as an individual option to each group separated by

the --job-separator option, and they are also able to specify as common options for whole request. If

they are specified as common options, they are treated as default values for every job group that

individual option is not specified.

103

The other options that listed above can be specified as common options only. If they are specified to

each job group, they are erroneous.

A concrete instance is mentioned below. The area of the option with orange background is the common

option, and the area of the option with light-blue background is the individual option.

Example 1:

qsub -q exeq -l elapstim_req=600 -Tnecmpi -b2 \

--job-separator --venum-lhost=2 --cpunum-lhost=1 --use-hca=1 \

--job-separator --cpunum-lhost=1 --gpunum-lhost=4 \

--job-separator --cpunum-lhost=8 \

job_script

This example submits the job script named "job_script" to "exeq" queue. It is elapse time limit is 600

seconds and job topology is necmpi. -b 2 that is specified as common option is applied to each

individual job group because the number of job (-b) isn't specified to individual job group.

Therefore following 3 kinds of job group is submitted on this example.

 Number of CPU : 1 , number of VE : 2 and number of HCA:1 2 jobs

 Number of CPU : 1 and number of GPU : 4 2 jobs

 Number of CPU : 8 2 jobs

Example 2:

qsub -q exeq -l elapstim_req=600 --cpunum-lhost=2 -Tnecmpi \

--job-separator --memsz-lhost=1GB \

--job-separator --venum-lhost=3 --use-hca=1 -b4 \

job_script

This example submits the job script named "job_script" to "exeq" queue. It is elapse time limit is 600

seconds and job topology is necmpi. --cpunum-lhost=2 that is specified as a common option is

applied to each individual job group, because per logical host CPU number limit (--cpunum-lhost)

isn't specified to individual job group.

Therefore following 2 kinds of job group is submitted on this example.

 Number of CPU : 2 and memory size : 1GB 1 job

 Number of CPU : 2 , number of VE : 3 and number of HCA:1 4 jobs

Example 3:

104

qsub -q exeq -l elapstim_req=600 --cpunum-lhost=2 -Tnecmpi --venum-lhost=2 --use-hca=1 \

 -b4 job_script

This example submits the job script named "job_script" to "exeq" queue. It is elapse time limit is 600

seconds and job topology is necmpi. This request is a normal (not hybrid) request, because --job-

separator option is not specified.

Therefore this request submits 4 jobs with 2 CPUs and 2 VEs.

Example 4:

qsub -q exeq -l elapstim_req=600 --cpunum-lhost=1 -Tnecmpi \

--job-separator --cpunum-lhost=4 --venum-lhost=1 --use-hca=1 \

--job-separator --use-hca=1 --venode=8 --use-hca=1 \

job_script

This example submits the job script named "job_script" to "exeq" queue. It is elapse time limit is 600

seconds and job topology is necmpi. The number of job isn't specified to common option, and --

venode option is specified to the 2nd individual job group. Therefore, the number of job and number

of VE for the 2nd individual job group depends on the default number of incorporated VE nodes of

the queue "exeq".

Therefore following 2 kinds of job group is submitted on this example.

 Number of CPU : 4, number of VE : 1 and number of HCA : 1 1 job

 Number of CPU : 1, number of HCA : 1 and number of VE and number of job is depended on the

default number of incorporated VE nodes of the queue "exeq".

Example 5:

qsub -q exeq -Tnecmpi \

--job-separator --cpunum-lhost=4 --venum-lhost=1 -l --use-hca=1 elapstim_req=300 \

--job-separator --cpunum-lhost=1 -b2 \

job_script

This example specifies -l elapstim_req option to the 1st individual job group. This operation is

erroneous, because the option cannot be specified to individual job group.

If a hybrid request is submitted as a concurrent request (a request submitted using the --parallel

option with the qsub command), the request will not be scheduled.

105

16.3. Hybrid Request Information

It is possible to find the information of hybrid requests by the -f option of the qstat(1) command. If

a request is a parametric request, qstat - Rf is also available. In case of a hybrid request, the

following items are displayed for the job group number 0.

Reservation ID

HCA Number

Resources Limits per Logical Host

 VE Node Number

CPU Number

GPU Number

CPU Time

GPU Number

Memory Size

Virtual Memory Size

Resources Limits per Process

 CPU Time

Open File Number

Memory Size

Virtual Memory Size

Data Segment Size

Stack Segment Size

Core File Size

Permanent Files Size

The item "VE Node Number" indicates the total of --venode option value for all individual job group.

Please note that the value is not --venode value of job group that job 0 belongs to.

Use qstat -Jt to display the values other job group than number 0. An example is shown below.

JNO RequestID VE CPU GPU CPUTime Memory VMemory

----------- --------------- -------- -------- -------- --------- -------- --------

0 117.host.exampl 1 1 0 ULIM ULIM ULIM

1 117.host.exampl 0 4 0 ULIM 1G ULIM

2-3 117.host.exampl 0 1 1 ULIM ULIM ULIM

The items listed above are displayed in the resource limits. In case of the request which isn't a

hybrid request, the same values are displayed to each job.

106

It can be used with -f option and -t option at the same time, too. In this case, resource limits are

displayed in detail.

$ qstat -Jft

Request ID: 117.host.example.com

Batch Job Number = 0

HCA Number = (none)

Reservation ID = (none)

Resources Limits per Logical Host:

VE Node Number = Max: 1 Warn: ---

CPU Number = Max: 1 Warn: ---

GPU Number = Max: 0 Warn: ---

CPU Time = Max: UNLIMITED Warn: UNLIMITED

Memory Size = Max: UNLIMITED Warn: UNLIMITED

Virtual Memory Size = Max: UNLIMITED Warn: UNLIMITED

Resources Limits per Process:

CPU Time = Max: UNLIMITED Warn: UNLIMITED

Open File Number = Max: UNLIMITED Warn: ---

Memory Size = Max: UNLIMITED Warn: UNLIMITED

Virtual Memory Size = Max: UNLIMITED Warn: UNLIMITED

Data Segment Size = Max: UNLIMITED Warn: UNLIMITED

Stack Segment Size = Max: UNLIMITED Warn: UNLIMITED

Core File Size = Max: UNLIMITED Warn: UNLIMITED

Permanent File Size = Max: UNLIMITED Warn: UNLIMITED

:

16.4. Attribute Change of Hybrid Request

It is possible to change the attribute of a hybrid request in the same way as a normal batch request

by the qalter(1) command. Attribute that specified to interactive request cannot be changed. When

changing the attribute that has the different values for each job group like resource limits, specify

the target job number with request ID like following.

[job_number:]<request_identifier>

All jobs which belongs to same job group is altered to same value.

107

For example, in order to change the number of VEs to 4 of job 1 of 117.host.example.com, execute

following command. On this situation, the number of VEs of all job that belongs to same job group of

job 1 is changed to 4.

$ qalter --venum-lhost=4 1:117.host.example.com

Attribute of Request is altered.

The job group number can be omitted, and if it is omitted, all job in the request is altered. To change

the attribute which is set to whole of request (common option), a job group number cannot be

specified. If a job group number is specified for it, it is erroneous.

108

17. Submitting a request using a provisioning environment in conjunction with

singularity

NQSV allows you to execute jobs in conjunction with singularity container. By preparing a singularity

container image file in advance and calling the singularity command in the job script when executing

the job and specifying the image file or job program, the job by the singularity container can be

executed.

For NQSV, the available version is singularity version 3.6.4.

NEC MPI and OpenMPI 4.0.3 are supported.

Please refer to the following page for how to build a singularity container that uses NEC MPI.

 https://github.com/veos-sxarr-NEC/singularity

17.1. Job execution method

17.1.1. Executing MPI Job

For NEC MPI

When executing an NEC MPI job in a singularity container, describe it in the job script as follows.

source /opt/nec/ve/mpi/<nec mpi version in the image>/bin64/necmpivars.sh

mpirun –np <number_of_processes> singularity exec –-bind /var/opt/nec/ve/veos <container

image name> <program name>

Job script example:

#!/bin/bash

#PBS -q bq

#PBS -T necmpi

#PBS -b 2

#PBS -l elapstim_req=300

#PBS –venum-lhost=8 --cpunum-lhost=2

source /opt/nec/ve/mpi/2.11.0/bin64/necmpivars.sh

mpirun -np 16 /usr/bin/singularity exec --bind /var/opt/nec/ve/veos ~/necmpi.sif ~/a.out

When executing an interactive request with qlogin (1) or qrsh (1), it is possible to execute a NEC

MPI job with a singularity container with the same image as a batch request.

For OpenMPI

109

When executing an OpenMPI job in a singularity container, describe it in the job script as follows.

mpirun –np <number_of_processes> singularity exec <container image name> <program name>

Job script example:

#!/bin/bash

#PBS -q bq

#PBS -T openmpi

#PBS -b 2

#PBS -l elapstim_req=300

#PBS --cpunum-lhost=2

mpirun -np 2 /usr/bin/singularity exec ~/openmpi.sif ~/a.out

When executing an interactive request with qlogin (1) or qrsh (1), it is possible to execute an

OpenMPI job with a singularity container with the same image as a batch request.

17.1.2. Executing distributed Job

When executing a distributed job in a singularity container, describe it in the job script as follows.

singularity exec <container image name> <program name>

Job script example:

#!/bin/bash

#PBS -q bq

#PBS -T distribute

#PBS -b 2

#PBS -l elapstim_req=300

#PBS --cpunum-lhost=2

/usr/bin/singularity exec ~/distribute.sif ~/a.out

When executing an interactive request with qlogin (1) or qrsh (1), it is possible to execute a

distributed job with a singularity container with the same image as a batch request.

110

18. Limitations

18.1. Max Value, Max length and Range of Value

The max value, the max length and the range of value in NQSV system are defined as follows. Some

of them are defined in nqsv.h.

1. Job server

⁃ The number of job server that can connect to one batch server is at most 10240.

⁃ The range of specified job server number is from 0 to 10239.

NQS_MAX_JSVNO is defined as 10239 (the maximum of job server number)

⁃ The max length of job server name is 15.

NQS_LEN_JSVNAME is defined as 15.

2. Scheduler (For details, please refer to [JobManipulator].)

⁃ The range of specified scheduler number is from 0 to 15.

NQS_MAX_SCHNO is defined as 15 .(the maximum of scheduler number)

⁃ The max length of scheduler name is 15.

NQS_LEN_SCHNAME is defined as 15.

3. The host name

⁃ The max length of the host name in NQSV is 255.

NQS_LEN_HOSTNAME is defined as 255.

4. Node group

⁃ The number of node group that can be created is at most 2048.

⁃ The max length of the node group name is 15.

NQS_LEN_NGRPNAME is defined as 15.

⁃ The max length of the comment text is 63.

NQS_LEN_COMMENT is defined as 63.

5. Request name

⁃ The max length of request name in NQSV is 63.

NQS_LEN_REQNAME is defined as 63.

6. Job number

⁃ The range of job number is from 0 to 10239.

NQS_MAX_JOBNO is defined as 10239. (the maximum of job number)

7. User name

⁃ The max length of user name in NQSV is 47.

NQS_LEN_USERNAME is defined as 47.

8. Group name

111

⁃ The max length of group name in NQSV is 47.

NQS_LEN_GROUPNAME is defined as value 47.

9. Queue name

⁃ The max length of queue name in NQSV is 15.

NQS_LEN_QUENAME is defined as 15.

10. Pathname

⁃ The max length of the pathname in NQSV is 1023.

NQS_LEN_PATHNAME is defined as 1023.

11. File name

⁃ The max length of the file name in NQSV is 255.

NQS_LEN_FILENAME is defined as 255.

12. Account code

⁃ The max length of the account code b in NQSV is 15.

13. Mail address

⁃ The max length of the mail address in NQSV is 1023.

NQS_LEN_MAILADDR is defined as 1023.

14. Job execution conditional

⁃ The max length of the job condition in NQSV is 255.

NQS_LEN_JOBCOND is defined as 255.

15. Template

⁃ The max length of the template name in NQSV is 47.

NQS_LEN_TEMPLATENAME is defined as 47

⁃ The max length of the OS image name in NQSV is 47

NQS_LEN_VMIMGNAME is defined as 47

⁃ The max length of the flavor name in NQSV is 47

NQS_LEN_FLAVORNAME is defined as 47

⁃ The max length of the custom define in NQSV is 400

NQS_LEN_TEMPLATECUSTOM is defined as 400

⁃ The max length of the comment in NQSV is 255

NQS_LEN_TEMPLATECOMMENT is defined as 255

16. Custom resource

⁃ The number of custom resource that can be created is at most 20.

NQS_MAX_CRNUM is defined as 20

⁃ The max length of the custom resource name in NQSV is 15

NQS_LEN_CRNAME is defined as 15

112

18.2. Version between Command and Batch Server

When the version of user command or administrator command, match versions the command and a

Batch Server. The Batch Server version which are connected to a batch server to refer to information

or do setting, is older than the version of NQSV/Client, an error can occur.

18.3. User-level checkpoint

Checkpoint is a function that saves the internal state of a running job. The saved job can be restarted

by the paired restart function. User-level checkpoints are saved by the user process. NQSV provides

support for using user-level checkpoints.

[Notes]

This function is an experimental function. Please contact NEC Support if you want to use it.

18.3.1. Preparing to use user-level checkpoint

Create a script for checkpointing on the user side. This script is not included in NQSV. This script is

called a checkpoint script. The checkpoint script is stored on the execution host, but it must be the

same path on all execution hosts.

18.3.2. How to submit a request

For requests that use checkpointing, please specify the checkpoint script when submitting with

qsub(1). The checkpoint script is specified with the --use-custom-suspend option. The format is as

follows.

--use-custom-suspend = chkpnt:script

In script, specify the checkpoint script on the execution host with an absolute path. For example, in

the case of /home/user1/checkpoint.sh, specify as follows.

--use-custom-suspend = chkpnt:/home/user1/checkpoint.sh

For details, refer to the qsub(1) in [Reference].

18.3.3. When taking a checkpoint

The timing to take a checkpoint is when a normal request is interrupted by an urgent request or a

special request. For details on the urgent request and special request, refer to Chapter 4 Advanced

Scheduling Features of [JobManipulator]. If an interrupted normal request specifies a checkpoint

113

script with the --use-custom-suspend option, NQSV executes this checkpoint script. After execution,

the interrupted normal request ends.

114

Appendix.A How to submit NQSV Request

A.1 Request using VEs

The following example shows the job script of the MPI program with 8 processes, on two logical hosts,

two VEs each logical hosts.

115

A.2 Request using x86

The following example shows the job script of the OpenMP program which uses only x86 CPUs of VH.

A.3 Request using GPUs

The following example shows the job script of the program using three GPUs.

116

A.4 Request using Multi-Instance GPU

An example job script for a request that uses the resources of a multi-instance GPU is shown below.

:request

:logical host(job)

Xeon Xeon

1g.5gbGPU0

#PBS -l elapstim_req=1000
#PBS --cpunum-lhost=8
#PBS --mig=4g.20gb:2,2
#PBS --mig=4g.20gb:2,2

tmpcuda="${CUDA_VISIBLE_DEVICES//,/ }"
for CUDA_VISIBLE_DEVICES in $tmpcuda; do

cuda.out &
done

1g.5gb 1g.5gb 1g.5gb 1g.5gb1g.5gb 1g.5gb

1g.5gbGPU1 1g.5gb 1g.5gb 1g.5gb 1g.5gb1g.5gb 1g.5gb

1g.5gbGPU2 1g.5gb 1g.5gb 1g.5gb 1g.5gb1g.5gb 1g.5gb

117

Appendix.B Update history

15th edition

 Deleted description of the obsoleted MPD process manager in 3.6.3.

16th edition

 Added Request Submit Using Multi-Instance GPU in chapter 11.

 Added Request using Multi-Instance GPU in appendix A.4.

17th edition

 Added Stdout size limit and Stderr size limit in chapter 1.2 and 1.3.

18th edition

 Added note when executing MPI with OpenMP in chapter 1.2.9.

 Corrected an error in the description of environment variables that can be changed with the -v

option in chapter 1.2.16.

 Added explanation for execution with OpenMP in chapter 1.14.2 and chapter 1.14.3.

 Added note on when NQSV's socket scheduling feature is enabled in chapter 1.14.3.

19th edition

 Added list of the environment variables that cannot be passed to the jobs by -V or -v option in

chapter 1.2.16.

118

Index

Ａ

Attach to Request 38

Ｂ

Batch Request .. 1

BMC... vi

BSV ... v

Ｃ

Custom Resource 96

Customizing Information 62

Ｄ

Docker .. 93, 106

Ｇ

GPU .. 81

Group of Request 77

Ｈ

HCA ... vi, 7

Hold .. 29

Ｉ

IB ... vi

Idle Timer ... 46

Interactive Request 45

Ｊ

JM ... v

Job Script ... 1

JSV ... v

Ｌ

Limit per Group and User 79

Ｍ

Move ... 31

MPI .. vi

MPI Request 32, 50

Ｎ

NEC MPI .. 50

Network Request 58

NIC .. vi

119

Ｏ

OpenStack .. 89

Output File ... 32, 43

Ｐ

Parametric Request 40

provisioning 89, 93, 106

Ｑ

qlogin. ... 45

Ｒ

Request log ... 38

Resume ... 30

Ｓ

Sorting Information 68

Suspend .. 30

Ｕ

User Pre-Post Script 85

UserPP script ... 85

Ｖ

VE .. v, 6

VH .. v

VI .. v

Ｗ

Workflow .. 71

workflow script .. 72

NEC Network Queuing System V (NQSV) User's Guide

[Operation]

June 2023 19th edition

NEC Corporation

Copyright: NEC Corporation 2018

No part of this guide shall be reproduced, modified or transmitted without a

written permission from NEC Corporation.

The information contained in this guide may be changed in the future without

prior notice.

	Proprietary Notice
	Preface
	Remarks
	About This Manual
	Contents
	Contents of Figures
	1. Batch Request Operation
	1.1. Batch Request Create
	1.1.1. Job Script Create
	1.1.2. Job Script Limitation
	1.1.3. How to Specify Input Data
	1.1.4. How to Specify Submit Options

	1.2. Batch Request Submit
	1.2.1. Basic Submitting Method
	1.2.2. Submit Queue Specifying
	1.2.3. Request Name Specifying
	1.2.4. Job Number Specifying
	1.2.5. Submitting of a request with the total number of VEs specified
	1.2.6. HCA Specifying
	1.2.7. Job Type Specifying
	1.2.8. Result Files Options
	1.2.9. Resource Limit Options
	1.2.10. Start Time Specifying
	1.2.11. Mail Notification Options
	1.2.12. Priority Specifying
	1.2.13. Account Code Specifying
	1.2.14. Rerunning Enable/Disable Specifying
	1.2.15. Hold Enable/Disable Specifying
	1.2.16. Use of Environment Variables
	1.2.17. Shell Specifying
	1.2.18. Batch Job Condition Specifying
	1.2.19. Staging Files Options
	1.2.20. Job Migration Options
	1.2.21. Submission Message Changing
	1.2.22. Request Connection Function
	1.2.23. Exclusive execution
	(1) Exclusive Execution Request Submit
	(2) Job Execution Using Exclusive Execution

	1.2.24. Hybrid request
	1.2.25. User Specifying
	1.2.26. Accept SIGTERM on job execution

	1.3. Status Check of Batch Request
	1.3.1. Check of Basic Information
	1.3.2. Check of Detailed Information
	1.3.3. Customizing Information
	(1) Time format
	(2) Long format
	(3) Selecting Item and Sorting

	1.4. Attribute Change of Batch Request
	1.5. Batch Request Delete
	1.6. Batch Request Hold
	1.7. Batch Request Release
	1.8. Batch Request Suspend
	1.9. Batch Request Resume
	1.10. Batch Request Rerun
	1.11. Batch Request Move
	1.12. Batch Request Termination Check
	1.12.1. Checking by Mail
	1.12.2. Checking by qwait(1)

	1.13. Batch Request Output File
	1.14. Run MPI Request
	1.14.1. Run under the NEC MPI Environment
	1.14.2. Run under the OpenMPI Environment
	1.14.3. Run under the Intel MPI Environment
	1.14.4. Run under the MVAPICH2 Environment
	1.14.5. Run under the Platform MPI Environment

	1.15. Display Output file in Request Running
	1.16. Request log
	1.17. Attach to Request

	2. Parametric Request Operation
	2.1. Parametric Request Submit
	2.1.1. Submitting Method
	2.1.2. Parameter and Input File

	2.2. State Check of Parametric Request
	2.3. Parametric Request Operation
	2.4. Parametric Request Start, Termination, and Output File
	2.4.1. Mail send
	2.4.2. Waiting Termination
	2.4.3. Output File

	3. Interactive Request Operation
	3.1. Interactive Request Submit
	3.1.1. Submitting method by qlogin
	3.1.2. Submit Option of qlogin
	(1) Queue Name
	(2) Number of Jobs
	(3) Waiting of Execution Host Allocation
	(4) Idle Timer
	(5) Others

	3.2. State Check of Interactive Request
	3.3. Attribute Change of Interactive Request
	3.4. Operations
	3.5. Interactive Request Start, Termination, and Output File
	3.6. Run MPI Request
	3.6.1. Run under the NEC MPI Environment
	3.6.2. Run under the OpenMPI Environment
	3.6.3. Run under the Intel MPI Environment
	3.6.4. Run under the MVAPICH2 Environment
	3.6.5. Run under the Platform MPI Environment

	4. Job Operation
	4.1. Job State Check
	4.1.1. Check of Basic Information
	4.1.2. Check of Detail Information
	4.1.3. Check of Job information of hybrid request
	4.1.4. Customizing Information
	(1) Time format
	(2) Long format
	(3) Selecting Item and Sorting

	4.2. Signal Send

	5. Network Request Operation
	5.1. Status Check of Network Request
	5.2. Network Request Status Transition
	5.3. Network Request Delete

	6. System Information Display
	6.1. How to Display System Information
	6.2. Customizing Information
	6.3. Sorting Information
	6.4. Time Display Format
	6.5. Displaying All Information
	6.6. Displaying All Job Serves (Execution Hosts) Information

	7. Workflow
	7.1. Environment for the workflow
	7.2. Workflow description
	7.2.1. Simple example
	7.2.2. Execution order
	7.2.3. Parallel execution

	7.3. Workflow execution
	7.4. Reference of workflow
	7.5. Control of workflow
	7.5.1. Workflow delete
	7.5.2. Request cancel by preceding request error

	8. Group of Request
	8.1. Group of Request and How to Submit
	8.2. Display of Information about Group
	8.2.1. Request Information
	8.2.2. Queue Information

	9. Limit per Group and User
	9.1. Limit per Group and User
	9.2. Limit Information Reference per Group and User

	10. Request Submit Using GPU
	11. Request Submit Using Multi-Instance GPU(MIG)
	11.1. Multi-Instance GPU(MIG)
	11.2. Display of Information about MIG
	11.3. Execution of MIG jobs

	12. Submitting a request to specify a User Pre-Post Script
	12.1. UserPP script
	12.2. Specification method when submitting a request
	12.3. Output of UserPP script

	13. Submitting a request using a provisioning environment in conjunction with OpenStack
	13.1. Reference the template information
	13.2. Submitting a request with a template specified
	13.3. Information of a request with a template specified
	13.3.1. Request information
	13.3.2. Job information

	14. Submitting a request using a provisioning environment in conjunction with Docker
	14.1. Referencing the template information
	14.2. Submitting a request with a template specified
	14.3. Information of a request with a template specified
	14.3.1. Request information
	14.3.2. Job information

	15. Submitting a request using the Custom Resource function
	15.1. Referencing the custom resource information
	15.2. Submitting a request with a custom resource specified
	15.3. Referencing the custom resource usage of a queue

	16. Hybrid Request function
	16.1. About Hybrid Request
	16.2. Submitting Hybrid Request
	16.3. Hybrid Request Information
	16.4. Attribute Change of Hybrid Request

	17. Submitting a request using a provisioning environment in conjunction with singularity
	17.1. Job execution method
	17.1.1. Executing MPI Job
	17.1.2. Executing distributed Job

	18. Limitations
	18.1. Max Value, Max length and Range of Value
	18.2. Version between Command and Batch Server
	18.3. User-level checkpoint
	18.3.1. Preparing to use user-level checkpoint
	18.3.2. How to submit a request
	18.3.3. When taking a checkpoint

	Appendix.A How to submit NQSV Request
	A.1 Request using VEs
	A.2 Request using x86
	A.3 Request using GPUs
	A.4 Request using Multi-Instance GPU

	Appendix.B Update history
	Index

