ADVANCED SCIENTIFIC LIBRARY ASL User's Guide <Basic Functions Vol.5>

PROPRIETARY NOTICE

The information disclosed in this document is the property of NEC Corporation (NEC) and/or its licensors. NEC and/or its licensors, as appropriate, reserve all patent, copyright and other proprietary rights to this document, including all design, manufacturing, reproduction, use and sales rights thereto, except to extent said rights are expressly granted to others.

The information in this document is subject to change at any time, without notice.

PREFACE

This manual describes general concepts, functions, and specifications for use of the Advanced Scientific Library (ASL).

The manuals corresponding to this product consist of seven volumes, which are divided into the chapters shown below. This manual describes the basic functions, volume 5.

Basic Functions Volume 1

Chapter	Title	Contents
1	Introduction	Explanation of the organization of this manual, how to view each item, and usage limitations.
2	Storage Mode Conversion	Explanation of algorithms, method of using, and usage example of subroutine related to storage mode conversion of array data.
3	Basic Matrix Algebra	Explanation of algorithms, method of using, and usage example of subroutine related to basic calculations involving matrices.
4	Eigenvalues and Eigenvectors	Explanation of algorithms, method of using, and usage example of subroutine related to the standard eigenvalue problem for real matrices, complex matrices, real symmetric matrices, Hermitian matrices, real sym- metric band matrices, real symmetric tridiagonal matrices, real symmetric random sparse matrices, Hermitian random sparse matrices and the generalized eigenvalue problem for real matrices, real symmetric matrices, Hermitian matrices, real symmetric band matrices.

Basic Functions Volume 2

Chapter	Title	Contents
1	Introduction	Explanation of the organization of this manual, how to view each item, and usage limitations.
2	Simultaneous Linear Equations (Direct Method)	Explanation of algorithms, method of using, and usage exam- ple of subroutine related to simultaneous linear equations corre- sponding to real matrices, complex matrices, positive symmetric matrices, real symmetric matrices, Hermitian matrices, real band matrices, positive symmetric band matrices, real tridiagonal ma- trices, real upper triangular matrices, and real lower triangular matrices.

Basic Functions Volume 3

Chapter	Title	Contents
1	Introduction	Explanation of the organization of this manual, how to view each item, and usage limitations.
2	Fourier Transforms and their applications	Explanation of algorithms, method of using, and usage exam- ple of subroutine related to one-, two- and three-dimensional complex Fourier transforms and real Fourier transforms, one-, two- and three-dimensional convolutions, correlations, and power spectrum analysis, wavelet transforms, and inverse Laplace transforms.

Basic Functions Volume 4

Chapter	Title	Contents
1	Introduction	Differential Equations and Their Applications item, and usage limitations.
2	Explanation of algorithms, method of using, and usage example of subroutine related to ordinary differential equations initial value problems for high-order simultaneous ordinary differential equations, implicit simultaneous ordinary differential equations, matrix type ordi-	
nary differential equations, stiff problem high-order simultane-		
ous ordinary differential equations, simultaneous ordinary dif-		
ferential equations, first-order simultaneous ordinary differential		
equations, and high-order ordinary differential equations, and		
ordinary differential equations boundary value problems		
for high-order simultaneous ordinary differential equations, first-		
order simultaneous ordinary differential equations, high-order or-		
dinary differential equations, high-order linear ordinary differen-		
tial equations, and second-order linear ordinary differential equa-		
tions, and		
integral equations for Fredholm's integral equations of second		
kind and Volterra's integral equations of first kind, and		
partial differential equations for two- and three-dimensional		
inhomogeneous Helmholtz equation.		

Basic Functions Volume 5

Chapter	Title	Contents
1	Introduction	Explanation of the organization of this manual, how to view each item, and usage limitations.
2	Special Functions	Explanation of algorithms, method of using, and usage example of subroutine related to Bessel functions, modified Bessel func- tions, spherical Bessel functions, functions related to Bessel func- tions, Gamma functions, functions related to Gamma functions, elliptic functions, indefinite integrals of elementary functions, as- sociated Legendre functions, orthogonal polynomials, and other special functions.
3	Sorting and Ranking	Explanation and usage examples of subroutine related to sorting and ranking.
4	Roots of Equations	Explanation of algorithms, method of using, and usage example of subroutine related to roots of algebraic equations, nonlinear equations, and simultaneous nonlinear equations.
5	Extremal Problems and Optimization	Explanation of algorithms, method of using, and usage exam- ple of subroutine related to minimization of functions with no constraints, minimization of the sum of the squares of functions with no constraints, minimization of one-variable functions with constraints, minimization of multi-variable functions with con-
straints, and shortest path problem.		

Basic Functions Volume 6

Chapter	Title	Contents
1	Introduction	Explanation of the organization of this manual, how to view each item, and usage limitations.
2	Random Number Tests	Explanation and usage examples of subroutine related to uniform random number tests, and distribution random number tests.
3	Probability Distributions	Explanation and usage examples of subroutine related to contin- uous distributions and discrete distributions.
4	Basic Statistics	Explanation and usage examples of subroutine related to basic statistics, variance-covariance and correlation.
5	Tests and Estimates	Explanation and usage examples of subroutine related to interval estimates and tests.
7	Analysis of Variance Design of Experiments	Explanation and usage examples of subroutine related to one-way layout, two-way layout, multiple-way layout, randomized block design, Greco-Latin square method, cumulative Method.
8	Nonparametric Tests	Explanation and usage examples of subroutine related to tests using χ^{2} distribution and tests using other distributions.
9	Time Series Analysis	Explanation and usage examples of subroutine related to prin- cipal component analysis, factor analysis, canonical correlation analysis, discriminant analysis, cluster analysis.
Explanation and usage examples of subroutine related to auto- correlation, cross correlation, autocovariance, cross covariance, smoothing and demand forecasting.		
10	Regression analysis	Explanation and usage examples of subroutine related to linear Regression and nonlinear Regression.

Shared Memory Parallel Functions

Chapter	Title	Contents
1	Introduction	Explanation of the organization of this manual, how to view each item, and usage limitations.
2	Basic Matrix Algebra	Explanation of algorithms, method of using, and usage example of subroutine related to obtain the product of real matrices and complex matrices.
3	Simultaneous Linear Equations (Direct Method)	Explanation of algorithms, method of using, and usage exam- ple of subroutine related to simultaneous linear equations cor- responding to real matrices, complex matrices, real symmetric matrices, and Hermitian matrices.
4	Simultaneous Linear Equations (Iteration Method)	Explanation of algorithms, method of using, and usage exam- ple of subroutine related to simultaneous linear equations corre- sponding to real positive definite symmetric sparse matrices, real symmetric sparse matrices and real asymmetric sparse matrices.
5	Eigenvalues and Eigenvectors	Explanation of algorithms, method of using, and usage example of subroutine related to the eigenvalue problem for real symmet- ric matrices and Hermitian matrices.
6	Fourier Transforms and their applications	Explanation of algorithms, method of using, and usage example of subroutine related to one-, two- and three-dimensional com- plex Fourier transforms and real Fourier transforms, two- and
7	Sorting	three-dimensional convolutions, correlations, and power spec- trum analysis.

Document Version 3.0.0-230301 for ASL, March 2023

Remarks

(1) This manual corresponds to ASL 1.1. All functions described in this manual are program products.
(2) Proper nouns such as product names are registered trademarks or trademarks of individual manufacturers.
(3) This library was developed by incorporating the latest numerical computational techniques. Therefore, to keep up with the latest techniques, if a newly added or improved function includes the function of an existing function may be removed.

Contents

1 INTRODUCTION 1
1.1 OVERVIEW 1
1.1.1 Introduction to The Advanced Scientific Library ASL 1
1.1.2 Distinctive Characteristics of ASL 1
1.2 KINDS OF LIBRARIES 2
1.3 ORGANIZATION 3
1.3.1 Introduction 3
1.3.2 Organization of Subroutine Description 3
1.3.3 Contents of Each Item 3
1.4 SUBROUTINE NAMES 7
1.5 NOTES 9
2 SPECIAL FUNCTIONS 10
2.1 INTRODUCTION 10
2.1.1 Notes 11
2.1.2 Algorithms Used 12
2.1.2.1 Bessel Functions 12
2.1.2.2 Modified Bessel Functions 18
2.1.2.3 Spherical Bessel Functions 26
2.1.2.4 Functions Related To Bessel Functions 29
2.1.2.5 Gamma Functions 33
2.1.2.6 Functions Related To The Gamma Function 36
2.1.2.7 Elliptic Functions And Elliptic Integrals 37
2.1.2.8 Indefinite Integrals Of Elementary Functions 45
2.1.2.9 Associated Legendre Functions 49
2.1.2.10 Orthogonal Polynomials 52
2.1.2.11 Mathieu functions of integer orders 52
2.1.2.12 Langevin function 54
2.1.2.13 Gauss=Legendre integration formula 54
2.1.2.14 Zero points of Bessel Functions 56
2.1.2.15 Positive zero points of the second kind Bessel function 59
2.1.2.16 Zeta function of Positive definite quadratic form $x^{2}+a y^{2}$ 59
2.1.2.17 Di-log function 60
2.1.2.18 Debye function 60
2.1.2.19 Normalized Spherical Harmonics 61
2.1.2.20 Hurwitz Zeta function for a real variable 62
2.1.2.21 The functions related to the error function 65
2.1.2.22 Coefficient Calculation Method 67
2.1.2.23 Method of Calculating Related Special Functions 67
2.1.3 Reference Bibliography 70
2.2 BESSEL FUNCTIONS 71
2.2.1 WIBJ0X, VIBJ0X
Bessel Function of the 1st Kind (Order 0) 71
2.2.2 WIBY0X, VIBY0X
Bessel Function of the 2nd Kind (Order 0) 73
2.2.3 WIBJ1X, VIBJ1X
Bessel Function of the 1st Kind (Order 1) 76
2.2.4 WIBY1X, VIBY1X
Bessel Function of the 2nd Kind (Order 1) 78
2.2.5 DIBJNX, RIBJNX
Bessel Function of the 1st Kind (Integer Order) 81
2.2.6 DIBYNX, RIBYNX
Bessel Function of the 2nd Kind (Integer Order) 83
2.2.7 DIBJMX, RIBJMX
Bessel Function of the 1st Kind (Real Number Order) 86
2.2.8 DIBYMX, RIBYMX
Bessel Function of the 2nd Kind (Real Number Order) 89
2.2.9 ZIBJNZ, CIBJNZ
Bessel Function of the 1st Kind with Complex Variable (Integer Order) 92
2.2.10 ZIBYNZ, CIBYNZ
Bessel Function of the 2nd Kind with Complex Variable (Integer Order) 94
2.3 ZERO POINTS OF THE BESSEL FUNCTIONS 96
2.3.1 DIZBS0, RIZBS0 Positive Zero Points of the Bessel Function of the 1st Kind (Order 0) 96
2.3.2 DIZBS1, RIZBS1 Positive Zero Points of the Bessel Function of the 1st Kind (Order 1) 98
2.3.3 DIZBSN, RIZBSN Positive Zero Points of Bessel Function of the 1st Kind (Integer Order) 100
2.3.4 DIZBYN, RIZBYN Positive Zero Points of the Second Kind Bessel Function 103
2.3.5 DIZBSL, RIZBSL Positive Zero Points of the Function $a J_{0}(\alpha)+\alpha J_{1}(\alpha)$ 105
2.4 MODIFIED BESSEL FUNCTIONS 107
2.4.1 WIBIOX, VIBIOX Modified Bessel Function of the 1st Kind (Order 0) 107
2.4.2 WIBK0X, VIBK0X Modified Bessel Function of the 2nd Kind (Order 0) 109
2.4.3 WIBI1X, VIBI1X
Modified Bessel Function of the 1st Kind (Order 1) 112
2.4.4 WIBK1X, VIBK1X Modified Bessel Function of the 2nd Kind (Order 1) 114
2.4.5 DIBINX, RIBINX Modified Bessel Function of the 1st Kind (Integer Order) 117
2.4.6 DIBKNX, RIBKNX Modified Bessel Function of the 2nd Kind (Integer Order) 119
2.4.7 DIBIMX, RIBIMX Modified Bessel Function of the 1st Kind (Real Number Order) 121
2.4.8 DIBKMX, RIBKMX Modified Bessel Function of the 2nd Kind (Real Number Order) 124
2.4.9 ZIBINZ, CIBINZ
Modified Bessel Function of the 1st Kind with Complex Variable (Integer Order) 127
2.4.10 ZIBKNZ, CIBKNZ
Modified Bessel Function of the 2nd Kind with Complex Variable (Integer Order) 129
2.5 SPHERICAL BESSEL FUNCTIONS 132
2.5.1 DIBSJN, RIBSJN Spherical Bessel Function of the 1st Kind (Integer Order) 132
2.5.2 DIBSYN, RIBSYN Spherical Bessel Function of the 2nd Kind (Integer Order) 135
2.5.3 DIBSIN, RIBSIN Modified Spherical Bessel Function of the 1st Kind (Integer Order) 138
2.5.4 DIBSKN, RIBSKN Modified Spherical Bessel Function of the 2nd Kind (Integer Order) 140
2.6 FUNCTIONS RELATED TO BESSEL FUNCTIONS 142
2.6.1 ZIBH1N, CIBH1N
Hankel Function of the 1st Kind 142
2.6.2 ZIBH2N, CIBH2N
Hankel Function of the 2nd Kind 144
2.6.3 DIBBER, RIBBER
Kelvin Function $\operatorname{ber}_{n}(x)$ 146
2.6.4 DIBBEI, RIBBEI
Kelvin Function bei $_{n}(x)$ 148
2.6.5 DIBKER, RIBKER
Kelvin Function $\operatorname{ker}_{n}(x)$ 150
2.6.6 DIBKEI, RIBKEI
Kelvin Function $\operatorname{kei}_{n}(x)$ 152
2.6.7 WIBH0X, VIBH0X Struve Function (Order 0) 154
2.6.8 WIBH1X, VIBH1X Struve Function (Order 1) 156
2.6.9 WIBHY0, VIBHY0
Difference of Struve Function (Order 0) and Bessel Function of the 2nd Kind (Order 0) 158
2.6.10 WIBHY1, VIBHY1 Difference of Struve Function (Order 1) and Bessel Function of the 2nd Kind (Order 1) 160
2.6.11 DIBAIX, RIBAIXAiry Function $\operatorname{Ai}(x)$162
2.6.12 DIBBIX, RIBBIX
Airy Function $\operatorname{Bi}(x)$ 164
2.6.13 DIBAID, RIBAID Derived Airy Function $\operatorname{Ai}^{\prime}(x)$ 166
2.6.14 DIBBID, RIBBID
Derived Airy Function $\operatorname{Bi}^{\prime}(x)$ 168
2.7 GAMMA FUNCTIONS 170
2.7.1 WIGAMX, VIGAMX
Gamma Function with Real Variable 70
2.7.2 WIGLGX, VIGLGX
Logarithmic Gamma Function with Real Variable 173
2.7.3 DIGIG1, RIGIG1
Incomplete Gamma Function of the 1st Kind 175
2.7.4 DIGIG2, RIGIG2 Incomplete Gamma Function of the 2nd Kind 177
2.7.5 ZIGAMZ, CIGAMZ
Gamma Function with Complex Variable 179
2.7.6 ZIGLGZ, CIGLGZ
Logarithmic Gamma Function with Complex Variable 181
2.8 FUNCTIONS RELATED TO THE GAMMA FUNCTION 183
2.8.1 WIGDIG, VIGDIG Digamma Function 183
2.8.2 WIGBET, VIGBET Beta Function 185
2.9 ELLIPTIC FUNCTIONS AND ELLIPTIC INTEGRALS 188
2.9.1 WIECI1, VIECI1
Complete Elliptic Integral of the 1st Kind 188
2.9.2 WIECI2, VIECI2
Complete Elliptic Integral of the 2nd Kind 190
2.9.3 DIEII1, RIEII1
Incomplete Elliptic Integral of the 1st Kind 192
2.9.4 DIEII2, RIEII2
Incomplete Elliptic Integral of the 2nd Kind 194
2.9.5 DIEII3, RIEII3
Incomplete Modified Elliptic Integral 196
2.9.6 DIEII4, RIEII4
Incomplete Elliptic Integral of The Weierstrass Type 198
2.9.7 WIEJAC, VIEJAC
Elliptic Functions of Jacobi 200
2.9.8 WIENMQ, VIENMQ
Nome q and Complete Elliptic Integrals 203
2.9.9 WIETHE, VIETHE
Elliptic Theta Function 206
2.9.10 WIEJZT, VIEJZT
Zeta Function of Jacobi 209
2.9.11 WIEJEP, VIEJEP
Epsilon Function of Jacobi 211
2.9.12 WIEJTE, VIEJTE
Theta Function of Jacobi 213
2.9.13 WIEPAI, VIEPAI
Pi Function 215
2.10 INDEFINITE INTEGRALS OF ELEMENTARY FUNCTIONS 218
2.10.1 WIIEXP, VIIEXP
Exponential Integral 218
2.10.2 WIILOG, VIILOG
Logarithmic Integral 221
2.10.3 DIISIN, RIISIN Sine Integral 223
2.10.4 DIICOS, RIICOS
Cosine Integral 225
2.10.5 WIIFSI, VIIFSI
Fresnel Sine Integral 227
2.10.6 WIIFCO, VIIFCO
Fresnel Cosine Integral 229
2.10.7 WIIDAW, VIIDAW
Dawson Integral 231
2.10.8 WIICND, VIICND
Normal Distribution Function 233
2.10.9 WIICNC, VIICNC
Complementary Normal Distribution Function 235
2.11 THE FUNCTIONS RELATED TO THE ERROR FUNCTIONS 237
2.11.1 WIERRF, VIERRF Error Function 237
2.11.2 WIERFC, VIERFC
Co-Error Function 239
2.11.3 DIIERF, RIIERF Inverse of Co-Error Function 241
2.11.4 JIIERF, IIIERF
Error Function for Complex Arguments 243
2.12 ASSOCIATED LEGENDRE FUNCTIONS 245
2.12.1 DILEG1, RILEG1
Associated Legendre Function of the 1st Kind 245
2.12.2 DILEG2, RILEG2
Associated Legendre Function of the 2nd Kind 248
2.13 ORTHOGONAL POLYNOMIALS 250
2.13.1 DIOPLE, RIOPLE
Legendre Polynomial 250
2.13.2 DIZGLW, RIZGLW
Gauss=Legendre Formula 252
2.13.3 DIOPLA, RIOPLA
Laguerre Polynomial 255
2.13.4 DIOPHE, RIOPHE
Hermite Polynomial 257
2.13.5 DIOPCH, RIOPCH
Chebyshev Polynomial 259
2.13.6 DIOPC2, RIOPC2
Chebyshev Function of the 2nd Kind 261
2.13.7 DIOPGL, RIOPGL
Generalized Laguerre Polynomial 263
2.14 MATHIEU FUNCTIONS 265
2.14.1 DIMTCE, RIMTCE
Mathieu Functions of Integer Orders $c e_{n}(x, q)$ 265
2.14.2 DIMTSE, RIMTSE Mathieu Functions of Integer Orders $s e_{n}(x, q)$ 268
2.15 OTHER SPECIAL FUNCTIONS 271
2.15.1 WIXSPS, VIXSPS Di-Log Function 271
2.15.2 WIDBEY, VIDBEY Debye Function 273
2.15.3 WINPLG, VINPLG Spherical Harmonic Function 275
2.15.4 WIXSLA, VIXSLA
Langevin Function 278
2.15.5 WIXZTA, VIXZTA Hurwitz Zeta Function 280
2.15.6 DIXEPS, RIXEPS
Zeta Function of the Positive Definite Quadratic Form $x^{2}+a y^{2}$ 283
3 SORTING AND RANKING 286
3.1 INTRODUCTION 286
3.1.1 Algorithms Used 287
3.1.1.1 Sorting 287
3.1.1.2 Ranking of a list of data 288
3.1.1.3 Top-N extraction 288
3.1.1.4 Merging two sorted lists of data 288
3.1.1.5 Merging two sorted list of pairwise data 288
3.1.2 Reference Bibliography 289
3.2 SORTING 290
3.2.1 DSSTA1, RSSTA1
Sorting a List of Data 290
3.2.2 DSSTA2, RSSTA2
Sorting a List of Pairwise Data 293
3.3 RANKING 297
3.3.1 DSSTRA, RSSTRA
Ranking of a List of Data 297
3.3.2 DSSTPT, RSSTPT
Top-N Extraction 300
3.4 MERGING 304
3.4.1 DSMGON, RSMGONMerging Two Sorted Lists of Data304
3.4.2 DSMGPA, RSMGPA
Merging Two Sorted Lists of Pairwise Data 308
4 ROOTS OF EQUATIONS 313
4.1 INTRODUCTION 313
4.1.1 Notes 314
4.1.2 Algorithms Used 316
4.1.2.1 Roots of a real coefficient algebraic equation 316
4.1.2.2 The roots of complex coefficient algebraic equations 326
4.1.2.3 The roots of real functions (initial value specified; derivative definition required) 328
4.1.2.4 The roots of real functions (initial value specified; derivative definition not required) 330
4.1.2.5 The roots of real functions (interval specification; derivative definition not required 333
4.1.2.6 All the roots of real functions (interval specification; derivative definition not required) 334
4.1.2.7 The roots of complex functions (initial value specified; derivative definition not required) 334
4.1.2.8 The roots of a set of simultaneous nonlinear equations (Jacobian matrix definition optional) 335
4.1.2.9 The roots of a set of simultaneous nonlinear equations (Jacobian matrix definition not required) 336
4.1.3 Reference Bibliography 341
4.2 ALGEBRAIC EQUATIONS 342
4.2.1 DLARHA, RLARHA The Roots of Real Coefficient Algebraic Equations 342
4.2.2 ZLACHA, CLACHA
The Roots of Complex Coefficient Algebraic Equations 345
4.3 NONLINEAR EQUATIONS 348
4.3.1 DLNRDS, RLNRDS
A Root of a Real Function (Initial Value Specified; Derivative Definition Required) 348
4.3.2 DLNRIS, RLNRIS
A Root of a Real Function (Initial Value Specified; Derivative Definition Not Required) 352
4.3.3 DLNRSS, RLNRSS
A Root of a Real Function (Interval Specified; Derivative Definition Not Required) 355
4.3.4 DLNRSA, RLNRSA
All Roots of a Real Function (Interval Specified; Derivative Definition Not Required) 358
4.3.5 ZLNCIS, CLNCIS
A Root of a Complex Function (Initial Value Specified; Derivative Definition Not Required) 361
4.4 SETS OF SIMULTANEOUS NONLINEAR EQUATIONS 364
4.4.1 DLSRDS, RLSRDS
A Root of a Set of Simultaneous Nonlinear Functions (Jacobian Matrix Optional) 364
4.4.2 DLSRIS, RLSRIS
A Root of a Set of Simultaneous Nonlinear Functions (Jacobian Matrix Definition Not Required) 370
5 EXTREMUM PROBLEMS AND OPTIMIZATION 374
5.1 INTRODUCTION 374
5.1.1 Notes 376
5.1.2 Algorithms Used 377
5.1.2.1 Minimization of a function of one variable 377
5.1.2.2 Minimization of a function of many variables 378
5.1.2.3 Nonlinear least square method 379
5.1.2.4 Minimization of a constrained linear function of several variables (linear constraints))382
5.1.2.5 Minimization of a constrained linear function of several variables including 0-1 variables 389
5.1.2.6 Minimization of cost for flow in a network 393
5.1.2.7 Minimization of cost for project scheduling 395
5.1.2.8 Minimization of cost for transportation from supply place to demand place 397
5.1.2.9 Minimization of a constrained quadratic function of several variables (linear con- straints) 398
5.1.2.10 Minimization of a generalized convex quadratic function of several variables (linear constraints) 400
5.1.2.11 Minimization of an unconstrained 0-1 quadratic function of several variables 402
5.1.2.12 Minimization of a constrained function of several variables 406
5.1.2.13 Minimization of the distance between two nodes in a network 408
5.1.3 Reference Bibliography 410
5.2 MINIMIZATION OF A FUNCTION OF ONE VARIABLE WITHOUT CONSTRAINTS 411
5.2.1 DMUUSN, RMUUSN Minimization of a Function of One Variable 411
5.3 MINIMIZATION OF A FUNCTION OF MANY VARIABLES WITHOUT CONSTRAINTS 414
5.3.1 DMUMQN, RMUMQN Minimization of a Function of Many Variables (Derivative Definition Unnecessary) 414
5.3.2 DMUMQG, RMUMQG
Minimization of a Function of Many Variables (Derivative Definition Required) 418
5.4 MINIMIZATION OF THE SUM OF THE SQUARES OF A FUNCTION WITHOUT CON- STRAINTS 422
5.4.1 DMUSSN, RMUSSN
Nonlinear Least Squares Method (Derivative Definition Unnecessary) 422
5.5 MINIMIZATION OF A FUNCTION OF ONE VARIABLE WITH CONSTRAINTS 427
5.5.1 DMCUSN, RMCUSN Minimization of a Function of One Variable (Interval Specified) 427
5.6 MINIMIZATION OF A CONSTRAINED LINEAR FUNCTION OF SEVERAL VARIABLES (LINEAR PROGRAMMING) 430
5.6.1 DMCLSN, RMCLSN Minimization of a Linear Function of Several Variables (Linear Constraints) 430
5.6.2 DMCLAF, RMCLAF
Minimization of a Function of Many Variables (Linear Constraint Given by a Real Irregular Sparse Matrix) 436
5.6.3 DMCLMZ, RMCLMZ
Minimization of a Constrained Linear Function of Several Variables Including 0-1 Variables (Mixed 0-1 Programming) 447
5.6.4 DMCLMC, RMCLMC Minimization of Cost for Flow in a Network (Minimal-Cost Flow Problem) 454
5.6.5 DMCLCP, RMCLCP Minimization of Cost for Project Scheduling (Project Scheduling Problem) 459
5.6.6 DMCLTP, RMCLTP Minimization of Cost for Transportation from Supply Place to Demand Place (Transporta- tion Problem) 465
5.7 MINIMIZATION OF A QUADRATIC FUNCTION OF SEVERAL VARIABLES (QUADRATIC PROGRAMMING) 471
5.7.1 DMCQSN, RMCQSN Minimization of a Constrained Convex Quadratic Function of Several Variables (Linear Constraints) 471
5.7.2 DMCQLM, RMCQLM Minimization of a Generalized Convex Quadratic Function of Several Variables (Linear Constraints) 476
5.7.3 DMCQAZ, RMCQAZ
Minimization of an Unconstrained 0-1 Quadratic Function of Several Variables (Uncon- strained 0-1 Quadratic Programming Problem) 481
5.8 MINIMIZATION OF A CONSTRAINED FUNCTION OF SEVERAL VARIABLES (NONLIN- EAR PROGRAMMING) 487
5.8.1 DMSQPM, RMSQPM Minimization of a Constrained Function of Several Variables (Nonlinear Constraints) 487
5.9 DISTANCE MINIMIZATION ON A GRAPH (SHORTEST PATH PROBLEM) 493
5.9.1 DMSP1M, RMSP1MDistance Minimization for a Given Node to the Other Node on a Graph 493
5.9.2 DMSPMM, RMSPMM Distance Minimization for All Sets of Two Nodes on a Graph 497
5.9.3 DMSP11, RMSP11
Distance Minimization for Two Nodes on a Graph 500
A GLOSSARY 504
B MACHINE CONSTANTS USED IN ASL 506
B. 1 Units for Determining Error 506
B. 2 Maximum and Minimum Values of Floating Point Data 506

Chapter 1

INTRODUCTION

1.1 OVERVIEW

1.1.1 Introduction to The Advanced Scientific Library ASL

Table $1-1$ shows correspondences among product categories, functions of ASL and supported hardware platforms. In the same version of ASL, interfaces of subroutines of the same name are common among hardware platforms.

Table 1-1 Classification of functions included in ASL

Classification of Functions	Volume
Basic functions	Vol. 1-6
Shared memory parallel functions	Vol. 7

1.1.2 Distinctive Characteristics of ASL

ASL has the following distinctive characteristics.
(1) Subroutines are optimized using compiler optimization to take advantage of corresponding system hardware features.
(2) Special-purpose subroutines for handling matrices are provided so that the optimum processing can be performed according to the type of matrix (symmetric matrix, Hermitian matrix, or the like). Generally, processing performance can be increased and the amount of required memory can be conserved by using the special-purpose subroutines.
(3) Subroutines are modularized according to processing procedures to improve reliability of each component subroutine as well as the reliability and efficiency of the entire system.
(4) Error information is easy to access after a subroutine has been used since error indicator numbers have been systematically determined.

1.2 KINDS OF LIBRARIES

Table 1-2 Kinds of libraries providing ASL

Size of variable(byte)		Declaration of arguments	Kind	Kind of library
integer	real			
4	8	$\begin{aligned} & \text { INTEGER(4) } \\ & \text { REAL(8) } \end{aligned}$	32bit integer Double-precision subroutine	32bit integer library (link option: -lasl_sequential)
4	4	$\begin{aligned} & \text { INTEGER(4) } \\ & \text { REAL(4) } \end{aligned}$	32bit integer Single-precision subroutine	
8	8	$\begin{aligned} & \text { INTEGER(8) } \\ & \text { REAL(8) } \end{aligned}$	64bit integer Double-precision subroutine	64bit integer library (link option: -lasl_sequential_i64)
8	4	$\begin{aligned} & \text { INTEGER(8) } \\ & \text { REAL(4) } \end{aligned}$	64bit integer Single-precision subroutine	

(*1) Functions that appear in this documentation do not always support all of the four kinds of subroutines listed above. For those functions that do not support some of those subroutine kinds, relevant notes will appear in the corresponding subsections.
(*2) The string "(4)" that specifies 32bit (4 byte) can be omitted.

1.3 ORGANIZATION

This section describes the organization of Chapters 2 and later.

1.3.1 Introduction

The first section of each chapter is a general introduction describing such information as the effective ways of using the subroutines, techniques employed, algorithms on which the subroutines are based, and notes.

1.3.2 Organization of Subroutine Description

The second section of each chapter sequentially describes the following topics for each subroutine.
(1) Function
(2) Usage
(3) Arguments
(4) Restrictions
(5) Error indicator
(6) Notes
(7) Example

Each item is described according to the following principles.

1.3.3 Contents of Each Item

(1) Function

Function briefly describes the purpose of the ASL subroutine.
(2) Usage

Usage describes the subroutine name and the order of its arguments. In general, arguments are arranged as follows.

CALL subroutine-name (input-arguments, input/output-arguments, output-arguments, ISW, work, IERR)

ISW is an input argument for specifying the processing procedure. IERR is an error indicator. In some cases, input/output arguments precede input arguments. The following general principles also apply.

- Array are placed as far to the left as possible according to their importance.
- The dimension of an array immediately follows the array name. If multiple arrays have the same dimension, the dimension is assigned as an argument of only the first array name. It is not assigned as an argument of subsequent array names.
(3) Arguments

Arguments are explained in the order described above in paragraph (2). The explanation format is as follows.
$\frac{\text { Arguments }}{(\mathrm{a})} \quad \frac{\text { Type }}{(\mathrm{b})} \quad \frac{\text { Size }}{(\mathrm{c})} \frac{\text { Input/Output }}{(\mathrm{d})} \quad \frac{\text { Contents }}{(\mathrm{e})}$
(a) Arguments

Arguments are explained in the order they are designated in the Usage paragraph.
(b) Type

Type indicates the data type of the argument. Any of the following codes may appear as the type.
I : Integer type
D : Double precision real
R : Real
Z : Double precision complex
C : Complex
There are 64 -bit integer and 32 -bit integer for integer type arguments. In a 32 -bit (64 -bit) integer type subroutine, all the integer type arguments are 32 -bit (64-bit) integer. In other words, kinds of libraries determine the sizes of integer type arguments (Refer to 1.4). In the user program, a 32 -bit/64-bit integer type argument must be declared by INTEGER/ INTEGER (8), respectively.
(c) Size

Size indicates the required size of the specified argument. If the size is greater than 1 , the required area must be reserved in the program calling this subroutine.
1 : Indicates that argument is a variable.
$\mathrm{N} \quad$: Indicates that the argument is a vector (one-dimensional array) having N elements. The argument N indicating the size of this vector is defined immediately after the specified vector. However, if the size of a vector or array defined earlier, it is omitted following subsequently defined vectors or arrays. The size may be specified by only a numeric value or in the form of a product or sum such as $3 \times \mathrm{N}$ or $\mathrm{N}+\mathrm{M}$.
M, N : Indicates that the argument is a two-dimensional array having M rows and N columns. If M and N indicating the size of this array have not been defined before this array is specified, they are defined as arguments immediately following this array.
(d) Input/Output

Input/Output indicates whether the explanation of argument contents applies to input time or output time.
i. When only "Input" appears

When the control returns to the program using this subroutine, information when the argument is input is preserved. The user must assign input-time information unless specifically instructed otherwise.
ii. When only "Output" appears

Results calculated within the subroutine are output to the argument. No data is entered at input time.
iii. When both "Input" and "Output" appear

Argument contents change between the time control passes to the subroutine and the time control returns from the subroutine. The user must assign input-time information unless specifically instructed otherwise.
iv. When "Work" appears

Work indicates that the argument is an area used when performing calculations within the subroutine. A work area having the specified size must be reserved in the program calling this subroutine. The contents of the work area may have to be maintained so they can be passed along to the next calculation.
(e) Contents

Contents describes information held by the argument at input time or output time.

- A sample Argument description follows.

Example

The statement of the subroutine (DBGMLC, RBGMLC) that obtains the LU decomposition and the condition number of a real matrix is as follows.

Double precision:
CALL DBGMLC (A, LNA, N, IPVT, COND, W1, IERR)
Single precision:
CALL RBGMLC (A, LNA, N, IPVT, COND, W1, IERR)

The explanation of the arguments is as follows.
Table 1-3 Sample Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \mathrm{bit} \text { Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}$

No.	Argument	Type	Size	$\begin{array}{l}\text { Input/ } \\ \text { Output }\end{array}$	Contents
1	A	$\begin{array}{l}\text { Note } \\ \text { D } \\ \mathrm{R}\end{array}$		LNA, N	Input
\begin{array}{l}\text { Rutput }\end{array}
$$ \begin{array}{l}The matrix A decomposed into the matrix L U

where U is a unit upper triangular matrix and

L is a lower triangular matrix.\end{array}\right\}\)

To use this subroutine, arrays A, IPVT and W1 must first be allocated in the calling program so they can be used as arguments. A is a $\left\{\begin{array}{c}\text { double-precision } \\ \text { single-precision }\end{array}\right\}$ Note real array of size (LNA, N), IPVT is an integer array of size N and W 1 is a $\left\{\begin{array}{c}\text { double-precision } \\ \text { single-precision }\end{array}\right\}$ real array of size N .
When the 64-bit integer version is used, all integer-type arguments (LNA, N, IPVT and IERR) must be declared by using INTEGER(8), not INTEGER.

Note The entries enclosed in brace $\}$ mean that the array should be declared double precision type (code D) when using subroutine DBGMLC and real type (code R) when using subroutine RBGMLC. Braces are used in this manner throughout the remainder of the text unless specifically stated otherwise.

Data must be stored in A, LNA and N before this subroutine is called. The LU decomposition and condition number of the assigned matrix are calculated with in the subroutine, and the results are stored in array A and variable COND. In addition, pivoting information is stored in IPVT for use by subsequent subroutines.

IERR is an argument used to notify the user of invalid input data or an error that may occur during processing. If processing terminates normally, IERR is set to zero.

Since W1 is a work area used only within the subroutine, its contents at input and output time have no special meaning.

(4) Restrictions

Restrictions indicate limiting ranges for subroutine arguments.

(5) Error indicator

Each subroutine has been given an error indicator as an output argument. This error indicator, which has uniformly been given the variable name IERR, is placed at the end of the arguments. If an error is detected within the subroutine, a corresponding value is output to IERR. Error indicator values are divided into five levels.

Table 1-4 Classification of Error Indicator Output Values

Level	IERR value	Meaning	Processing result
Normal	0	Processing is terminated normally.	Results are guaranteed.
Warning	$1000 \sim 2999$	Processing is terminated under cer- tain conditions.	Results are conditionally guaranteed.
Fatal	$3000 \sim 3499$	Processing is aborted since an argu- ment violated its restrictions.	Results are not guaranteed.
	$3500 \sim 3999$	Obtained results did not satisfy a cer- tain condition.	Obtained results are returned (the results are not guaranteed).
	4000 or more	A fatal error was detected during processing. Usually, processing is aborted.	Results are not guaranteed.

(6) Notes

Notes describes ambiguous items and points requiring special attention when using the subroutine.

(7) Example

Here gives an example of how to use the subroutine. Note that in some cases, multiple subroutines are combined in a single example. The output results are given in the 32 -bit integer version, and may differ within the range of rounding error if the compiler or intrinsic functions are different.
The source codes of examples in this document are included in User's Guide. Input data, if required, is also included in it. To build up an executable files by compiling these example source codes, they should be linked with this product library.

1.4 SUBROUTINE NAMES

The subroutines name of ASL basic functions consists of 〈six alphanumeric characters〉.
Figure 1-1 Subroutine Name Components

"1" in Figure 1-1 : The following eight letters are used to indicate the calculation precision.
D, W Double precision real-type calculation
R, V Single precision real-type calculation
Z, J Double precision complex-type calculation
C, I Single precision complex-type calculation

However, the complex type calculations listed above do not necessarily require complex arguments.
"2" in Figure 1-1 : Currently, the following letters lettererererere are used to indicate the application field in the ASL related products.

Letter	Application Field	Volume
A	Storage mode conversion	1
	Basic matrix algebra	1,7
B	Simultaneous linear equations (direct method)	2,7
C	Eigenvalues and eigenvectors	1,7
F	Fourier transforms and their applications	3,7
	Time series analysis	6
G	Spline function	4
H	Numeric integration	4
I	Special function	5
J	Random number tests	6
K	Ordinary differential equation (initial value problems)	4
L	Roots of equations	5
M	Extremum problems and optimization	5
N	Approximation and regression analysis	4,6
O	Ordinary differential equations (boundary value problems), integral	4
	equations and partial differential equations	4
P	Interpolation	4
Q	Numerical differentials	4,7
S	Sorting and ranking	5

Letter	Application Field	Volume
X	Basic matrix algebra	1
	Simultaneous linear equations (iterative method)	7
1	Probability distributions	6
2	Basic statics	6
3	Tests and estimates	6
4	Analysis of variance and design of experiments	6
5	Nonparametric tests	6
6	Multivariate analysis	6

"3-6" in Figure 1-1 : These characters indicate the characteristic function of the individual subroutine.

1.5 NOTES

(1) Use the subroutines of double precision version whenever possible. They not only provide higher precision solutions but also are more stable than single precision versions, in particular, for eigenvalue and eigenvector problems.
(2) To suppress compiler operation exceptions, ASL subroutines are set to so that they conform to the compiler parameter indications of a user's main program. Therefore, the main program must suppress any operation exceptions.
(3) The numerical calculation programs generally deal with operations on finite numbers of digits, so the precision of the results cannot exceed the number of operation digits being handled. For example, since the number of operation digits (in the mantissa part) for double-precision operations is on the order of 15 decimal digits, when using these floating point modes to calculate a value that mathematically becomes 1 , an error on the order of 10^{-15} may be introduced at any time. Of course, if multiple length arithmetic is emulated such as when performing operations on an arbitrary number of digits, this kind of error can be controlled. However, in this case, when constants such as π or function approximation constants, which are fixed in double-precision operations, for example, are also to be subject to calculations that depend on the length of the multiple length arithmetic operations, the calculation efficiency will be worse than for normal operations.
(4) A solution cannot be obtained for a problem for which no solution exists mathematically. For example, a solution of simultaneous linear equations having a singular (or nearly singular) matrix for its coefficient matrix theoretically cannot be obtained with good precision mathematically. Numerical calculations cannot strictly distinguish between mathematically singular and nearly singular matrices. Of course, it is always possible to consider a matrix to be singular if the calculation value for the condition number is greater than or equal to an established criterion value.
(5) Generally, if data is assigned that causes a floating point exception during calculations (such as a floating point overflow), a normal calculation result cannot be expected. However, a floating point underflow that occurs when adding residuals in an iterative calculation is an exception to this.
(6) For problems that are handled using numerical calculations (specifically, problems that use iterative techniques as the calculation method), there are cases in which a solution cannot be obtained with good precision and cases in which no solution can be obtained at all, by a special-purpose subroutine.
(7) Depending on the problem being dealt with, there may be cases when there are multiple solutions, and the execution result differs in appearance according to the compiler used or the computer or OS under which the program is executed. For example, when an eigenvalue problem is solved, the eigenvectors that are obtained may differ in appearance in this way.
(8) The mark "DEPRECATED" denotes that the subroutine will be removed in the future. Use ASL Unified Interface, the higher performance alternative practice instead.

Chapter 2

SPECIAL FUNCTIONS

2.1 INTRODUCTION

This chapter describes subroutines which obtain values of special functions. The following methods are available to calculate special functions.

- Taylor expansion and asymptotic expansion
- Approximation formulae
- Continued fraction
- Recursion relations

In the subroutines given here, the range of a variable is divided into intervals, and in each interval a special function is calculated with the method considered to be the best for the interval.

2.1.1 Notes

(1) The Bessel function of the 2nd kind $N_{\nu}(z)$ and the spherical Bessel function of the 2nd kind $n_{\nu}(z)$ are same as $Y_{\nu}(z)$ and $y_{\nu}(z)$ given here, respectively.
(2) The computation time of various Bessel functions of real number and integer orders becomes longer as the argument z and the order ν increase. Therefore it is desirable to set $|\nu|<1000.0$ and $|z|<1000.0$
(3) To calculate values of the Bessel, modified Bessel, spherical Bessel or modified spherical Bessel functions of the 1st kind successively changing the order by one, first obtain the values for the highest two successive orders with a subroutine given here, and then calculate values for lower orders with recursion relations in the direction of decreasing order.
(4) $J_{-\nu}(x), I_{-\nu}(x), Y_{-\nu}(x), i_{-n}(x)$ and $Y_{-n}(x)$ are calculated with recursion relations. See the notes for each subroutine for the recursion relations.
(5) The Bessel and modified Bessel functions of half integer order can efficiently be calculated from the spherical Bessel function using the following relations.

$$
\begin{array}{ll}
J_{n+\frac{1}{2}}(x)=\sqrt{\frac{2 x}{\pi}} \cdot j_{n}(x), & Y_{n+\frac{1}{2}}(x)=\sqrt{\frac{2 x}{\pi}} \cdot y_{n}(x) \\
I_{n+\frac{1}{2}}(x)=\sqrt{\frac{2 x}{\pi}} \cdot i_{n}(x), & K_{n+\frac{1}{2}}(x)=\sqrt{\frac{2 x}{\pi}} \cdot k_{n}(x)
\end{array}
$$

2.1.2 Algorithms Used

2.1.2.1 Bessel Functions

(1) Bessel functions of the 1 st kind (orders 0 and 1) $J_{0}(x)$ and $J_{1}(x)$
(1) $x<0.0$:

From $J_{0}(x)=J_{0}(-x)$ and $J_{1}(x)=-J_{1}(-x)$, following methods are applied to $J_{0}(-x)$ and $J_{1}(-x)$.
(2) $0.0 \leq x<4.0$:

The functions are calculated from the best approximation equations obtained from the following equations:

$$
\begin{aligned}
& J_{0}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(k!)^{2}}\left(\frac{x}{2}\right)^{2 k} \\
& J_{1}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!(k+1)!}\left(\frac{x}{2}\right)^{2 k+1}
\end{aligned}
$$

(3) $4.0 \leq x \leq 8.0$:

The functions are calculated from the best approximation equations obtained from the following equations:

$$
\begin{aligned}
& J_{0}(x)=\sum_{k=0}^{\infty} \frac{J_{0}^{(k)}(6)}{k!}(x-6)^{k} \\
& J_{1}(x)=\sum_{k=0}^{\infty} \frac{J_{1}^{(k)}(6)}{k!}(x-6)^{k}
\end{aligned}
$$

The method of generating the best approximation is described in Section 2.1.2.22, "Coefficient Calculation Method".
$\left(J_{0}^{(k)}(6)\right.$ and $J_{1}^{(k)}(6)$ are k-th derivatives evaluated at $x=6.0$.)
(4) $x>8.0$:

The functions are calculated from the following equations of asymptotic expansion:

$$
J_{0}(x) \text { or } J_{1}(x)=\frac{P \cos (\phi)-Q \sin (\phi)}{\sqrt{x}}
$$

Here,
for calculating $J_{0}(x)$

$$
\begin{aligned}
P & =\frac{\sum_{n=0}^{m} a_{n}^{(1)}\left(\frac{8}{x}\right)^{2 n}}{\sum_{n=0}^{m^{\prime}} b_{n}^{(1)}\left(\frac{8}{x}\right)^{2 n}} \\
\phi & =x-\frac{\pi}{4}
\end{aligned}
$$

for calculating $J_{1}(x)$

$$
\begin{aligned}
Q & =\frac{\sum_{n=0}^{m} c_{n}^{(2)}\left(\frac{8}{x}\right)^{2 n}}{\sum_{n=0}^{m^{\prime}} d_{n}^{(2)}\left(\frac{8}{x}\right)^{2 n}} \\
\phi & =x-\frac{3}{4} \pi
\end{aligned}
$$

See reference (2) for the coefficients $a_{n}^{(1)}, a_{n}^{(2)}, b_{n}^{(1)}, b_{n}^{(2)}, c_{n}^{(1)}, c_{n}^{(2)}, d_{n}^{(1)}$ and $d_{n}^{(2)}$.
(2) Bessel functions of the 2nd kind (orders 0 and 1) $Y_{0}(x)$ and $Y_{1}(x)(x>0.0)$
(1) $0.0<x<4.0$:

The functions are calculated from the best approximation equations obtained from the following equations:

$$
\begin{aligned}
& Y_{0}(x)=\frac{2}{\pi}\left[J_{0}(x)\left\{\log \left(\frac{x}{2}\right)+\gamma\right\}-\sum_{k=1}^{\infty}\left\{\frac{(-1)^{k}}{(k!)^{2}}\left(\frac{x}{2}\right)^{2 k} \sum_{m=1}^{k} \frac{1}{m}\right\}\right] \\
& Y_{1}(x)=\frac{2}{\pi}\left[J_{1}(x)\left\{\log \left(\frac{x}{2}\right)+\gamma\right\}-\frac{1}{x}-\frac{1}{2} \sum_{k=0}^{\infty}\left\{\frac{(-1)^{k}}{k!(k+1)!}\left(\frac{x}{2}\right)^{2 k+1}\left(\sum_{m=1}^{k} \frac{1}{m}+\sum_{m=1}^{k+1} \frac{1}{m}\right)\right\}\right]
\end{aligned}
$$

The Euler's constant γ is $0.5772 \cdots$.
(2) $4.0 \leq x \leq 8.0$:

The functions are calculated from the best approximation equations obtained from the following equations:

$$
\begin{aligned}
& Y_{0}(x)=\sum_{k=0}^{\infty} \frac{Y_{0}^{(k)}(6)}{k!}(x-6)^{k} \\
& Y_{1}(x)=\sum_{k=0}^{\infty} \frac{Y_{1}^{(k)}(6)}{k!}(x-6)^{k}
\end{aligned}
$$

The method of generating the best approximation is described in Section 2.1.2.22, "Coefficient Calculation Method".
The k-th derivative of $Y_{0}(6)$ and $Y_{1}(6)$ are obtained from recurrence relations derived from

$$
\begin{aligned}
Z_{k}^{\prime}(x) & =Z_{k-1}(x)-\frac{k}{x} Z_{k}(x) \\
Z_{1}^{(k)}(x) & =-Z_{0}^{(k+1)}(x)
\end{aligned}
$$

where $Z_{k}(x)$ is the Bessel function to be calculated.
(3) $x>8.0$:

The functions are calculated from the following equations of asymptotic expansion:

$$
Y_{0}(x) \text { or } Y_{1}(x)=\frac{P \sin (\phi)+Q \cos (\phi)}{\sqrt{x}} .
$$

Here P, Q and ϕ are the same as for $J_{0}(x)$ and $J_{1}(x)$. The coefficients $a_{n}^{(1)}, a_{n}^{(2)}, b_{n}^{(1)}$ and $b_{n}^{(2)}$ are given in reference (2).
(3) Bessel function of the 1 st kind (integer order) $J_{n}(x)$
$J_{n}(x)$ is expressed as in Table $2-1$ using $J_{|n|}(|x|)$ depending on the sign of x and $n . J_{|n|}(|x|)$ is calculated
Table 2-1 Expressions Equivalent to $J_{n}(x)$ for Different Signs of x and n

-	$n<0$	$n \geq 0$
$x<0.0$	$J_{\|n\|}(\|x\|)$	$(-1)^{n} J_{\|n\|}(\|x\|)$
$x \geq 0.0$	$(-1)^{n} J_{\|n\|}(\|x\|)$	$J_{\|n\|}(\|x\|)$

as follows (for simple notation, n and x are used instead of $|n|$ and $|x|$, respectively.):
(1) $n=0$ or 1: $J_{0}(x)$ or $J_{1}(x)$ is used.
(2) $n \geq 2$:
(a) If

$$
0.0 \leq x^{2}<\left\{\begin{array}{ll}
\text { double precision } & : 0.1 n+0.4 \\
\text { single precision } & : 1.9 n+7.6
\end{array}\right\}
$$

The function is calculated from the power series expansion of the following equation:

$$
J_{n}(x)=\left(\frac{x}{2}\right)^{n} \sum_{k=0}^{9} \frac{(-1)^{k}\left(\frac{x}{2}\right)^{2 k}}{k!(n+k)!}
$$

(b) If

$$
x^{2} \geq\left\{\begin{array}{ll}
\text { double precision } & : 0.1 n+0.4 \\
\text { single precision } & : 1.9 n+7.6
\end{array}\right\}
$$

or

$$
n \geq\left\{\begin{array}{ll}
\text { double precision } & : 170 \\
\text { single precision } & : 34
\end{array}\right\}:
$$

i. For $x \leq n$:

Setting $T_{n+k+1}=0.0$, the parameters $T_{i}(i=n, n+1, \cdots, n+k-1, n+k)$ in the continued fraction approximation are calculated using the recurrence relations below:

$$
\begin{aligned}
& \quad T_{i}=\frac{x^{2}}{2 i-T_{i+1}}(i=n+1, \cdots, n+k-1, n+k) \\
& T_{n}=\frac{x}{2 n-T_{n+1}} \\
& \left(T_{n} \text { has a value } \frac{J_{n}(x)}{J_{n-1}(x)} .\right)
\end{aligned}
$$

Here, the value k is choose as in Table $2-2$. It is defined that $B_{n}=T_{n}, B_{n-1}=1.0$. Then
Table 2-2 Value of k

single precision	double precision
$k=\left\lfloor\frac{(3.0+1.5 \sqrt{n}) x}{n}+1.5\right\rfloor$	$k=\left\lfloor\frac{(3.0+2.8 \sqrt{n}) x}{n}+5.2\right\rfloor$

B_{1} is calculated from the following recurrence relation:

$$
B_{i-1}=\frac{2 i}{x} B_{i}-B_{i+1}(i=n-1, n-2, \cdots, 2)
$$

(Here B_{1} has a value $\frac{J_{1}(x)}{J_{n-1}(x)}$)
Since the precision of computation becomes low when $J_{0}(x) \approx 0$ or $J_{1}(x) \approx 0, K$ is set as follows:

$$
K=\lfloor 1.27324 x+3\rfloor(\bmod 4)
$$

If $K=0$ or 3 ,

$$
B=\frac{2 B_{1}}{x}-B_{2}, \quad J=J_{0}(x)
$$

$K=1$ or 2 ,

$$
B=B_{1}, \quad J=J_{1}(x)
$$

Using the values of T_{n}, B and $J, J_{n}(x)$ is calculated from

$$
J_{n}(x)=\frac{T_{n} J}{B}
$$

ii. For $x>n$:
$J_{n}(x)$ is calculated from the following recurrence relation starting with $J_{1}(x)$ and $J_{0}(x)$:

$$
J_{k+1}(x)=\frac{2 k}{x} J_{k}(x)-J_{k-1}(x)(k=1,2, \cdots, n-1)
$$

(4) Bessel function of the 2 nd kind (integer order) $Y_{n}(x)(x>0.0)$
(1) $n<0$:

From $Y_{n}(x)=(-1)^{n} \cdot Y_{-n}(x)$, following methods are applied to $Y_{-n}(x)$.
(2) $n=0$ or 1 :
$Y_{0}(x)$ or $Y_{1}(x)$ is used.
(3) $n \geq 2$:
$Y_{n}(x)$ is calculated from the following recurrence relation starting with $Y_{1}(x)$ and $Y_{0}(x)$:

$$
Y_{k+1}(x)=\frac{2 k}{x} Y_{k}(x)-Y_{k-1}(x)(k=1,2, \cdots, n-1)
$$

(5) Bessel function of the 1st kind (real number order) $J_{\nu}(x)$
(1) If ν is an integer, the subroutine for the Bessel function of the 1st kind (integer order) is used with $n=\nu$.
(2) If n is a nonintegral real number $(x>0.0$ and $n>0.0)$:
(a) If

$$
0.0<x^{2}<\left\{\begin{array}{ll}
\text { double precision } & : 0.1 \nu+0.4 \\
\text { single precision } & : 1.9 \nu+7.6
\end{array}\right\}
$$

and

$$
\nu<\left\{\begin{array}{lc}
\text { double precision } & : 170.0 \\
\text { single precision } & : 34.0
\end{array}\right\}:
$$

The function is calculated from the power series expansion of

$$
J_{\nu}(x)=\left(\frac{x}{2}\right)^{\nu} \sum_{k=0}^{9} \frac{(-1)^{k}\left(\frac{x}{2}\right)^{2 k}}{k!\Gamma(\nu+k+1)} .
$$

(b) If

$$
x^{2} \geq\left\{\begin{array}{ll}
\text { double precision } & : 0.1 \nu+0.4 \\
\text { single precision } & : 1.9 \nu+7.6
\end{array}\right\}
$$

i. For

$$
x>\left\{\begin{array}{l}
\text { Double precision : } 30.0 \\
\text { Single precision }: 15.0
\end{array}\right\}
$$

and

$$
x \geq 0.55 \nu^{2}:
$$

The function is calculated from the equation of asymptotic expansion of

$$
J_{\nu}(x)=\sqrt{\frac{2}{\pi x}}(P \cos (\phi)-Q \sin (\phi))
$$

where

$$
\begin{aligned}
P & =1+\sum_{k=1}^{m}(-1)^{k} \frac{\left(4 \nu^{2}-1^{2}\right)\left(4 \nu^{2}-3^{2}\right) \cdots\left(4 \nu^{2}-(4 k-1)^{2}\right)}{(2 k)!(8 x)^{2 k}} \\
Q & =\sum_{k=0}^{m^{\prime}}(-1)^{k} \frac{\left(4 \nu^{2}-1^{2}\right)\left(4 \nu^{2}-3^{2}\right) \cdots\left(4 \nu^{2}-(4 k+1)^{2}\right)}{(2 k+1)!(8 x)^{2 k+1}} \\
\phi & =x-\left(\frac{\nu}{2}+\frac{1}{4}\right) \pi
\end{aligned}
$$

(m and m^{\prime} are the numbers which give the last terms such that the term does not affect the result of calculation when included.)
ii. For x other than the above:

The function is calculated from the (backward) recursion relation given below.

Assume that δ is the decimal part of ν, ν is the integer part of ν, M is a sufficiently large number, and a is the positive minimum number (namely the smallest positive constant in the floating point mode).
The recurrence relation to be used is

$$
F_{\delta+k-1}(x)=\frac{2(\delta+k)}{x} F_{\delta+k}(x)-F_{\delta+k+1}(x)(k=M, M-1, \cdots, 1)
$$

with $F_{\delta+M+1}(x)=0$ and $F_{\delta+M}(x)=a$ as initial values. Then $J_{n}(x)$ is obtained from the following equation.

$$
J_{\nu}(x)=\frac{F_{\delta+n}(x)\left(\frac{x}{2}\right)^{\delta}}{\sum_{n=0}^{\left\lfloor\frac{M}{2}\right\rfloor} \frac{(\delta+2 m) \Gamma(\delta+m)}{m!} F_{\delta+2 m}(x)}
$$

The value of M is calculated from x and ν using an approximation equation.
(6) Bessel function of the 2nd kind (real number order) $Y_{\nu}(x)(x>0.0)$
(1) If ν is an integer, the subroutine for the Bessel function of the 2nd kind (integer order) is used with $n=\nu$.
(2) If ν is a nonintegral real number $(\nu>0.0): \nu$ is divided into the integer part n and the decimal part δ.
(a) If $0.0<x \leq 4.0$:

The function is calculated with the method of Yoshida and Ninomiya where the power series expansions of $J_{\nu}(x)$ and $J_{-\nu}(x)$ are inserted in

$$
Y_{\nu}(x)=\frac{J_{\nu}(x) \cos (\nu \pi)-J_{-\nu}(x)}{\sin (\nu \pi)}
$$

terms are grouped, and the parts which give figures at lower places are calculated with the best approximation. The procedures are shown below.
i. $0.0<\nu \leq 0.5$:

The function is calculated from the following equation

$$
Y_{\nu}(x)=\sum_{k=0}^{\infty}-\left(-\frac{x^{2}}{4}\right)^{k} \frac{\tilde{A}_{k}(\nu)+\tilde{B}_{k}(\nu)}{\sin (\nu \pi)}
$$

Here $\tilde{A}_{k}(\nu)$ is calculated from the recursion relation

$$
\tilde{A}_{k}(\nu)=\frac{\frac{1}{k!}\left\{\frac{1}{\Gamma(k-\nu)}+\frac{\cos (\nu \pi)}{\Gamma(k+\nu)}\right\}+\tilde{A}_{k-1}(\nu)}{(k+\nu)(k-\nu)}
$$

with

$$
\tilde{A}_{0}(\nu)=\left(\nu-\nu_{0}\right) \sum_{k=0}^{M} P_{k}^{(1)} \nu^{k}\left(\nu_{0}=0.221521 \cdots\right)
$$

as the initial value. $\tilde{B}_{k}(\nu)$ is calculated from

$$
\tilde{B}_{k}(\nu)=\frac{1}{k!}\left\{\frac{\phi_{1}}{\Gamma(k+1-\nu)}+\frac{\phi_{2} \cos (\nu \pi)}{\Gamma(k+1+\nu)}\right\}
$$

with

$$
\phi_{1}=\frac{\left(\frac{x}{2}\right)^{-\nu}-1}{\nu}, \phi_{2}=\frac{1-\left(\frac{x}{2}\right)^{\nu}}{\nu}
$$

for

$$
\begin{aligned}
& \left(\frac{x}{2}\right)^{\nu}<0.5 \text { or }\left(\frac{x}{2}\right)^{\nu}>2.0 \\
& \phi_{1}=-f\left(-\nu \log \left(\frac{x}{2}\right)\right) \log \left(\frac{x}{2}\right), \phi_{2}=-f\left(\nu \log \left(\frac{x}{2}\right)\right) \log \left(\frac{x}{2}\right)
\end{aligned}
$$

for

$$
0.5 \leq\left(\frac{x}{2}\right)^{\nu} \leq 2.0
$$

where $f(t)$ is calculated from the best approximation equation of $\frac{e^{t}-1}{t}$.
ii. $0.5 \leq \nu \leq 1.5$
A. $\delta \leq 0.5$:

It is set that $\delta=\delta+1$ and $n=n-1$, and the function is calculated in the range $0.5<\delta 1.5$.
B. $0.5<\delta 1.5$:

It is set that $\alpha=\delta-1$. The function is calculated from

$$
Y_{\delta}(x)=-\frac{\frac{2^{1+\alpha}}{x^{1+\alpha} \Gamma(1-\alpha)}+\sum_{k=0}^{\infty}\left\{\frac{x}{2}\left(-\frac{x^{2}}{4}\right)^{k}\left(\tilde{C}_{k}(\alpha)+\tilde{D}_{k}(\alpha)\right)\right\}}{\sin (\alpha \pi)}
$$

where $\tilde{C}_{k}(\alpha)$ and $\tilde{D}_{k}(\alpha)$ are calculated using best approximation equations as is done for $0.0<\nu \leq 0.5$.
Furthermore the function is calculated from

$$
Y_{\delta+1}(x)=\frac{-\frac{2^{\alpha}\left\{4(\alpha+1)+x^{2}\right\}}{x^{\alpha+2} \Gamma(1-\alpha)}+\sum_{k=0}^{\infty}\left\{\left(-\frac{x^{2}}{4}\right)^{k+1}\left(\tilde{E}_{k}(\alpha)+\tilde{F}_{k}(\alpha)\right)\right\}}{\sin (\alpha \pi)}
$$

where $\tilde{E}_{k}(\alpha)$ and $\tilde{F}_{k}(\alpha)$ are calculated using best approximation equations as is done for $0.0<\nu \leq 0.5$.
iii. $\nu>1.5$:
$Y_{\nu}(x)$ is calculated from the following recurrence relation using $Y_{\delta}(x)$ and $Y_{\delta+1}(x)$ obtained in ii.

$$
Y_{k+\delta+1}(x)=\frac{2(k+\delta)}{x} Y_{k+\delta}(x)-Y_{k+\delta-1}(x)(k=1,2, \cdots, n-1)
$$

(b) If $4.0<x \leq\left\{\begin{array}{l}\text { Double precision : } 30.0 \\ \text { Single precision : } 15.0\end{array}\right\}$
i. $0.0<\nu<2.0$:

If δ or $1-\delta$ is smaller than $\sqrt{\text { unit for determining error }} / 4$
The Bessel function of integer order (n or $n+1$) is taken as an approximation.
First $J_{\delta}(x)$ and $J_{\delta+1}(x)$ are obtained from (backward) recurrence relations. Similarly $J_{t}(x)$ and $J_{t+1}(x)$ are obtained by setting $t=1-\delta$. Then $J_{-\delta}(x)$ is calculated from

$$
J_{-\delta}(x)=\frac{2(1-\delta)}{x} J_{t}(x)-J_{t+1}(x)
$$

(See (5) $J_{\nu}(x)$.)
Finally $Y_{\delta}(x)$ and $Y_{\delta+1}(x)$ are calculated from:

$$
\begin{aligned}
Y_{\delta}(x) & =\frac{J_{\delta}(x) \cos (\delta \pi)-J_{-\delta}(x)}{\sin (\delta \pi)} \\
Y_{\delta+1}(x) & =\frac{J_{\delta+1}(x) \cos (\delta \pi)-\frac{2 \delta J_{-\delta}(x)}{x}-J_{t}(x)}{\sin (\delta \pi)}
\end{aligned}
$$

ii. $\nu \geq 2.0$:
$Y_{\nu}(x)$ is calculated from the following recurrence relation using $Y_{\delta}(x)$ and $Y_{\delta+1}(x)$ obtained in i. :

$$
Y_{k+\delta+1}(x)=\frac{2(k+\delta)}{x} Y_{k+\delta}(x)-Y_{k+\delta-1}(x)(k=1,2, \cdots, n-1)
$$

(c) If $\left\{\begin{array}{l}\text { Double precision : } 30.0 \\ \text { Single precision : } 15.0\end{array}\right\}$:
i. $x \leq 0.55 \nu^{2}$:

The function is calculated from the equation of asymptotic expansion of the following relation:

$$
Y_{\nu}(x)=\sqrt{\frac{2}{\pi x}}(P \sin (\phi)+Q \cos (\phi))
$$

where P, Q and ϕ are obtained as $J_{\nu}(x)$ in (5).
ii. $x>0.55 \nu^{2}$:

It is set that $m=\left\lfloor\sqrt{\frac{x}{0.55}}\right\rfloor-1 . Y_{m+\delta}(x)$ and $Y_{m+\delta+1}(x)$ are obtained from the equation of asymptotic expansion given above. The $Y_{\nu}(x)$ is calculated from the recurrence relation

$$
\begin{aligned}
Y_{m+\delta+k+1}(x)= & \frac{2(m+\delta+k)}{x} Y_{m+\delta+k}(x)-Y_{m+\delta+k-1}(x) \\
& (k=1,2, \cdots, n-m-1)
\end{aligned}
$$

(7) Bessel function of the 1st kind with complex variable (integer order) $J_{n}(z)$

The function is calculated from the following equation.

$$
J_{n}(z)=(-i)^{n} I_{n}(i z)(i=\sqrt{-1})
$$

(8) Bessel function of the 2nd kind with complex variable (integer order) $Y_{n}(z)(|z|>0.0)$
(1) $n<0$:

From $Y_{n}(z)=(-1)^{n} Y_{-n}(z)$, following methods are applied to $Y_{-n}(z)$.
(2) $n \geq 0$:

If the imaginary part of z is negative, $Y_{n}(\bar{z})=\overline{Y_{n}(z)}$ is used.
The function is calculated from

$$
Y_{n}(z)=i^{n+1} I_{n}(-i z)-\frac{2}{\pi}(-i)^{n} K_{n}(-i z)(i=\sqrt{-1})
$$

2.1.2.2 Modified Bessel Functions

(1) Modified Bessel functions of the 1st kind (orders 0 and 1) $I_{0}(x)$ and $I_{1}(x)$ $x<0.0$:
From $I_{0}(x)=I_{0}(-x), I_{1}(x)=-I_{1}(-x)$, following methods are applied to $I_{0}(-x)$ and $I_{1}(-x)$.

- Single precision
(1) $0.0 \leq x \leq 3.75$:

The functions are calculated from the best approximation equations obtained from the following equations:

$$
\begin{aligned}
& I_{0}(x)=\sum_{k=0}^{\infty} \frac{1}{(k!)^{2}}\left(\frac{x}{2}\right)^{2 k} \\
& I_{1}(x)=\sum_{k=0}^{\infty} \frac{1}{k!(k+1)!}\left(\frac{x}{2}\right)^{2 k+1}
\end{aligned}
$$

(2) $x>3.75$:

The functions are calculated from the following approximations:

$$
\begin{aligned}
I_{0}(x) & =\frac{\sum_{n=0}^{8} a_{n}^{(1)}\left(\frac{3.75}{x}\right)^{n}}{e^{-x} \sqrt{x}} \\
I_{1}(x) & =\frac{\sum_{n=0}^{8} a_{n}^{(2)}\left(\frac{3.75}{x}\right)^{n}}{e^{-x} \sqrt{x}}
\end{aligned}
$$

The coefficients $a_{n}^{(1)}$ and $a_{n}^{(2)}$ are given in reference (1).

- Double precision
(1) $0.0 \leq x \leq 8.0$:

The functions are calculated from the following best approximation equations obtained from the following equations:

$$
\begin{aligned}
& I_{0}(x)=\sum_{k=0}^{\infty} \frac{1}{(k!)^{2}}\left(\frac{x}{2}\right)^{2 k} \\
& I_{1}(x)=\sum_{k=0}^{\infty} \frac{1}{k!(k+1)!}\left(\frac{x}{2}\right)^{2 k+1}
\end{aligned}
$$

(2) $8.0<x<24.0$:

The functions are calculated from the following approximations:

$$
\begin{aligned}
I_{0}(x) & =\frac{\sum_{n=0}^{28} a_{n}^{(3)} x^{-n}}{e^{-x} \sqrt{x}} \\
I_{1}(x) & =\frac{\sum_{n=0}^{28} a_{n}^{(4)} x^{-n}}{e^{-x} \sqrt{x}}
\end{aligned}
$$

(3) $x \geq 24.0$:

The functions are calculated from the best approximation equations obtained from the following equations:

$$
\begin{aligned}
& I_{0}(x)=\frac{e^{x}}{\sqrt{2 \pi x}} \sum_{k=0}^{\infty} \frac{1^{2} \cdot 1^{2} \cdot 3^{2} \cdots(2 k-1)^{2}}{k!(8 x)^{k}} \\
& I_{1}(x)=\frac{e^{x}}{\sqrt{2 \pi x}}\left\{1+\sum_{k=1}^{\infty} \frac{(-3) \cdot 5 \cdots\left((2 k-1)^{2}-4\right)}{k!(8 x)^{k}}\right\}
\end{aligned}
$$

The coefficients $a_{n}^{(3)}$ and $a_{n}^{(4)}$ are obtained with the telescoping calculation method given in reference (7). The method of generating the best approximation is described in Section 2.1.2.22.
(2) Modified Bessel functions of the 2nd kind (order 0 and 1) $K_{0}(x)$ and $K_{1}(x)(x>0.0)$

- Single precision
(1) $0.0<x \leq 2.0$:

The functions are calculated from the best approximation equations obtained from the following equations:

$$
\begin{aligned}
K_{0}(x)= & -\gamma+\sum_{k=1}^{\infty} \frac{1}{(k!)^{2}}\left(\frac{x}{2}\right)^{2 k}\left\{\left(\sum_{m=1}^{k} \frac{1}{m}\right)-\gamma\right\}-\log \left(\frac{x}{2}\right)\left\{\sum_{k=0}^{\infty} \frac{1}{(k!)^{2}}\left(\frac{x}{2}\right)^{2 k}\right\} \\
K_{1}(x)= & \frac{1+\sum_{k=0}^{\infty} \frac{1}{k!(k+1)!}\left(\frac{x}{2}\right)^{2 k+2}\left(2 \gamma-\sum_{m=1}^{k} \frac{1}{m}-\sum_{m=1}^{k+1} \frac{1}{m}\right)}{x} \\
& +\log \left(\frac{x}{2}\right) \sum_{k=0}^{\infty} \frac{1}{k!(k+1)!}\left(\frac{x}{2}\right)^{2 k+1}
\end{aligned}
$$

(Here, $\sum_{m=1}^{0} \frac{1}{m}=0$)
(2) $x>2.0$:

The functions are calculated from the following approximations:

$$
\begin{aligned}
& K_{0}(x)=\frac{e^{-x}}{\sqrt{x}} \sum_{n=0}^{6} a_{n}^{(1)}\left(\frac{2}{x}\right)^{n} \\
& K_{1}(x)=\frac{e^{-x}}{\sqrt{x}} \sum_{n=0}^{6} a_{n}^{(2)}\left(\frac{2}{x}\right)^{n}
\end{aligned}
$$

The coefficient $a_{n}^{(1)}$ and $a_{n}^{(2)}$ are given in reference (1).

- Double precision
(1) $0.0<x \leq 2.0$:

The functions are calculated from the best approximation equations obtained from the following equations:

$$
\begin{aligned}
K_{0}(x)= & -\gamma+\sum_{k=1}^{\infty} \frac{1}{(k!)^{2}}\left(\frac{x}{2}\right)^{2 k}\left\{\left(\sum_{m=1}^{k} \frac{1}{m}\right)-\gamma\right\}-\log \left(\frac{x}{2}\right)\left\{\sum_{k=0}^{\infty} \frac{1}{(k!)^{2}}\left(\frac{x}{2}\right)^{2 k}\right\} \\
K_{1}(x)= & \frac{1+\sum_{k=0}^{\infty} \frac{1}{k!(k+1)!}\left(\frac{x}{2}\right)^{2 k+2}\left(2 \gamma-\sum_{m=1}^{k} \frac{1}{m}-\sum_{m=1}^{k+1} \frac{1}{m}\right)}{x} \\
& +\log \left(\frac{x}{2}\right) \sum_{k=0}^{\infty} \frac{1}{k!(k+1)!}\left(\frac{x}{2}\right)^{2 k+1}
\end{aligned}
$$

(Here, $\sum_{m=1}^{0} \frac{1}{m}=0$)
The Euler's constant γ is $0.5772 \cdots$.
(2) $2.0<x \leq 5.0$:

The functions are calculated from the best approximation equations:

$$
\begin{aligned}
& K_{0}(x)=\sum_{k=0}^{\infty} \frac{K_{0}^{(k)}(3.5)}{k!}(x-3.5)^{k} \\
& K_{1}(x)=\sum_{k=0}^{\infty} \frac{K_{1}^{(k)}(3.5)}{k!}(x-3.5)^{k}
\end{aligned}
$$

$\left(K_{0}^{(k)}(3.5)\right.$ and $K_{1}^{(k)}(3.5)$ are the differential values of k-th grades for $x=3.5$.)
The coefficients $K_{0}^{(k)}(3.5)$ and $K_{0}^{(k)}(3.5)$ are calculated from the following method.

$$
\begin{array}{r}
t_{0}=1, t_{1}=0, t_{2}=0, u_{0}=0, u_{1}=1 \\
v_{0}=0, v_{1}=0, w_{0}=0, w_{1}=0, w_{2}=-1 \\
i=3, x=3.5
\end{array}
$$

$$
\begin{aligned}
& \text { Repetition }\left[\begin{array}{l}
t_{j}^{\prime}=v_{j}-u_{j}(j=0, \cdots, i-2) \\
t_{i-1}^{\prime}=0, t_{i}^{\prime}=0 \\
u_{0}^{\prime}=w_{0}-t_{0} \\
u_{j}^{\prime}=w_{j}-t_{j}-u_{j-1}(j=1, \cdots, i-1) \\
t_{j}=t_{j}^{\prime}(j=0, \cdots, i), u_{j}=u_{j}^{\prime}(j=0, \cdots, i-1) \\
K_{0}^{(i)}(x)=\sum_{j=0}^{i-2} t_{j} x^{-j} K_{0}(x)+\sum_{j=0}^{i-1} u_{j} x^{-j} K_{1}(x) \\
v_{j+1}=-j t_{j}(j=1, i-2) \\
w_{j+1}=-j u_{j}(j=1, i-1) \\
i=i+1
\end{array}\right. \\
& K_{1}^{(i)}(x)=-K_{0}^{(i+1)}(x), K_{0}^{\prime \prime}(x)=K_{0}(x)+\frac{K_{1}(x)}{x}, K_{0}^{\prime}(x)=-K_{1}(x)
\end{aligned}
$$

(3) $5.0<x<24.0$:

$$
\begin{aligned}
& K_{0}(x)=\frac{e^{-x}}{\sqrt{x}} \sum_{n=0}^{18} a_{n}^{(3)} x^{-n} \\
& K_{1}(x)=\frac{e^{-x}}{\sqrt{x}} \sum_{n=0}^{18} a_{n}^{(4)} x^{-n}
\end{aligned}
$$

The coefficients $a_{n}^{(3)}$ and $a_{n}^{(4)}$ are obtained with the telescoping calculation method given in reference (7).
(4) $x \geq 24.0$:

The functions are calculated from the best approximation equations obtained from the following equations:

$$
\begin{aligned}
& K_{0}(x)=\sqrt{\frac{\pi}{2 x}} e^{-x} \sum_{k=0}^{\infty}(-1)^{k} \frac{1^{2} \cdot 1^{2} \cdot 3^{2} \cdots(2 k-1)^{2}}{k!(8 x)^{k}} \\
& K_{1}(x)=\sqrt{\frac{\pi}{2 x}} e^{-x}\left\{1+\sum_{k=1}^{\infty} \frac{3 \cdot(-5) \cdots\left(4-(2 k-1)^{2}\right)}{k!(8 x)^{k}}\right\}
\end{aligned}
$$

The method of generating the best approximation is described in Section 2.1.2.22.
(3) Modified Bessel function of the 1st kind (integer order) $I_{n}(x)$
$I_{n}(x)$ is expressed as in Table $2-3$ using $I_{|n|}(|x|)$ depending on the signs of x and $n . I_{|n|}(|x|)$ is calculated
Table 2-3 Expression Equivalent to $I_{n}(x)$ for Different Signs of x and n

-	$n<0$	$n \geq 0$
$x<0.0$	$(-1)^{n} I_{\|n\|}(\|x\|)$	$(-1)^{n} I_{\|n\|}(\|x\|)$
$x \geq 0.0$	$I_{\|n\|}(\|x\|)$	$\left.I_{\|n\|}\|x\|\right)$

as follows (for simple notation, n and x are used instead of $|n|$ and $|x|$, respectively.):
(1) $n=0$ or 1:
$I_{0}(x)$ or $I_{1}(x)$ is used.
(2) $n \geq 2$:
(a) $0.0 \leq x^{2}<\left\{\begin{array}{ll}\text { double precision } & : 0.1 n+0.4 \\ \text { single precision } & : 1.9 n+7.6\end{array}\right\}$ and $n<\left\{\begin{array}{ll}\text { double precision } & : 170 \\ \text { single precision } & : 34\end{array}\right\}$:

The function is calculated from the power expansion of

$$
I_{n}(x)=\left(\frac{x}{2}\right)^{n} \sum_{k=0}^{9} \frac{\left(\frac{x}{2}\right)^{2 k}}{k!(n+k)!}
$$

(b) $0.0 \leq x^{2}<\left\{\begin{array}{ll}\text { double precision } & : 0.1 n+0.4 \\ \text { single precision } & : 1.9 n+7.6\end{array}\right\}$ and $n<\left\{\begin{array}{ll}\text { double precision } & : 170 \\ \text { single precision } & : 34\end{array}\right\}$:
i. $x \leq n$:

Setting $T_{n+k+1}=0.0$, the parameters $T_{i} \quad(i=n, n+1, \cdots, n+k-1, n+k)$ in the continued fraction approximation are calculated using the recurrence relations below:

$$
\begin{aligned}
& \quad T_{i}=\frac{x^{2}}{2 i+T_{i+1}}(i=n+1, \cdots, n+k-1, n+k) \\
& \quad T_{n}=\frac{x}{2 n+T_{n+1}} \\
& \left(T_{n} \text { has a value of } \frac{I_{n}(x)}{I_{n-1}(x)}\right) .
\end{aligned}
$$

Here, the value k is choose as in Table 2-4. Setting $B_{n}=T_{n}$ and $B_{n-1}=1.0, B_{i} \quad(i=$
Table 2-4 Values of k

Single precision	Double precision
$k=\left\lfloor\frac{(4.6+0.5 \sqrt{n}) x}{n}+2.0\right\rfloor$	$k=\left\lfloor\frac{(6.0+1.2 \sqrt{n}) x}{n}+6.0\right\rfloor$

$1,2, \cdots, n-2)$ are calculated using the following recurrence relation.

$$
B_{i-1}=\frac{2 i}{x} B_{i}+B_{i+1}(i=2, \cdots, n-2, n-1)
$$

(B_{1} has a value $\frac{I_{1}(x)}{I_{n-1}(x)}$.)
Using the obtained values of T_{n}, B_{1} and $I_{1}(x), I_{n}(x)$ is calculated from

$$
I_{n}(x)=\frac{T_{n} I_{1}(x)}{B_{1}}
$$

ii. $x>n$:

The function is calculated from the following recurrence relation starting with $G_{M+1}(x)=0.0$ and $G_{M}(x)=a$, where a is the positive minimum number (namely the smallest positive constant in the floating point mode), and M is a number sufficiently larger than n :

$$
G_{k-1}(x)=\frac{2 k}{x} G_{k}(x)+G_{k+1}(x)(k=M, M-1, \cdots, 1)
$$

Then

$$
I_{n}(x)=\frac{G_{n}(x) e^{x}}{\sum_{m=0}^{M} \varepsilon_{m} G_{m}(x)}\left(\varepsilon_{0}=1, \varepsilon_{m}=2(m \geq 1)\right)
$$

(4) Modified Bessel function of the 2nd kind (integer order) $K_{n}(x)(x>0.0)$
(1) $n<0$:

From $K_{n}(x)=K_{-n}(x)$, following methods are applied to $K_{-n}(x)$.
(2) $n=0$ or 1 :
$K_{0}(x)$ and $K_{1}(x)$ are used.
(3) $n \geq 2$:
$K_{n}(x)$ is calculated from the following recurrence relation with $K_{1}(x)$ and $K_{0}(x)$ as initial values:

$$
K_{k+1}(x)=\frac{2 k}{x} K_{k}(x)+K_{k-1}(x)(k=1,2, \cdots, n-1)
$$

(5) Modified Bessel function of the 1st kind (real number order) $I_{\nu}(x)$
(1) If ν is an integer, the subroutine for the modified Bessel function of the 1st kind (integer order) is used with $n=\nu$.
(2) If ν is a nonintegral real number $(x>0.0$ and $\nu>0.0)$:
(a) If $0.0 \leq x^{2}<\left\{\begin{array}{lr}\text { double precision } & 0.1 \nu+0.4 \\ \text { single precision } & 1.9 \nu+7.6\end{array}\right\}$ and $\nu<\left\{\begin{array}{lr}\text { double precision } & 170.0 \\ \text { single precision } & 34.0\end{array}\right\}$:

The function is calculated from the following equation of power expansion:

$$
I_{\nu}(x)=\left(\frac{x}{2}\right)^{\nu} \sum_{k=0}^{9} \frac{\left(\frac{x}{2}\right)^{2 k}}{k!\Gamma(\nu+k+1)}
$$

(b) If $x^{2} \geq\left\{\begin{array}{ll}\text { double precision } & \begin{array}{l}0.1 \nu+0.4 \\ \text { single precision }\end{array} \\ 1.9 \nu+7.6\end{array}\right\}$ or $\nu \geq\left\{\begin{array}{lr}\text { double precision } & 170.0 \\ \text { single precision } & 34.0\end{array}\right\}$:
i. If $x>\left\{\begin{array}{ll}\text { double precision } & 30.0 \\ \text { single precision } & 15.0\end{array}\right\}$ and $x \geq 0.55 \nu^{2}$:

The function is calculated from the following equation of asymptotic expansion:

$$
I_{\nu}(x)=\frac{e^{x}}{\sqrt{2 \pi x}} \sum_{k=0}^{m}(-1)^{k} \frac{\left(4 \nu^{2}-1^{2}\right)\left(4 \nu^{2}-3^{2}\right) \cdots\left(4 \nu^{2}-(2 k-1)^{2}\right)}{k!(8 x)^{k}}
$$

where m is the number for the last term such that the term does not affect the result of calculation up to the previous term when included.
ii. If x is a real number other than above:

The function is calculated from the following (backward) recurrence relation with $G_{\delta+M+1}(x)=$ 0.0 and $G_{\delta+M}(x)=a$ as initial value, where δ is the decimal part of ν, n is the integer part of ν, M a sufficiently large number and a is the positive minimum number (namely the smallest positive constant in the floating point mode).

$$
G_{\delta+k-1}(x)=\frac{2(\delta+k)}{x} G_{\delta+k}(x)+G_{\delta+k+1}(x)(k=M, M-1, \cdots, 1)
$$

Then

$$
I_{\nu}(x)=\frac{1}{2}\left(\frac{x}{2}\right)^{\delta} \frac{\Gamma(2 \delta+1)}{\Gamma(\delta+1)} e^{x} \frac{G_{n+\delta}(x)}{\sum_{k=0}^{M} \frac{(\delta+k) \Gamma(2 \delta+k)}{k!} G_{\delta+k}(x)}
$$

The value of M is obtained from the value of x and ν.
(6) Modified Bessel function of the 2nd kind (real number order) $K_{\nu}(x)(x>0.0)$
(1) $\nu<0.0$:

From $K_{\nu}(x)=K_{-\nu}(x)$, following methods are applied to $K_{-\nu}(x)$.
(2) If ν is an integer, the subroutine for the Bessel function of the 2nd kind (integer order) is used with $n=\nu$.
(3) ν is a nonintegral real number $(\nu>0.0)$:

When x is small, the functional is calculated with the method where the power series expansions of $I_{\nu}(x)$ and $I_{-\nu}(x)$ are inserted in

$$
K_{\nu}(x)=\frac{\pi}{2} \frac{I_{-\nu}(x)-I_{\nu}(x)}{\sin (\nu \pi)}
$$

Terms are grouped, and the parts which give figures at lower places are calculated with the best approximation.
When x is large, a method which is an extension of the $\tau-\operatorname{method}$ for $K_{n}(x)$ extended for calculating
$K_{\nu}(x)$. In this way $K_{\nu}(x)$ is calculated for $0.0 \leq \nu \leq 2.5$. For $\nu>2.5$, it is calculated from the recurrence relation

$$
K_{\nu+1}(x)=\frac{2 \nu}{x} K_{\nu}(x)+K_{\nu-1}(x)
$$

The following shows the procedures of the calculation.
(a) $0.0 \leq \nu \leq 0.5$:
i. $x<-0.75 \nu^{2}+0.0235 \nu+0.778$

The function is calculated from

$$
K_{\nu}(x)=\frac{\sum_{k=0}^{\infty}\left\{\left(\frac{x}{2}\right)^{2 k}\left(\tilde{A}_{k}(\nu)+\tilde{B}_{k}(\nu)\right)\right\}}{\frac{\pi}{2} \sin (\nu \pi)}
$$

Here $\tilde{A}_{k}(\nu)(k \geq 2)$ is calculated from the recurrence relation.

$$
\tilde{A}_{k}(\nu)=\frac{\frac{\nu}{k!}\left\{\frac{1}{\Gamma(k-\nu)}+\frac{1}{\Gamma(k+\nu)}\right\}+\tilde{A}_{k-1}(\nu)}{(k+\nu)(k-\nu)}
$$

with $\tilde{A}_{0}(\nu)$ and $\tilde{A}_{1}(\nu)$ as the initial value, where $\tilde{A}_{0}(\nu)=\nu \sum_{k=0}^{M} p_{k}^{(1)} \nu^{2 k}, \tilde{A}_{1}(\nu)=\nu \sum_{k=0}^{M} q_{k}^{(1)} \nu^{2 k}$. $\tilde{B}_{k}(\nu)$ is calculated from

$$
\tilde{B}_{k}(\nu)=\frac{1}{k!}\left(\frac{\phi_{1}}{\Gamma(k+1-\nu)}+\frac{\phi_{2}}{\Gamma(k+1+\nu)}\right)
$$

with

$$
\begin{array}{ccc}
\phi_{1}=\left(\frac{x}{2}\right)^{-\nu}-1 & \phi_{2}=1-\left(\frac{x}{2}\right)^{\nu} & \text { for }\left(\frac{x}{2}\right)^{\nu}<0.5 \text { or }\left(\frac{x}{2}\right)^{\nu}>2.0 \\
\phi_{1}=f\left(-\nu \log \left(\frac{x}{2}\right)\right) & \phi_{2}=-f\left(\nu \log \left(\frac{x}{2}\right)\right) & \text { for } 0.5 \leq\left(\frac{x}{2}\right)^{\nu} \leq 2.0
\end{array}
$$

where $f(t)$ is calculated from the best approximation equation of $e^{t}-1$.
ii. $x \geq-0.75 \nu^{2}+0.0235 \nu+0.778$:

The function is calculated from the $\tau-$ method for

$$
K_{\nu}(x)=\sqrt{\frac{1}{x}} e^{-x} \frac{\sum_{i=0}^{m}\left(\frac{1}{x}\right)^{i}\left\{\sum_{j=0}^{i} b_{i j}\left(\nu^{2}\right)^{j}\right\}}{\sum_{i=0}^{m}\left(\frac{1}{x}\right)^{i} e_{i} \Psi_{i}}
$$

Here Ψ_{i} is obtained from

$$
\Psi_{0}=1, \Psi i=\prod_{l=0}^{i-1}\left\{\nu^{2}-\left(m-l+\frac{1}{2}\right)^{2}\right\}(i \geq 1)
$$

and, $e_{i}=\sqrt{\frac{2}{\pi}} \frac{(m-i)!}{(m+1)!} \frac{p_{m, m-i}^{*}}{2^{i}}$, and $p_{m, m-i}^{*}$ is the coefficients of shifted Legendre polynomial.
(b) $0.5<\nu \leq 2.5$:
ν is divided into the integer part n and the decimal part δ. It is set that $\alpha=\delta-1$. When $\delta \leq 0.5$, it is set that $\delta=\delta+1$ and $n=n-1, \alpha=\alpha+1$.
i. K_{δ} is calculated in the following method A. or B. :
A. $x<-0.675 \delta^{2}+1.973 \delta-0.12$:
$K_{\delta}(x)$ is calculated from

$$
K_{\delta}(x)=-\frac{\frac{2^{1+\alpha}}{x^{1+\alpha} \Gamma(1-\alpha)}+\sum_{k=0}^{\infty}\left\{\left(\frac{x}{2}\right)^{2 k+1}\left(\tilde{C}_{k}(\alpha)+\tilde{D}_{k}(\alpha)\right)\right\}}{\frac{\pi}{2} \sin (\alpha \pi)}
$$

where $\tilde{C}_{k}(\alpha)$ and $\tilde{D}_{k}(\alpha)$ are obtained using best approximate equations as is done for $\nu \leq 0.5$.
B. $x \geq-0.675 \delta^{2}+1.973 \delta-0.12$:
$K_{\delta}(x)$ is calculated with the $\tau-\operatorname{method}$ as is done for large x with $\nu \leq 0.5$.
ii. $K_{\delta+1}$ is calculated in the following method A. or B. :
A. $x<-0.277(\delta+1)^{2}+1.817(\delta+1)-0.94$:
$K_{\delta+1}(x)$ is calculated from

$$
K_{\delta+1}(x)=\frac{\frac{2^{\alpha} \alpha(4 \alpha+5)}{x^{\alpha} \Gamma(1-\alpha)}+\sum_{k=0}^{\infty}\left\{\left(\frac{x}{2}\right)^{2 k+2}\left(\tilde{E}_{k}(\alpha)+\tilde{F}_{k}(\alpha)\right)\right\}}{\frac{\pi}{2} \sin (\alpha \pi)}
$$

where $\tilde{E}_{k}(\alpha)$ and $\tilde{F}_{k}(\alpha)$ are obtained using best approximation equations as is done for $v \leq 0.5$.
B. $x \geq-0.277(\delta+1)^{2}+1.817(\delta+1)-0.94$:
$K_{\delta+1}(x)$ is calculated with the $\tau-$ method method as is done for large x with $\nu \leq 0.5$.
(c) $\nu>2.5$:
$K_{\nu}(x)$ is calculated from the following recurrence relation using $K_{\delta}(x)$ and $K_{\delta+1}(x)$ obtained above:

$$
K_{k+\delta+1}(x)=\frac{2(k+\delta)}{x} K_{k+\delta}(x)+K_{k+\delta-1}(x)(k=1,2, \cdots, n-1)
$$

(7) Modified Bessel function of the 1st kind with complex variable $I_{n}(z)$
(1) $n<0$:

From $I_{n}(z)=I_{-n}(z)$, following methods are applied to $I_{-n}(z)$.
(2) $n \geq 0$:
(a) $\operatorname{Re}(z)<0$:

From $I_{n}(z)=(-1)^{n} \cdot I_{n}(-z)$, following methods are applied to $I_{n}(-z)$.
(b) $\Re(z)>0$ and:
i. $|z|^{2}<\left\{\begin{array}{l}\text { Double precision : } 0.1 n+0.4 \\ \text { Single precision : } 1.9 n+7.6\end{array}\right\}$

The function is calculated from the power expansion

$$
I_{n}(z)=\left(\frac{z}{2}\right)^{n} \sum_{k=0}^{9} \frac{\left(\frac{z}{2}\right)^{2 k}}{k!(n+k)!}
$$

ii. $|z|^{2} \geq\left\{\begin{array}{l}\text { Double precision : } 0.1 n+0.4 \\ \text { Single precision : } 1.9 n+7.6\end{array}\right\}$
A. If $\Re(z)>100.0$ or $|\Im(z)|>100.0$ and $n \leq 15$:

The function is calculated from the following equation of asymptotic expansion:

$$
\begin{aligned}
I_{n}(z) & =\frac{e^{z}}{\sqrt{2 \pi z}} \sum_{k=0}^{m}(-1)^{k} \frac{\left(4 n^{2}-1^{2}\right)\left(4 n^{2}-3^{2}\right) \cdots\left(4 n^{2}-(2 n-1)^{2}\right)}{k!(8 z)^{k}} \\
& +\frac{i(-1)^{n} e^{-z}}{\sqrt{2 \pi z}} \sum_{k=0}^{m^{\prime}} \frac{\left(4 n^{2}-1^{2}\right)\left(4 n^{2}-3^{2}\right) \cdots\left(4 n^{2}-(2 n-1)^{2}\right)}{k!(8 z)^{k}}
\end{aligned}
$$

(m and m^{\prime} are the numbers which give the last terms such that the term does not affect the result of calculation up to the previous term when included.)
B. Otherwise:

The function is calculated from the following (backward) recurrence relation using $G_{M+1}(z)=$
$0.0 G_{M}(z)=a$ as initial values, where M is a sufficient large number, and a is the positive minimum number (namely smallest positive constant in the floating point mode).

$$
G_{k-1}(z)=\frac{2 k}{z} G_{k}(z)+G_{k+1}(z)(k=M, M-1, \cdots, 1)
$$

Then

$$
I_{n}(z)=\frac{G_{n}(z) e^{z}}{\sum_{m=0}^{M} \varepsilon_{m} G_{m}(z)}\left(\varepsilon_{0}=1, \varepsilon_{m}=2(m \geq 1)\right)
$$

The value of M is obtained from z and n using an approximate equation.
(8) Modified Bessel function of the 2nd kind with complex variable (integer order) $K_{n}(z)(|z|>0.0)$
(1) $\Re(z)<0$: From

$$
K_{n}(z)=(-1)^{n} K_{n}(-z)+\pi i I_{n}(-z) \cdot(\operatorname{sign} \text { of } \Im(-z))
$$

following methods are applied to $K_{n}(-z)$.
(2) $\Re(z)>0$:
(a) $n<0$:

From $K_{n}(z)=K_{-n}(z)$, following methods are applied to $K_{-n}(z)$.
(b) $0 \leq n<2$ and:
i. $|\Im(z)|<\left\{\begin{array}{l}\text { Double precision : }-4.0 \Re(z)+8.0 \\ \text { Single precision : }-2.25 \Re(z)+4.5\end{array}\right\}$
$K_{0}(z)$ and $K_{1}(z)$ are calculated from following equations:

$$
\begin{aligned}
& K_{0}(z)=-\left\{\gamma+\log \left(\frac{z}{2}\right)\right\} I_{0}(z)+\sum_{k=1}^{n} \frac{\left(\frac{z}{2}\right)^{2 k}}{(k!)^{2}}\left(\sum_{m=1}^{k} \frac{1}{m}\right) \\
& K_{1}(z)=\frac{\frac{1}{z}-I_{1}(z) K_{0}(z)}{I_{0}(z)}
\end{aligned}
$$

Where, γ is Euler's constant.
ii. $|\Im(z)| \geq\left\{\begin{array}{l}\text { Double precision : }-4.0 \Re(z)+8.0 \\ \text { Single precision }:-2.25 \Re(z)+4.5\end{array}\right\}$
$K_{0}(z)$ and $K_{1}(z)$ are calculated from the following equation with the τ-method:

$$
K_{n}(z)=\sqrt{\frac{1}{z}} e^{-z} \frac{\sum_{k=0}^{m} c_{k} z^{k-m}}{\sum_{k=0}^{m} d_{k} z^{k-m}}
$$

(c) $n \geq 2$: The function is calculated from the following recurrence relation using $K_{0}(z)$ and K_{1} as initial values:

$$
K_{k+1}(z)=\frac{2 k}{z} K_{k}(z)+K_{k-1}(z)(k=1,2, \cdots, n-1)
$$

2.1.2.3 Spherical Bessel Functions

(1) Spherical Bessel function of the 1st kind (integer order) $j_{n}(x)(x \geq 0.0)$
(1) $n<0$

The function is calculated from

$$
j_{n}(x)=(-1)^{n} y_{-n-1}(x) .
$$

(2) $n \geq 0$
(a) $x^{2}<0.1 n+0.47$ and $n<35$:

The function is calculated from the power series expansion of

$$
j_{n}(x)=x^{n} \sum_{k=0}^{9} \frac{\left(-\frac{x^{2}}{2}\right)^{k}}{k!(2 n+2 k+1)!!}
$$

(b) $x^{2} \geq 0.1 n+0.47$ or $n \geq 35$:
i. $n=0$ or 1 :

For $x=0, j_{0}(0)=1$ and $j_{1}(0)=0$. Otherwise the functions are calculated from

$$
j_{0}(x)=\frac{\sin (x)}{x}, j_{1}(x)=\frac{\sin (x)-x \cos (x)}{x^{2}}
$$

ii. $n \geq 2$:
A. $x \leq n$:

Setting $T_{n+k+1}=0.0$, the parameters $T_{i}(i=n, n+1, \cdots, n+k-1, n+k)$ in the continued fraction approximation are calculated using the recurrence relations below:

$$
\begin{aligned}
& \quad T_{i}=\frac{x^{2}}{2 i-T_{i+1}+1}(i=n+1, \cdots, n+k-1, n+k) \\
& T_{n}=\frac{x}{2 n-T_{n+1}+1} \\
& \left(T_{n} \text { has a value } \frac{j_{n}(x)}{j_{n-1}(x)} .\right)
\end{aligned}
$$

Here, the value k is choose as in Table 2-5. Setting $B_{n}=T_{n}$ and $B_{n-1}=1.0, B_{i} \quad(i=$
Table 2-5 Value of k

Single precision	Double precision
$k=\left\lfloor\frac{(3.0+1.5 \sqrt{n}) x}{n}+1.5\right\rfloor$	$k=\left\lfloor\frac{(3.0+2.8 \sqrt{n}) x}{n}+5.2\right\rfloor$

$1,2, \cdots, n-2)$ are calculated using the following recurrence relation.

$$
B_{i-1}=\frac{2 i+1}{x} B_{i}-B_{i+1}(i=2, \cdots, n-2, n-1)
$$

Since the precision of computation becomes low when $j_{0}(x) \simeq 0$ or $j_{1}(x) \simeq 0, K$ is set as follows:

$$
K=\lfloor 1.27324 x\rfloor(\bmod 4)
$$

When $K=1$ or 2 ,

$$
B=\frac{3 B_{1}}{x}-B_{2}, j=j_{0}(x)
$$

When $K=0$ or 3 ,

$$
B=B_{1}, j=j_{1}(x)
$$

Using the obtained values of T_{n}, B and $j, j_{n}(x)$ is calculated from

$$
j_{n}(x)=\frac{T_{n} j}{B}
$$

B. $x>n$:
$j_{n}(x)$ is calculated from the following recurrence relation using $j_{1}(x)$ and $j_{0}(x)$ as initial values:

$$
j_{k+1}(x)=\frac{2 k+1}{x} j_{k}(x)-j_{k-1}(x)(k=1,2, \cdots, n-1)
$$

(2) Spherical Bessel function of the 2nd kind (integer order) $y_{n}(x)(x>0.0)$
(1) $n<0$:

The function is calculated from $y_{n}(x)=(-1)^{n+1} j_{-n-1}(x)$.
(2) $n \geq 0$:
(a) $x \leq 0.41$:

The function is calculated from the power expansion of

$$
y_{n}(x)=-\frac{(2 n-1)!!}{x^{n+1}}\left\{1+\sum_{k=1}^{9} \frac{\left(-\frac{x^{2}}{2}\right)^{k}}{k!(1-2 n)(3-2 n) \cdots(2 k-1-2 n)}\right\}
$$

(b) $x>0.41$:
i. $n=0$ or 1 :

The function is calculated from

$$
y_{0}(x)=-\frac{\cos (x)}{x}, y_{1}(x)=-\frac{\cos (x)+x \sin (x)}{x^{2}}
$$

ii. $n \geq 2$:
$y_{n}(x)$ is calculated from the following recurrence relation using $y_{1}(x)$ and $y_{0}(x)$ as initial values.

$$
y_{k+1}(x)=\frac{2 k+1}{x} y_{k}(x)-y_{k-1}(x)(k=1,2, \cdots n-1)
$$

(3) Modified spherical Bessel function of the 1st kind (integer order) $i_{n}(x)(n \geq 0, x \geq 0.0)$
(1) $x^{2}<0.1 n+0.47$ and $n \leq 30$:

The function is calculated from the power expansion of

$$
i_{n}(x)=x^{n} \sum_{k=0}^{9} \frac{\left(\frac{x^{2}}{2}\right)^{k}}{k!(2 n+2 k+1)!!}
$$

(2) $x^{2} \geq 0.1 n+0.47$ or $n>30$
(a) $n=0$ or 1 :

The function is calculated from

$$
\begin{aligned}
& i_{0}(x)=\frac{\sinh (x)}{x} \\
& i_{1}(x)=\frac{x \cosh (x)-\sinh (x)}{x^{2}}=\frac{e^{x}(x-1)+e^{-x}(x+1)}{2 x^{2}}
\end{aligned}
$$

(b) $n \geq 2$:
i. $x \leq n$:

Setting $T_{n+k+1}=0.0$, the parameters $T_{i}(i=n, n+1, \cdots, n+k-1, n+k)$ in the continued fraction approximation are calculated using the recurrence relations below:

$$
\begin{aligned}
& \quad T_{i}=\frac{x^{2}}{2 i+T_{i+1}+1}(i=n+1, \cdots, n+k-1, n+k) \\
& T_{n}=\frac{x}{2 n+T_{n+1}+1} \\
& \left(T_{n} \text { has a value } \frac{i_{n}(x)}{i_{n-1}(x)} .\right)
\end{aligned}
$$

Here, the value k is choose as in Table 2-6. Setting $B_{n}=T_{n}$ and $B_{n-1}=1.0, B_{k} \quad(k=$
Table 2-6 Value of k

Single precision	Double precision
$k=\left\lfloor\frac{(4.6+0.5 \sqrt{n}) x}{n}+2.0\right\rfloor$	$k=\left\lfloor\frac{(6.0+1.2 \sqrt{n}) x}{n}+6.0\right\rfloor$

$1,2, \cdots, n-2)$ are calculated using the following recurrence relation.

$$
B_{k-1}=\frac{2 k+1}{x} B_{k}+B_{k+1}(k=2, \cdots, n-2, n-1)
$$

(Here B_{1} has a value $\frac{i_{1}(x)}{i_{n-1}(x)}$.)
Using the obtained values of T_{n}, B_{1} and $i_{1}(x), i_{n}(x)$ is calculated from

$$
i_{n}(x)=\frac{T_{n} i_{1}(x)}{B_{1}}
$$

ii. $x<n$:

The function is calculated from the following recurrence relation using $G_{M+1}(x)=0.0$ and $G_{M}(x)=a$ as initial values, where a is the positive minimum number (namely the smallest positive constant in the floating point mode), and M is a number sufficiently larger than n.

$$
G_{k-1}(x)=\frac{2 k+1}{x} G_{k}(x)+G_{k+1}(x)(k=M, M-1, \cdots, 1)
$$

Then

$$
i_{n}(x)=\frac{G_{n}(x) e^{x}}{2 \sum_{m=0}^{M}(m+0.5) G_{m}(x)}
$$

(4) Modified spherical Bessel function of the 2nd kind (integer order) $k_{n}(x)(x>0.0)$
(1) $n<0$:

From $k_{n}(x)=k_{-n}(x)$, following methods are applied to $k_{-n}(x)$.
(2) $n \geq 0$:
(a) $n=0$ or 1 :

The function is calculated from

$$
k_{0}(x)=\frac{\pi}{2} \frac{e^{-x}}{x}, k_{1}(x)=\frac{\pi}{2} \frac{e^{-x}}{x}\left(1+\frac{1}{x}\right)
$$

(b) $n \geq 2$:
$k_{n}(x)$ is calculated from the following recurrence relation using $k_{1}(x)$ and $k_{0}(x)$ as initial values:

$$
k_{i+1}(x)=\frac{2 i+1}{x} k_{i}(x)+k_{i-1}(x)(i=1,2, \cdots, n-1)
$$

2.1.2.4 Functions Related To Bessel Functions

(1) Hankel functions of the 1st and 2nd kinds (integer order) $H_{n}^{(1)}(z), H_{n}^{(2)}(z)$

The function is calculated from

$$
\begin{aligned}
H_{n}^{(1)}(z) & =J_{n}(z)+i Y_{n}(z) \\
H_{n}^{(2)}(z) & =J_{n}(z)-i Y_{n}(z)
\end{aligned}
$$

(2) Kelvin functions $\operatorname{ber}_{n}(x), \operatorname{bei}_{n}(x)$
(1) $n<0$ or $x<0.0$

First $\operatorname{ber}_{|n|}(|x|)$ or $\operatorname{bei}_{|n|}(|x|)$ is calculated as described in the case (2) $n \geq 0$ and $x \geq 0.0$ then $\operatorname{ber}_{n}(x)$ or $\operatorname{bei}_{n}(x)$ is calculated from the following expressions
(a) $n<0$ or $x<0$:

$$
\operatorname{ber}_{n}(x)=(-1)^{n} \operatorname{ber}_{|n|}(|x|), \operatorname{bei}_{n}(x)=(-1)^{n} \operatorname{bei}_{|n|}(|x|)
$$

(b) $n<0$ and $x<0$:

$$
\operatorname{ber}_{n}(x)=\operatorname{ber}_{|n|}(|x|), \quad \operatorname{bei}_{n}(x)=\operatorname{bei}_{|n|}(|x|)
$$

(2) $n \geq 0$ and $x \geq 0.0$:
(a) $x \leq\left\{\begin{array}{l}\operatorname{ber}_{\mathrm{n}}(\mathrm{x}): 5.65+0.25 \mathrm{n} \\ \operatorname{bei}_{\mathrm{n}}(\mathrm{x}): 6.92+0.25 \mathrm{n}\end{array}\right\}$:

The function is calculated from the following approximation.

$$
\begin{aligned}
& \operatorname{ber}_{n}(x) \simeq \sum_{k=0}^{m} \frac{\cos \left\{\frac{1}{4}(3 n+2 k) \pi\right\}}{k!(n+k)!}\left(\frac{x}{2}\right)^{n+2 k} \\
& \operatorname{bei}_{n}(x) \simeq \sum_{k=0}^{m} \frac{\sin \left\{\frac{1}{4}(3 n+2 k) \pi\right\}}{k!(n+k)!}\left(\frac{x}{2}\right)^{n+2 k}
\end{aligned}
$$

However, for $n=0$, both $\operatorname{ber}(x)$ and $\operatorname{bei}(x)$ are calculated from the expressions shown above by generating best approximations. The method of generating the both approximation is described in Section 2.1.2.22.
(b) $x \geq\left\{\begin{array}{l}\text { Double precision : } 20.0 \\ \text { Single precision : } 10.0\end{array}\right\}$ and $x \geq 0.5 n^{2}$:

The function is calculated from the asymptotic expansion expressions

$$
\begin{aligned}
\operatorname{ber}_{n}(x) & \simeq \frac{e^{\frac{x}{\sqrt{2}}}}{\sqrt{2 \pi x}}\{P \cos (\Psi)+Q \sin (\Psi)\} \\
\operatorname{bei}_{n}(x) & \simeq \frac{e^{\frac{x}{\sqrt{2}}}}{\sqrt{2 \pi x}}\{P \sin (\Psi)-Q \cos (\Psi)\}
\end{aligned}
$$

where:

$$
\begin{aligned}
& P=1+\sum_{k=1}^{m}(-1)^{k} \cos \left(\frac{k \pi}{4}\right) \frac{\left(4 n^{2}-1^{2}\right)\left(4 n^{2}-3^{2}\right) \cdots\left(4 n^{2}-(2 k-1)^{2}\right)}{k!(8 x)^{k}} \\
& Q=\sum_{k=1}^{m}(-1)^{k} \sin \left(\frac{k \pi}{4}\right) \frac{\left(4 n^{2}-1^{2}\right)\left(4 n^{2}-3^{2}\right) \cdots\left(4 n^{2}-(2 k-1)^{2}\right)}{k!(8 x)^{k}} \\
& \Psi=\frac{x}{\sqrt{2}}+\left(\frac{n}{2}-\frac{1}{8}\right) \pi
\end{aligned}
$$

However, for $n=0$, both P and Q are calculated by generating best approximation is described in Section 2.1.2.22.
(m is a value such that the final term will not affect values calculated before it.)
(c) Cases other than those described in (a) and (b):

The function is calculated from the Bessel function of the 1st kind with complex variable (integer order) $J_{n}(z)$ where:

$$
\begin{aligned}
\operatorname{ber}_{n}(x) & =\Re\left(J_{n}\left(-\frac{x}{\sqrt{2}}, \frac{x}{\sqrt{2}}\right)\right) \\
\operatorname{bei}_{n}(x) & =\Im\left(J_{n}\left(-\frac{x}{\sqrt{2}}, \frac{x}{\sqrt{2}}\right)\right)
\end{aligned}
$$

(3) Kelvin function $\operatorname{ker}_{n}(x), \operatorname{kei}_{n}(x)(x>0.0)$
(1) $n<0$:

First, $\operatorname{ker}_{|n|}(x)$ or $\operatorname{kei}_{|n|}(x)$ is described in case (3) $n>0$. Then $\operatorname{ker}_{n}(x)$ or $\operatorname{kei}_{n}(x)$ is calculated from the following expressions.

$$
\operatorname{ker}_{n}(x)=(-1)^{n} \operatorname{ker}_{|n|}(x), \operatorname{kei}_{n}(x)=(-1)^{n} \operatorname{kei}_{|n|}(x)
$$

(2) $n=0$ and $x \leq\left\{\begin{array}{l}\operatorname{ker}(\mathrm{x}): 5.77 \\ \operatorname{kei}(\mathrm{x}): 6.56\end{array}\right\}$:

The function is calculated by generating best approximations from

$$
\operatorname{ker}(x)=-\log \left(\frac{x}{2}\right) \operatorname{ber}(x)+\frac{\pi}{4} \operatorname{bei}(x)+\sum_{n=0}^{\infty}\left\{\frac{(-1)^{n}}{((2 n)!)^{2}}\left(\sum_{s=1}^{2 n} \frac{1}{s}-\gamma\right)\left(\frac{x}{2}\right)^{4 n}\right\}
$$

$$
\operatorname{kei}(x)=-\log \left(\frac{x}{2}\right) \operatorname{bei}(x)-\frac{\pi}{4} \operatorname{ber}(x)+\sum_{n=0}^{\infty}\left\{\frac{(-1)^{n}}{((2 n+1)!)^{2}}\left(\sum_{s=1}^{2 n} \frac{1}{s}-\gamma\right)\left(\frac{x}{2}\right)^{4 n+2}\right\}
$$

(γ : Euler's constant: $0.57721566 \cdots$).
The method of generating the best approximation is described in Section 2.1.2.22.
(3) $n>0$:
(a) $x \geq\left\{\begin{array}{l}\text { Double precision : } 20.0 \\ \text { Single precision : } 10.0\end{array}\right\}$ and $x \geq 0.5 n^{2}$:

The function is calculated from the asymptotic expansions

$$
\begin{aligned}
\operatorname{ker}_{n}(x) & \simeq \sqrt{\frac{\pi}{2 x}} e^{-x \sqrt{2}}\{P \cos (\Psi)-Q \sin (\Psi)\} \\
\operatorname{kei}_{n}(x) & \simeq \sqrt{\frac{\pi}{2 x}} e^{-x \sqrt{2}}\{-P \sin (\Psi)-Q \cos (\Psi)\}
\end{aligned}
$$

where:

$$
\begin{aligned}
P & =1+\sum_{k=1}^{m} \cos \left(\frac{k \pi}{4}\right) \frac{\left(4 n^{2}-1^{2}\right)\left(4 n^{2}-3^{2}\right) \cdots\left(4 n^{2}-(2 k-1)^{2}\right)}{k!(8 x)^{k}} \\
Q & =\sum_{k=1}^{m} \sin \left(\frac{k \pi}{4}\right) \frac{\left(4 n^{2}-1^{2}\right)\left(4 n^{2}-3^{2}\right) \cdots\left(4 n^{2}-(2 k-1)^{2}\right)}{k!(8 x)^{k}} \\
\Psi & =\frac{x}{\sqrt{2}}+\left(\frac{n}{2}-\frac{1}{8}\right) \pi
\end{aligned}
$$

However, for $n=0$, both P and Q are calculated by generating best approximation is described in Section 2.1.2.22.
(m is a value such that the final term will not affect values calculated before it.)
(b) Case other than those described in (a):

The function is calculated from the modified Bessel function of the 2nd kind with complex variable (integer order) $K_{n}(z)$ where A is the real part of $K_{n}\left(\frac{x}{\sqrt{2}}, \frac{x}{\sqrt{2}}\right), B$ is the imaginary part. If the remainder of $\frac{n}{4}$
i. 0 :

$$
\operatorname{ker}_{n}(x)=A, \operatorname{kei}_{n}(x)=B
$$

ii. 1 :

$$
\operatorname{ker}_{n}(x)=B, \operatorname{kei}_{n}(x)=-A
$$

iii. 2 :

$$
\operatorname{ker}_{n}(x)=-A, \operatorname{kei}_{n}(x)=-B
$$

iv. 3 :

$$
\operatorname{ker}_{n}(x)=-B, \operatorname{kei}_{n}(x)=A
$$

(4) Struve function $\mathbf{H}_{0}(x), \mathbf{H}_{1}(x), \mathbf{H}_{0}(x)-Y_{0}(x), \mathbf{H}_{1}(x)-Y_{1}(x)$
(1) $x<0.0$:

From $\mathbf{H}_{0}(x)=-\mathbf{H}_{0}(-x)$ and $\mathbf{H}_{1}(x)=\mathbf{H}_{1}(-x)$, following methods applied to $\mathbf{H}_{0}(-x)$ or $\mathbf{H}_{1}(-x)$. However, the difference with the Bessel function $\mathbf{H}_{0}(x)-Y_{0}(x)$ or $\mathbf{H}_{1}(x)-Y_{1}(x)$ gives fatal error.
(2) $0.0 \leq x \leq 8.0$;

The function is calculated by generating best approximations from the following expressions

$$
\begin{aligned}
& \mathbf{H}_{0}(x)=\frac{2}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{((2 k+1)!!)^{2}} \\
& \mathbf{H}_{1}(x)=\frac{2}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k}(2 k+1) x^{2 k}}{((2 k+1)!!)^{2}}
\end{aligned}
$$

The method of generating the best approximation is described in Section 2.1.2.22.
$\mathbf{H}_{0}(x)-Y_{0}(x)$ or $\mathbf{H}_{1}(x)-Y_{1}(x)$ is calculated by subtracting the Bessel function of the 2nd kind $Y_{0}(x)$ or $Y_{1}(x)$ from the value of $\mathbf{H}_{0}(x)$ or $\mathbf{H}_{1}(x)$ obtained in this way.
(3) $x>8.0$:

The function is calculated by using the following approximation expressions

$$
\begin{array}{rlrl}
\mathbf{H}_{0}(x)-Y_{0}(x)=\frac{1}{x} \sum_{k=0}^{n} a_{k}^{(1)}\left(\frac{1}{x}\right)^{2 n} & n & =\left\{\begin{array}{ll}
\text { Double precision : } 28 \\
\text { Single precision : } 6
\end{array}\right\} \\
\mathbf{H}_{1}(x)-Y_{1}(x) & =\sum_{k=0}^{n} a_{k}^{(2)}\left(\frac{1}{x}\right)^{2 n} & n & =\left\{\begin{array}{l}
\text { Double precision : } 25 \\
\text { Single precision }: 5
\end{array}\right\}
\end{array}
$$

The coefficients $a_{n}^{(1)}$ and $a_{n}^{(2)}$ are obtained by a telescoping calculation of the approximation expressions as described in reference (7).
$\mathbf{H}_{0}(x)$ or $\mathbf{H}_{1}(x)$ is obtained by adding $Y_{0}(x)$ or $Y_{1}(x)$ to the value of the difference with the Bessel function obtained in this way.
(5) Airy functions and their derived functions $\operatorname{Ai}(x), \operatorname{Bi}(x), \operatorname{Ai}^{\prime}(x), \operatorname{Bi}^{\prime}(x)$

Assume $\zeta=\frac{2}{3}|x|^{\frac{3}{2}}$.
(1) $x<\left\{\begin{array}{l}-3.8315472(\text { for } \mathrm{Ai}(x), \operatorname{Bi}(x)) \\ -5.2414828\left(\text { for } \mathrm{Ai}^{\prime}(x), \mathrm{Bi}^{\prime}(x)\right)\end{array}\right\}$:

$$
\begin{aligned}
& \operatorname{Ai}(x)=\frac{\sqrt{-x}}{3}\left\{\frac{4}{3 \zeta} J_{\frac{2}{3}}(\zeta)-J_{\frac{5}{3}}(\zeta)+J_{\frac{1}{3}}(\zeta)\right\} \\
& \operatorname{Bi}(x)=\sqrt{\frac{-x}{3}}\left\{\frac{4}{3 \zeta} J_{\frac{2}{3}}(\zeta)-J_{\frac{5}{3}}(\zeta)-J_{\frac{1}{3}}(\zeta)\right\} \\
& \operatorname{Ai}^{\prime}(x)=\frac{x}{3}\left\{\frac{2}{3 \zeta} J_{\frac{1}{3}}(\zeta)-J_{\frac{4}{3}}(\zeta)-J_{\frac{2}{3}}(\zeta)\right\} \\
& \operatorname{Bi}^{\prime}(x)=\frac{-x}{\sqrt{3}}\left\{\frac{2}{3 \zeta} J_{\frac{1}{3}}(\zeta)-J_{\frac{4}{3}}(\zeta)+J_{\frac{2}{3}}(\zeta)\right\} \\
&(2)\left\{\begin{aligned}
-3.8315472 & (\text { for } \operatorname{Ai}(x), \operatorname{Bi}(x)) \\
-5.2414828 & \left(\text { for } \mathrm{Ai}^{\prime}(x), \operatorname{Bi}^{\prime}(x)\right)
\end{aligned}\right\} \leq x<\left\{\begin{array}{l}
3.8315472\left(\text { for } \operatorname{Ai}^{\prime}(x), \operatorname{Bi}(x)\right) \\
5.2414828\left(\text { for } \mathrm{Ai}^{\prime}(x), \mathrm{Bi}^{\prime}(x)\right)
\end{array}\right\}: \\
& C_{1}=\frac{3^{-\frac{2}{3}}}{\Gamma\left(\frac{2}{3}\right)} \\
& C_{2}=\frac{3^{-\frac{1}{3}}}{\Gamma\left(\frac{1}{3}\right)} \\
& f(x)=1+\frac{1}{3!} x^{3}+\frac{1 \cdot 4}{6!} x^{6}+\frac{1 \cdot 4 \cdot 7}{9!} x^{9}+\cdots \\
& g(x)=x+\frac{2}{4!} x^{4}+\frac{2 \cdot 5}{7!} x^{7}+\frac{2 \cdot 5 \cdot 8}{10!} x^{10}+\cdots
\end{aligned}
$$

The domain is divided into the intervals $x<0$ and $x \geq 0$. The function is calculated by generating best approximations from the following expressions

$$
\begin{aligned}
\mathrm{Ai}(x) & =C_{1} f(x)-C_{2} g(x) \\
\operatorname{Bi}(x) & =\sqrt{3}\left(C_{1} f(x)+C_{2} g(x)\right)
\end{aligned}
$$

$\mathrm{Ai}^{\prime}(x)$ is calculated by creating an expression by differentiating the approximation of $\mathrm{Ai}(x)$. $\operatorname{Bi}^{\prime}(x)$ is calculated by creating an expression by differentiating the approximation of $\operatorname{Bi}(x)$. The method of generating the best approximation is described in Section 2.1.2.22.
(3) $x \geq\left\{\begin{array}{l}3.8315472(\text { for } \operatorname{Ai}(x), \operatorname{Bi}(x)) \\ 5.2414828\left(\text { for } \operatorname{Ai}^{\prime}(x), \operatorname{Bi}^{\prime}(x)\right)\end{array}\right\}$:

$$
\begin{aligned}
\operatorname{Ai}(x) & =e^{-\zeta} x^{-\frac{1}{4}} \sum_{k=0}^{m 1} a_{k}^{(1)}\left(\frac{1}{\zeta}\right)^{k} \\
\operatorname{Bi}(x) & =e^{\zeta} x^{-\frac{1}{4}} \sum_{k=0}^{m 2} a_{k}^{(2)}\left(\frac{1}{\zeta}\right)^{k}+\sqrt{\frac{x}{3}} I_{\frac{5}{3}}(\zeta) \\
\operatorname{Ai}^{\prime}(x) & =e^{-\zeta} x^{\frac{1}{4}} \sum_{k=0}^{m 3} a_{k}^{(3)}\left(\frac{1}{\zeta}\right)^{k} \\
\operatorname{Bi}^{\prime}(x) & =e^{\zeta} x^{\frac{1}{4}} \sum_{k=0}^{m 4} a_{k}^{(4)}\left(\frac{1}{\zeta}\right)^{k}+\frac{x}{\sqrt{3}} I_{\frac{4}{3}}(\zeta)
\end{aligned}
$$

The coefficients $a_{k}^{(1)}$ through $a_{k}^{(4)}$ are new coefficients obtained as described in reference (7).

2.1.2.5 Gamma Functions

(1) Gamma function $\Gamma(x)$ with real variable and logarithmic Gamma function $\log _{e}(\Gamma(x))$ with real variable
(1) $x<0.0$:

From

$$
\begin{aligned}
\Gamma(x) & =\frac{\pi}{-x \sin (\pi x) \Gamma(-x)} \\
\log _{e}(\Gamma(x)) & =\log _{e} \pi-\log _{e}((-x) \sin (\pi x))-\log _{e}(\Gamma(-x))
\end{aligned}
$$

following methods are applied to $\Gamma(-x)$ and $\log _{e}(\Gamma(-x))$. where GAMMA and ALGAMA are the FORTRAN intrinsic functions for the Gamma function and logarithmic Gamma function.
(2) $x \geq 0.0$:

Use the FORTRAN intrinsic functions GAMMA and ALGAMA.
(2) Gamma function $\Gamma(z)$ with complex variable and logarithmic Gamma function $\log _{e}(\Gamma(z)$) with complex variable
(1) $\Im(z)=0.0$:

The function is calculated using the logarithmic Gamma function with real variable.
(2) $\Re(z)=0.0$ and $|\Im(z)|>12.0$:

The function is calculated from the following equation of asymptotic expansion:

$$
\begin{aligned}
& \Re\left(\log _{e}(\Gamma(z))\right) \sim \frac{1}{2}\left(\log _{e}(2 \pi)-\pi \Im(z)-\log _{e}(\Im(z))\right) \\
& \Im\left(\log _{e}(\Gamma(z))\right) \sim \Im(z) \log _{e}(\Im(z))-\Im(z)-\frac{1}{4} \pi-\sum_{n=1}^{\infty} \frac{(-1)^{n-1} B_{2 n}}{(2 n-1)(2 n)(\Im(z))^{2 n-1}}
\end{aligned}
$$

where, B_{n} is Bernoulli numbers.
(3) $\Im(z)<0.0$:

From

$$
\log _{e}(\Gamma(z))=\log _{e} \pi-\log _{e}(-z) \sin (\pi z)-\log _{e}(\Gamma(-z))
$$

following methods are applied to $\log _{e}(\Gamma(-z))$.
(4) $\Im(z)>0.0$:

The function is calculated with the following procedure.
(a) $|\Re(z)|<11.0$: From

$$
\log _{e}(\Gamma(z))=\log _{e}(\Gamma(n+z))-\log _{e}((n-1+z)(n-2+z) \cdots(z))
$$

following methods are applied to $\log _{e}(\Gamma(n+z))$. Where, $n=\lfloor 12.0-\Re(z)\rfloor$
(b) $|\Re(z)| \geq 11.0$: The function is calculated from the following equation of asymptotic expansion:

$$
\log _{e}(\Gamma(z)) \sim\left(z-\frac{1}{2}\right) \log _{e} z-z+\frac{1}{2} \log _{e}(2 \pi)+\sum_{n=1}^{\infty} \frac{B_{2 n}}{(2 n-1)(2 n) z^{2 n-1}}
$$

(5) The Gamma function with complex variable is returned as $\exp \left(\log _{e}(\Gamma(z))\right)$.
(3) Incomplete Gamma function of the 1st kind $\gamma(\nu, x),(\nu \geq 0.0, x \geq 0.0)$
(1) $x=0.0$:
$\gamma(\nu, x)=0.0$
(2) $x \leq \nu-0.5$ or $x \leq 3.5$:

For $\nu \leq \frac{e^{\overline{3.5}}}{\text { (Maximum value) }}$

$$
\gamma(\nu, x)=\frac{1}{\nu}
$$

For cases other than above,

$$
\gamma(\nu, x)=\frac{e^{\nu \log (x)-x} P}{\nu}
$$

where

$$
P=1+\sum_{k=1}^{m} \frac{x^{k}}{(\nu+1)(\nu+2) \cdots(\nu+k)}
$$

(m is a value such that the final term will not affect values calculated before it.)
(3) For values of x other than above:

The function is calculated from

$$
\gamma(\nu, x)=\Gamma(\nu)-\Gamma(\nu, x)
$$

where $\Gamma(\nu, x)$ is the incomplete Gamma function of the 2 nd kind.
(4) Incomplete Gamma function of the 2 nd kind $\Gamma(\nu, x)(\nu \geq 0.0, x \geq 0.0)$
(1) $\nu \leq \frac{1.0}{\text { (Maximum value) }}$:
$-\operatorname{Ei}(-x)$ is calculated by using the subroutine for the exponential integral.
(2) $x=0.0$:

Let $\Gamma(\nu, x)=\Gamma(\nu)$.
(3) ν is an integer $x>0.015 \nu^{2}$:

$$
\Gamma(\nu, x)=e^{(\nu-1) \log (x)-x}\left\{1+\sum_{k=1}^{m} \frac{(\nu-1)(\nu-2) \cdots(\nu-k)}{x^{k}}\right\}
$$

(m is a value such that the final term will not affect values calculated before it or such that $m \leq \nu+2$.)
(4) $x \leq \nu-0.5$:

Let $\Gamma(\nu, x)=\Gamma(\nu)-\gamma(\nu, x)$.
(5) $x \geq\left\{\begin{array}{l}\text { Double precision : } 49.0 \\ \text { Single precision : } 23.0\end{array}\right\}$:

Perform the same procedure as described in (3) for ν an integer and $x \geq 0.015 \nu^{2}$.
(6) $\nu<1.0$:
(a) $x<0.36 \nu+0.85$:

The function is calculated from

$$
\Gamma(\nu, x)=(\nu-1) \frac{\sum_{k=0}^{M} p_{k}^{(2)} \nu^{k}}{\sum_{k=0}^{N} q_{k}^{(2)} \nu^{k}}-\frac{e^{\nu \log (x)}-1}{\nu}-x^{\nu} \sum_{k=1}^{M^{\prime}} \frac{(-1)^{k} x^{k}}{k!(k+\nu)}
$$

$$
\left(M^{\prime}:\left\{\begin{array}{l}
\text { Double precision : } 21 \\
\text { Single precision }: 12
\end{array}\right\}\right)
$$

(b) $x \leq 1.5 \nu+2.1$:

The function is calculated from

$$
\Gamma(\nu, x)=\Gamma(1+\nu) e^{-x} \sum_{k=0}^{N^{\prime}}\left(x^{k} \tilde{A}_{k}(\nu)+x^{k} \frac{\phi(\nu, x)}{\Gamma(k+1+\nu)}\right.
$$

where

$$
\left(N^{\prime}:\left\{\begin{array}{l}
\text { Double precision }: 23 \\
\text { Single precision }: 14
\end{array}\right\}\right)
$$

$$
\begin{aligned}
& \tilde{A}_{0}(\nu)=(1+\nu)\left(\tilde{A}_{1}(\nu)-1\right) \\
& \tilde{A}_{1}(\nu) \simeq \sum_{k=0}^{M} p_{k}^{(1)} \nu^{k}
\end{aligned}
$$

and

$$
\begin{aligned}
\tilde{A}_{k}(\nu) & =\frac{1}{k+\nu}\left\{\tilde{A}_{k-1}(\nu)+\frac{1}{k!}\right\} \\
\phi(\nu, x) & =-\frac{e^{\nu \log (x)}-1}{\nu}
\end{aligned}
$$

(c) For cases other than the above:

The function is calculated from

$$
\Gamma(\nu, x)=e^{\nu \log (x)-x} \cdot \frac{1 \mid}{\mid x}+\underset{n=1}{\infty} \frac{n-\nu \mid}{1}+\frac{n \mid}{\mid x}
$$

where the following values are assumed for the continued fractions:
$\left\{\begin{array}{l}\text { Double precision : }\left\lfloor\frac{120}{x}+5\right\rfloor \\ \text { Single precision }:\left\lfloor\frac{25}{x-0.25}+2\right\rfloor\end{array}\right\}$
(7) For cases other than those described in (1) through (6):
(a) $x \leq 5.6$:

Let $\alpha=\nu-\lfloor\nu\rfloor$ and $\mu=\alpha+1.0$, the function is calculated from

$$
\Gamma(\mu, x)=\Gamma(\mu) e^{-x}\left[1+\alpha \sum_{k=0}^{M^{\prime \prime}}\left(x^{k+1} \tilde{C}_{k}(\alpha)+x^{k+1} \frac{\phi(\alpha, x)}{\Gamma(k+1+\mu)}\right)\right]
$$

$\left(M^{\prime \prime}:\left\{\begin{array}{l}\text { Double precision : } 20 \\ \text { Single precision : } 12\end{array}\right\}\right)$
where

$$
\tilde{C}_{0}(\alpha)=\tilde{A}_{1}(\alpha)
$$

and

$$
\begin{aligned}
\tilde{C}_{k}(\alpha) & =\frac{1}{k+\nu}\left\{\tilde{C}_{k-1}(\alpha)+\frac{1}{(k+1)!}\right\} \\
\phi(\alpha, x) & =-\frac{e^{\alpha \log (x)}-1}{\alpha}
\end{aligned}
$$

- $\nu>2.0$:

For $m=\nu-\mu$
The function is calculated from

$$
\begin{aligned}
\Gamma(\nu, x)= & e^{(\nu-1) \log (x)-x}\left\{1+\sum_{k=1}^{m-1} \frac{(\nu-1)(\nu-2) \cdots(\nu-k)}{x^{k}}\right\} \\
& +(\nu-1)(\nu-2) \cdots(\nu-k) \Gamma(\mu, x)
\end{aligned}
$$

- $\nu \leq 2.0$:

$$
\Gamma(\nu, x)=\Gamma(\mu, x)
$$

(b) For cases other than (a):

The function is calculated from

$$
\begin{aligned}
\Gamma(\nu, x)= & e^{(\nu-1) \log (x)-x}\left\{1+\sum_{k=1}^{m-1} \frac{(\nu-1)(\nu-2) \cdots(\nu-k)}{x^{k}}\right\} \\
& +(\nu-1)(\nu-2) \cdots(\nu-m) e^{(\nu-m) \log (x)-x} \\
& \cdot\left[\frac{1 \mid}{\mid x}+{\left.\underset{n-1}{\infty}\left(\frac{n-(\nu-m) \mid}{\mid 1}+\frac{n \mid}{\mid x}\right)\right]}^{\mid}+\right.
\end{aligned}
$$

(m is the integer part of ν.)

2.1.2.6 Functions Related To The Gamma Function

(1) Digamma function $\Psi(x)$ (if $x<0.0$ then $x \neq$ integer)
(1) $x<-2.0$:

The function is calculated from

$$
\Psi(x)=\log (1-x)-\frac{1}{2(1-x)}+\frac{\sum_{k=0}^{m} a_{k}^{(2)}(1-x)^{-2 k}}{\sum_{k=0}^{m} b_{k}^{(2)}(1-x)^{-2 k}}-\pi \cot (\pi x)
$$

(2) $-2.0<x<0.5$:

The function is calculated from

$$
\Psi(x)=(1-c-x) \frac{\sum_{k=0}^{m} a_{k}^{(1)}(1-x)^{k}}{\sum_{k=0}^{m} b_{k}^{(1)}(1-x)^{k}}-\pi \cot (\pi x)
$$

(3) $0.5 \leq x \leq 3.0$:

The function is calculated from

$$
\Psi(x)=(x-c) \frac{\sum_{k=0}^{m} a_{k}^{(1)} x^{k}}{\sum_{k=0}^{m} b_{k}^{(1)} x^{k}}
$$

(4) $x>3.0$:

The function is calculated from

$$
\Psi(x)=\log (x)-\frac{1}{2 x}+\frac{\sum_{k=0}^{m} a_{k}^{(2)} x^{-2 k}}{\sum_{k=0}^{m} b_{k}^{(2)} x^{-2 k}}
$$

The value of c is assumed to be $c=1.46163214496836234126$ and the coefficients $a_{k}^{(1)}, b_{k}^{(1)}, a_{k}^{(2)}$ and $b_{k}^{(2)}$ are described in reference (4).
(2) Beta function $B(p, q)(p>0.0, q>0.0)$

The beta function is defined with the following formula.

$$
B(p, q)=\int_{0}^{1} x^{p-1}(1-x)^{q-1} d x=B(q, p)(p, q>0)
$$

The function is calculated as follows depending on the values of p and q :
(1) $p<12.0$ and $q<12.0$:

The function is calculated using the Gamma function according to the following expression.

$$
B(p, q)=\frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)}
$$

(2) $p<12.0$ and $q \geq 12.0$:

The function is calculated using the Gamma function and the Stirling formula as follows:

$$
B(p, q)=\Gamma(p) e^{\left(q-\frac{1}{2}\right) \log (q)+\Phi(q)-\left(p+q-\frac{1}{2}\right) \log (p+q)+p-\Phi(p+q)}
$$

where $\Phi(x)$ is obtained by generating the best approximation of

$$
\Phi(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} B_{n}}{(2 n)(2 n-1) x^{2 n-1}}
$$

(B_{n} : Bernoulli numbers).
The method of generating the best approximation is described in Section 2.1.2.22.
(3) $p \geq 12.0$ and $q<12.0$:

The function is calculated from $B(p, q)=B(q, p)$ using the same formula as described for $p<12.0$ and $q \geq 12.0$.
(4) $p \geq 12.0$ and $q \geq 12.0$:

The function is calculated from the Stirling formula as follows:

$$
B(p, q)=e^{\left(p-\frac{1}{2}\right) \log (p)+\left(q-\frac{1}{2}\right) \log (q)-\left(p+q-\frac{1}{2}\right) \log (p+q)+\log (\sqrt{2 \pi})+\Phi(p)+\Phi(q)-\Phi(p+q)}
$$

2.1.2.7 Elliptic Functions And Elliptic Integrals

(1) Complete elliptic integrals of the 1st and 2nd kinds $K(m), E(m)(0.0 \leq m \leq 1.0)$
(1) $0.0 \leq m \leq 0.25$:

The functions are calculated by generating the best approximations of

$$
\begin{aligned}
K(m) & =\frac{\pi}{2} \sum_{k=0}^{\infty}\left(\frac{(2 k-1)!!}{(2 k)!!}\right)^{2} m^{k} \\
E(m) & =\frac{\pi}{2}\left\{1-\sum_{k=1}^{\infty}\left(\frac{(2 k-1)!!}{(2 k)!!}\right)^{2} \frac{m^{k}}{2 k-1}\right\}
\end{aligned}
$$

The method of generating the best approximation is described in Section 2.1.2.22.
(2) $0.25<m<1.0$:

The functions are calculated from

$$
\begin{aligned}
& K(m)=\sum_{k=0}^{l}\left\{a_{k}^{(1)}(1-m)^{k}\right\}-\log (1-m) \sum_{k=0}^{l}\left\{b_{k}^{(1)}(1-m)^{k}\right\} \\
& E(m)=\sum_{k=0}^{l}\left\{a_{k}^{(2)}(1-m)^{k}\right\}-\log (1-m) \sum_{k=0}^{l}\left\{b_{k}^{(2)}(1-m)^{k}\right\}
\end{aligned}
$$

(3) $m=1.0$:

The following values are assumed.

$$
\begin{aligned}
K(m) & =+\infty \\
E(m) & =1.0
\end{aligned}
$$

The coefficients $a_{k}^{(1)}, b_{k}^{(1)}, a_{k}^{(2)}$ and $b_{k}^{(2)}$ are described in reference (2).
(2) Incomplete elliptic integrals of the 1st and 2nd kinds $F(x, m), E(x, m)(0.0 \leq x \leq 1.0,0.0 \leq m \leq 1.0)$
(1) $x=0.0$:

The function values are as follows:

$$
F(0.0, m)=E(0.0, m)=0.0
$$

(2) $x=1.0$:

The function values are calculated from the complete elliptic integrals as follows:

$$
\begin{aligned}
& F(1.0, m)=K(m) \\
& E(1.0, m)=E(m)
\end{aligned}
$$

(3) For cases other than those in (1) and (2).
(a) $m=0.0$:

The following values are returned.

$$
\begin{aligned}
& F(x, 0.0)=\sin ^{-1}(x) \\
& E(x, 0.0)=\sin ^{-1}(x)
\end{aligned}
$$

(b) $0.0<m<1.0$:

The following values are obtained from initial values

$$
\begin{aligned}
a_{k+1} & =\frac{a_{k}+b_{k}}{2} \\
b_{k+1} & =\sqrt{a_{k} b_{k}} \\
c_{k+1} & =\frac{a_{k}-b_{k}}{2}(k=0,1, \cdots)
\end{aligned}
$$

with $a_{0}=1.0, b_{0}=\sqrt{1-m}$ and $c_{0}=\sqrt{m}$ as initial values.
The convergence criterion is assumed to be

$$
c_{N}<a_{k} \cdot \text { (units for determining error). }
$$

The values $\phi_{1}, \cdots, \phi_{N}$ are obtained by using Newton method to solve for $\phi_{k+1}\left(>\phi_{k}\right)$

$$
\tan \left(\phi_{k+1}-\phi_{k}\right)-\frac{b_{k}}{a_{k}} \tan \left(\phi_{k}\right)=0(k=0, \cdots, N-1)
$$

with $\phi_{0}=\sin ^{-1}(x)$. Then the function is calculated from

$$
\begin{aligned}
& F(x, m)=\frac{\phi_{N}}{2^{N} a_{N}} \\
& E(x, m)=\left(1-\frac{1}{2} \sum_{k=0}^{N} 2^{k} c_{k}^{2}\right) F(x, m)+\sum_{k=1}^{N} c_{k} \sin \left(\phi_{k}\right) .
\end{aligned}
$$

Another method is using $F(x, m)=\left(1+k_{1}\right) F\left(x_{1}, m_{1}\right)$ with

$$
k_{1}=\frac{1-\sqrt{1-m}}{1+\sqrt{1-m}}, m_{1}=k_{1}^{2}, m=k^{2}, x_{1}=\frac{2}{1+\sqrt{1-m x^{2}}} \frac{x}{1+k_{1}}
$$

Setting

$$
K_{n+1}=\frac{K_{n}^{2}}{\left(1+\sqrt{1-K_{n}^{2}}\right)^{2}}, \quad X_{n+1}=\frac{2}{1+\sqrt{1-K_{n}^{2} X_{n}^{2}}} \frac{X_{n}}{1+K_{n+1}}
$$

we have

$$
F(x, m)=\left(1+K_{1}\right)\left(1+K_{2}\right) \cdots\left(1+K_{n+1}\right) F\left(X_{n+1}, K_{n+1}^{2}\right)
$$

and $F\left(X_{n+1}, K_{n+1}^{2}\right)$ is almost equal to $\sin ^{-1} X_{n+1}$ since small n is enough to make K_{n+1} very small.
(c) $m=1.0$:

The following function values are assumed.

$$
\begin{aligned}
& F(x, m)=\operatorname{artanh}(\mathrm{x}) \\
& E(x, m)=x
\end{aligned}
$$

(3) Incomplete Modified Elliptic Integral and Incomplete Elliptic Integral of the Weierstrass Type

As defined already, $F(r, m)$ denotes the first kind incomplete elliptic integral, $E(r, m)$ denotes the second kind incomplete elliptic integral, which are defined as

$$
F(r, m)=\int_{0}^{r} \frac{d x}{\sqrt{\left(1-x^{2}\right)\left(1-m x^{2}\right)}}, E(r, m)=\int_{0}^{r} \sqrt{\frac{1-m x^{2}}{1-x^{2}}} d x
$$

(A) Incomplete Modified Elliptic Integral

For real numbers $m \geq 0, a, b$ and $p \geq 0$, incomplete modified elliptic integral

$$
\int_{0}^{p} \frac{a+b t^{2}}{1+t^{2}} \frac{d t}{\sqrt{\left(1+t^{2}\right)\left(1+m t^{2}\right)}}
$$

is obtained with the following method.
When $m=0,1$ namely incomplete modified elliptic integral can be degenerated and can be expressed with elementary functions, this is obtained by using logarithmic function or opposite tangential function.
(a) If m is not near 1 and $m>1$, then the problem is reduced to the case $m<1$ (b) by applying integration by substitution.
(b) If m is not near 1 and $m<1$, then by setting $p=r / \sqrt{1-r^{2}}$, it holds that

$$
\int_{0}^{p} \frac{a+b t^{2}}{1+t^{2}} \frac{d t}{\sqrt{\left(1+t^{2}\right)\left(1+m t^{2}\right)}}=\frac{b-m a}{1-m} F(r, 1-m)+\frac{a-b}{1-m} E(r, 1-m)
$$

(c) If m is near 1 , then by setting $p=\tan \alpha, 0 \leq \alpha<\pi / 2$,

$$
\int_{0}^{p} \frac{a+b t^{2}}{1+t^{2}} \frac{d t}{\sqrt{\left(1+t^{2}\right)\left(1+m t^{2}\right)}}=\int_{0}^{\alpha} \frac{a+(b-a) \sin ^{2} u}{\sqrt{1-(1-m) \sin ^{2} u}} d u
$$

is applied since the value $I_{n}(\alpha)=\int_{0}^{\alpha} \sin ^{2 n} u d u$ is obtained from the recurrence formula

$$
(2 n+2) I_{n+1}(\alpha)=(2 n+1) I_{n}(\alpha)-\sin ^{2 n+1} \alpha \cos \alpha, n \geq 0
$$

and since the integrated function is expanded by using the formula

$$
\frac{1}{\sqrt{1-v}}=1+\sum_{n=1}^{\infty} \frac{I_{n}(\pi / 2)}{\pi / 2} v^{n},|v|<1 .
$$

(B) Incomplete Elliptic Integral of the Weierstrass Type

When incomplete elliptic integral can be degenerated and can be expressed with elementary functions, this can be obtained using logarithmic function or opposite tangential function. In the other cases, set

$$
v_{1}=\sqrt{\frac{(z-x) p}{1+z p}}, v_{2}=\sqrt{\frac{z-x}{z}}, m=\frac{z-y}{z-x}
$$

for real parameters which satisfy $z>y>x>0$ to obtain

$$
\frac{1}{2} \int_{0}^{1 / p} \frac{d t}{\sqrt{(t+x)(t+y)(t+z)}}=\frac{1}{\sqrt{z-x}}\left(F\left(v_{2}, m\right)-F\left(v_{1}, m\right)\right)
$$

(4) Elliptic function of Jacobi $\operatorname{sn}(u, m), \operatorname{cn}(u, m), \operatorname{dn}(u, m)(0.0 \leq m \leq 1.0)$
(1) $u=0.0$:

$$
\operatorname{sn}(0.0, m)=0.0, \operatorname{cn}(0.0, m)=\operatorname{dn}(0.0, m)=1.0
$$

(2) $m=1.0$:

$$
\begin{aligned}
\operatorname{sn}(u, 1.0) & =\tanh (u) \\
\operatorname{cn}(u, 1.0) & =\operatorname{dn}(u, 1.0)=\operatorname{sech}(u)
\end{aligned}
$$

(3) $m=0.0$:

$$
\begin{aligned}
\operatorname{sn}(u, 0.0) & =\sin (u) \\
\operatorname{cn}(u, 0.0) & =\cos (u) \\
\operatorname{dn}(u, 0.0) & =1.0
\end{aligned}
$$

(4) For cases other than those in (1), (2) and (3):

The following values are obtained

$$
\begin{aligned}
a_{k+1} & =\frac{a_{k}+b_{k}}{2} \\
b_{k+1} & =\sqrt{a_{k} b_{k}} \\
c_{k+1} & =\frac{a_{k}-b_{k}}{2}(k=0,1, \cdots)
\end{aligned}
$$

with $a_{0}=1.0$ and $b_{0}=\sqrt{1-m}$ as initial values.
The convergence criterion is assumed to be

$$
c_{N}<a_{N-1} \cdot(\text { units for determining error }) .
$$

The following values are obtained

$$
\begin{aligned}
K(m) & =\frac{\pi}{2 a_{N}} \\
y_{N} & =\frac{a_{N}}{\sin \left(a_{N} u\right)} \\
y_{N-1} & =y_{N}+\frac{a_{N} c_{N}}{y_{N}} \\
& \vdots \\
y_{0} & =y_{1}+\frac{a_{1} c_{1}}{y_{1}}
\end{aligned}
$$

and the functions are calculated from

$$
\begin{aligned}
& \operatorname{sn}(u, m)=\frac{1}{y_{0}} \\
& \operatorname{cn}(u, m)= \begin{cases}\sqrt{1-\left(\frac{1}{y_{0}}\right)^{2}} & \left(\text { when } \bmod \left(\left\lfloor\frac{|u|}{K(m)}\right\rfloor, 4\right)=0 \text { or } 3\right) \\
-\sqrt{1-\left(\frac{1}{y_{0}}\right)^{2}} & \left(\text { when } \bmod \left(\left\lfloor\frac{|u|}{K(m)}\right\rfloor, 4\right)=1 \text { or } 2\right)\end{cases} \\
& \operatorname{dn}(u, m)=\sqrt{1-m\left(\frac{1}{y_{0}}\right)^{2}}
\end{aligned}
$$

If the value of the difference of $\left\lfloor\frac{u}{K(m)}\right\rfloor$ and $\frac{u}{K(m)}$ is less than or equal to 0.03125 , then $\operatorname{sn}(u, m) \simeq 1.0$. Since many digits will be lost in the calculation of $\sqrt{1-\operatorname{sn}^{2}(u, m)}$, the function is calculated from the following expressions

$$
\begin{aligned}
v & =\frac{u}{2 K(m)} \\
\operatorname{sn}(u, m) & =\frac{\vartheta_{1}(v, q)}{\sqrt[4]{m} \vartheta_{4}(v, q)} \\
\operatorname{cn}(u, m) & =\frac{\vartheta_{2}(v, q) \sqrt[4]{\frac{1-m}{m}}}{\vartheta_{4}(v, q)} \\
\operatorname{dn}(u, m) & =\frac{\vartheta_{3}(v, q) \sqrt[4]{(1-m)}}{\vartheta_{4}(v, q)}
\end{aligned}
$$

(For the value of q, see next paragraph, "Nome q ".)
(5) Nome $q(0.0 \leq m \leq 1.0)$

If $m>0.5$, then replace m with $m=1-m$ and exchange the values of q and $q^{\prime}, K(m)$ and $K\left(m^{\prime}\right)$ and $E(m)$ and $E\left(m^{\prime}\right)$ respectively with the following procedure.
(1) $m=0.0$:

$$
\begin{aligned}
q & =0.0 \\
q^{\prime} & =1.0 \\
K(m) & =\frac{\pi}{2} \\
K\left(m^{\prime}\right) & =\text { (Maximum value) } \\
E(m) & =\frac{\pi}{2} \\
E\left(m^{\prime}\right) & =1.0
\end{aligned}
$$

(2) For cases other than the one in (1):

If ε are set as follows:

$$
\varepsilon=\frac{0.5 m}{(2(1+\sqrt[4]{1-m}(1+\sqrt{1-m})+\sqrt{1-m})-m)}
$$

then

$$
q=c_{4} \varepsilon^{13}+c_{3} \varepsilon^{9}+c_{2} \varepsilon^{5}+c_{1} \varepsilon
$$

(Where, $c_{1}=1, c_{2}=2, c_{3}=15, c_{4}=150$ for double precision; $c_{1}=1, c_{2}=2, c_{3}=0, c_{4}=0$ for single precision.)

$$
q^{\prime}=\exp \left(\frac{\pi^{2}}{\log (q)}\right)
$$

If δ is set as follows:

$$
\delta=\left(d_{4} q^{9}+d_{3} q^{4}+d_{2} q+d_{1}\right)^{2}
$$

(Where, $d_{1}=1, d_{2}=2, d_{3}=1, d_{4}=1$ for double precision; $d_{1}=1, d_{2}=2, d_{3}=1, d_{4}=0$ for single precision.) then

$$
\begin{aligned}
K(m) & =\frac{\pi}{2} \delta \\
K\left(m^{\prime}\right) & =(-0.5) \log (q) \delta \\
E(m) & =\left(\frac{\pi}{6 \delta}\right)\left(1+(2-m) \delta^{2}-\left(e_{7} q^{14}+e_{6} q^{12}+e_{5} q^{10}+e_{4} q^{8}+e_{3} q^{6}+e_{2} q^{4}+e_{1} q^{2}\right)\right. \\
E\left(m^{\prime}\right) & =K\left(m^{\prime}\right)\left(1-\frac{E(m)}{K(m)}\right)+\frac{1}{\delta}
\end{aligned}
$$

(Where, $e_{1}=24, e_{2}=72, e_{3}=96, e_{4}=168, e_{5}=144, e_{6}=288, e_{7}=192$ for double precision; $e_{1}=24, e_{2}=72, e_{3}=96, e_{4}=0, e_{5}=0, e_{6}=0, e_{7}=0$ for single precision.)
(6) Elliptic theta function $\vartheta_{i}(v, q)(0 \leq i \leq 4,0.0 \leq q \leq 1.0)$

If $i=0$, then set $i=4$. If $i=2$, then set $v=v+0.5$. If $i=3$, then set $v=v-0.5$.
(1) $i=1$ or 2 :

Set $s=\operatorname{SIGN}(v)$ and $v=|v|$. If $v=v-\operatorname{INT}(v)$ or $\operatorname{INT}(v)$ is an odd number, then let $s=-s$.
(a) $q=0.0$ or $v=0.0$, then

$$
\vartheta(v, q)=0.0
$$

(b) $q \leq 0.125$, then by setting $s w, s 3 w$ and $s 5 w$ as follows:

$$
\begin{aligned}
s w & =\sin (\pi \cdot v) \\
s 3 w & =\left(-4 \cdot s w^{2}+3\right) \cdot s w \\
s 5 w & =\left(\left(16 \cdot s w^{2}-20\right) \cdot s w^{2}+5\right) \cdot s w
\end{aligned}
$$

the function is calculated from the following expressions.

- Single precision

$$
\vartheta(v, q)=2 \cdot s \cdot \sqrt[4]{q} \cdot\left(\left(s 5 w \cdot q^{4}-s 3 w\right) \cdot q^{2}+s w\right)
$$

- Double precision

By setting $s 7 w$ and $s 9 w$ as follows:

$$
\begin{aligned}
s 7 w= & \left(\left(\left(-64 \cdot s w^{2}+112\right) \cdot s w^{2}-56\right) \cdot s w^{2}+7\right) \cdot s w \\
s 9 w= & \left(\left(\left(\left(256 \cdot\left(1-s w^{2}\right)-448\right) \cdot\right.\right.\right. \\
& \left.\left.\left.\left(1-s w^{2}\right)+240\right) \cdot\left(1-s w^{2}\right)-40\right) \cdot\left(1-s w^{2}\right)+1\right) \cdot s w
\end{aligned}
$$

the function is calculated from

$$
\vartheta_{i}(v, q)=2 \cdot s \cdot \sqrt[4]{q} \cdot\left(\left(\left(\left(s 9 w \cdot q^{8}-s 7 w\right) \cdot q^{6}+s 5 w\right) \cdot q^{4}-s 3 w\right) \cdot q^{2}+s w\right)
$$

(c) $q>0.125$:

If $v>0.5$, then $v=1.0-v$.
By setting $P L Q, w Q$ and w as follows:

$$
\begin{aligned}
P L Q & =\pi^{2} \cdot(1 / \log (q)) \\
w Q & =\exp (P L Q) \\
w & =-\exp (2 \cdot v \cdot P L Q)
\end{aligned}
$$

the function is calculated from the following expressions.

- Single precision

$$
\begin{aligned}
\vartheta_{i}(v, q)= & s \cdot \sqrt{\pi \cdot(-1 / \log (q))} \cdot \exp \left(\left(v^{2}-v+0.25\right) \cdot P L Q\right) \cdot\left(\left(\left(w Q^{6} \cdot w+w Q^{2}\right) \cdot w\right.\right. \\
& \left.+1) \cdot w+1+\left(w Q^{4} / w+1\right) \cdot\left(w Q^{2} / w\right)\right)
\end{aligned}
$$

- Double precision

$$
\begin{aligned}
\vartheta_{i}(v, q)= & s \cdot \sqrt{\pi \cdot(-1 / \log (q))} \cdot \exp \left(\left(v^{2}-v+0.25\right) \cdot P L Q\right) \\
& \cdot\left\{\left(\left(\left(w Q^{12} \cdot w+w Q^{6}\right) \cdot w+w Q^{2}\right) \cdot w+1\right) \cdot w+1\right. \\
& \left.+\left(\left(w Q^{8} / w+w Q^{2}\right) \cdot\left(w Q^{2} / w\right)+1\right) \cdot\left(w Q^{2} / w\right)\right\}
\end{aligned}
$$

(2) $i=3$ or 4 :

Let $v=|v|-\operatorname{INT}(|v|)$.
(a) If $q=0.0$, then

$$
\vartheta_{i}(v, q)=1.0
$$

(b) If $q \leq 0.125$, then by setting $c w, c 2 w$ and $c 3 w$ as follows:

$$
\begin{aligned}
c w & =\cos (2 \cdot \pi \cdot v) \\
c 2 w & =2 \cdot c w^{2}-1 \\
c 3 w & =\left(4 \cdot c w^{2}-3\right) \cdot c w
\end{aligned}
$$

the function is calculated from the following expressions.

- Single precision

$$
\vartheta_{i}(v, q)=2 \cdot\left(\left(-c 3 w \cdot q^{5}+c 2 w\right) \cdot q^{3}-c w\right) \cdot q+1
$$

- Double precision

By setting $c 4 w$ as follows:

$$
c 4 w=\left(8 \cdot c w^{2}-8\right) \cdot c w^{2}+1
$$

the function is calculated from

$$
\vartheta_{i}(v, q)=2 \cdot\left(\left(\left(c 4 w \cdot q^{7}-c 3 w\right) \cdot q^{5}+c 2 w\right) \cdot q^{3}-c w\right) \cdot q+1
$$

(c) $q>0.125$:

If $v>0.5$, then let $v=1.0-v$.
By setting $P L Q, w Q$ and w as follows:

$$
\begin{aligned}
P L Q & =\pi^{2} \cdot(1 / \log (q)) \\
w Q & =\exp (P L Q) \\
w & =\exp (2 \cdot v \cdot P L Q)
\end{aligned}
$$

the function is calculated from the following expressions.

- Single precision

$$
\begin{aligned}
\vartheta_{i}(v, q)= & \sqrt{\pi \cdot(-1 / \log (q))} \cdot \exp \left(\left(v^{2}-v+0.25\right) \cdot P L Q\right) \cdot\left(\left(\left(w Q^{6} \cdot w\right.\right.\right. \\
& \left.\left.\left.+w Q^{2}\right) \cdot w+1\right) \cdot w+1+\left(w Q^{4} / w+1\right) \cdot\left(w Q^{2} / w\right)\right)
\end{aligned}
$$

- Double precision

$$
\begin{aligned}
\vartheta_{i}(v, q)= & \sqrt{\pi \cdot(-1 / \log (q))} \cdot \exp \left(\left(v^{2}-v+0.25\right) \cdot P L Q\right) \cdot\left(\left(\left(\left(w Q^{12} \cdot w+w Q^{6}\right) \cdot w\right.\right.\right. \\
& \left.\left.\left.+w Q^{2}\right) \cdot w+1\right) \cdot w+1+\left(\left(w Q^{6} / w+w Q^{2}\right) \cdot\left(w Q^{2} / w\right)+1\right) \cdot\left(w Q^{2} / w\right)\right)
\end{aligned}
$$

(7) Zeta function of Jacobi $Z(u)(0.0 \leq m \leq 1.0)$
$K(m), K\left(m^{\prime}\right)$, nome q and complementary nome q^{\prime} are calculated from m.
The values v, s and w are set as follows:

$$
v=u /(2 \cdot K(m))
$$

$$
s=\operatorname{SIGN}(v), v=|v|-\operatorname{INT}(|v|), w=2 \pi \cdot v
$$

(1) $q \leq 0.125$:

- Single precision

$$
Z(u)=\frac{\pi \cdot 2 q}{K(m)} \cdot \frac{\sin (w)-2 q^{3} \cdot \sin (2 w)+3 q^{8} \cdot \sin (3 w)}{1-2 q\left(\cos (w)-q^{3} \cdot \cos (2 w)+q^{8} \cdot \cos (3 w)\right)} \cdot s
$$

- Double precision

$$
Z(u)=\frac{\pi \cdot 2 q}{K(m)} \cdot \frac{\sin (w)-2 q^{3} \cdot \sin (2 w)+3 q^{8} \cdot \sin (3 w)-4 q^{15} \cdot \sin (4 w)}{1-2 q\left(\cos (w)-q^{3} \cdot \cos (2 w)+q^{8} \cdot \cos (3 w)-q^{15} \cdot \cos (4 w)\right)} \cdot s
$$

(2) $q>0.125$:

Assume $z=\exp \left(-\pi u / K\left(m^{\prime}\right)\right)$.
The function is calculated from the following expressions.

- Single precision

$$
Z(u)=\frac{\pi}{2 k\left(m^{\prime}\right)} \cdot\left(\frac{-5 q^{\prime 6} z^{5}-3 q^{\prime 2} z^{4}-z^{3}+z^{2}+3 q^{\prime 2} z+5 q^{\prime 6}}{q^{\prime 6} z^{5}+q^{\prime 2} z^{4}+z^{3}+z^{2}+q^{\prime 2} z+q^{\prime 6}}-2 v\right) \cdot s
$$

- Double precision

$$
Z(u)=\frac{\pi}{2 k\left(m^{\prime}\right)} \cdot\left(\frac{\left(z^{3}-z^{4}\right)+3 q^{\prime 2}\left(z^{2}-z^{5}\right)+5 q^{\prime 6}\left(z-z^{6}\right)+7 q^{\prime 12}\left(1-z^{7}\right)}{\left(z^{3}+z^{4}\right)+q^{\prime 2}\left(z^{2}+z^{5}\right)+q^{\prime 6}\left(z+z^{6}\right)+q^{\prime 12}\left(1+z^{7}\right)}-2 v\right) \cdot s
$$

(3) $q>\left\{\begin{array}{l}\text { Double precision : } 0.8 \\ \text { Single precision :0.6 }\end{array}\right\}$ and $v \leq 0.5$:

The function is calculated from the following expression.

$$
Z(u)=\tanh (u)-2 v
$$

(8) Epsilon function of Jacobi $E(u)(0.0 \leq m \leq 1.0)$

The function is calculated from the following expression.

$$
E(u)=Z(u)+\frac{E(m)}{K(m)} \cdot u
$$

$(E(m)$ and $K(m)$ are calculated by using the nome q.
(9) Theta function of Jacobi $\Theta(u)(0.0 \leq m \leq 1.0)$

The function is calculated from the following expression.

$$
\Theta(u)=\vartheta_{4}(u / 2 \cdot K(m), q)
$$

(q and $K(m)$ are calculated by using the nome q and ϑ_{4} is calculated by using the theta function.)
However, if $m=1.0, \Theta(u)=0.0$.
(10) Pi function $\Pi(u, \alpha)(0.0 \leq m<1.0)$

The function is calculated from the following expression.

$$
\Pi(u, \alpha)=\frac{1}{2} \log \frac{\Theta(u-\alpha)}{\Theta(u+\alpha)}+u \cdot Z(\alpha)
$$

2.1.2.8 Indefinite Integrals Of Elementary Functions

(1) Exponential integrals $\overline{\operatorname{Ei}}(x), \operatorname{Ei}(-x)(x>0.0)$

If $x<0.0, \mathrm{Ei}(x)$ is calculated; if $x>0.0, \overline{\mathrm{Ei}}(x)$ is calculated. The calculation methods are described below.
(1) $x<-4.0$:

The function is calculated from

$$
\operatorname{Ei}(x)=\frac{e^{x}}{x}\left\{1+\left(-\frac{1}{x}\right) \frac{\sum_{k=0}^{m} a_{k}^{(1)}\left(-\frac{1}{x}\right)^{k}}{\sum_{k=0}^{m} b_{k}^{(1)}\left(-\frac{1}{x}\right)^{k}}\right\}
$$

(2) $-4.0 \leq x<-1.0$:

The function is calculated from

$$
\operatorname{Ei}(x)=-e^{x} \frac{\sum_{k=0}^{m} a_{k}^{(2)}\left(-\frac{1}{x}\right)^{k}}{\sum_{k=0}^{m} b_{k}^{(2)}\left(-\frac{1}{x}\right)^{k}}
$$

(3) $-1.0 \leq x<0.0$:

The function is calculated by generating the best approximation of

$$
\operatorname{Ei}(x)=\log (-x)+\gamma+\sum_{n=1}^{\infty} \frac{(-x)^{n}}{n!n}
$$

(γ is the Euler number.)
The method of generating the best approximation is described in Section 2.1.2.22.
(4) $0.0<x \leq 1.0$:

The function is calculated by generating the best approximation of

$$
\overline{\operatorname{Ei}}(x)=\log (x)+\gamma+\sum_{n=1}^{\infty} \frac{x^{n}}{n!n}
$$

The method of generating the best approximation is described in Section 2.1.2.22.
(5) $1.0<x \leq 6.0$:

The function is calculated from

$$
\overline{\operatorname{Ei}}(x)=\log \left(\frac{x}{x_{0}}\right)+\left(x-x_{0}\right) \frac{\sum_{k=0}^{m} a_{k}^{(3)} x^{k}}{\sum_{k=0}^{m} b_{k}^{(3)} x^{k}}
$$

$\left(x_{0}=0.37250741078136663446\right)$
(6) $6.0<x \leq 12.0$:

The function is calculated from

$$
\overline{\operatorname{Ei}}(x)=\frac{e^{x}}{x}\left(a_{0}^{(4)}+{\left.\underset{k=1}{m} \frac{b_{k-1}^{(4)} \mid}{\mid a_{k}^{(4)}+x}\right)}_{\left.\right|^{(4)}}\right.
$$

(7) $12.0<x \leq 24.0$:

The function is calculated from

$$
\overline{\operatorname{Ei}}(x)=\frac{e^{x}}{x}\left(a_{0}^{(5)}+{\left.\underset{k=1}{\Phi} \frac{b_{k-1}^{(5)}}{\mid a_{k-1}^{(5)}+x}\right)}_{)}\right)
$$

(8) $x>24.0$:

The function is calculated from

$$
\overline{\operatorname{Ei}}(x)=\frac{e^{x}}{x}\left\{1+\frac{1}{x}\left(a_{0}^{(6)}+\underset{k=1}{\Phi} \frac{b_{k-1}^{(6)} \mid}{a_{k}^{(6)}+x}\right)\right\}
$$

The coefficients $a_{k}^{(1)} \sim a_{k}^{(6)}, b_{k}^{(1)} \sim b_{k}^{(6)}$ are described in references (5) and (6). $a_{k}^{(3)}$ and $b_{k}^{(3)}$ are obtained with telescoping the coefficients of shifted Chebyshev polynomials.
(2) Logarithmic integral $\operatorname{Li}(x)(x \geq 1.0)$

The function is calculated using the exponential integral from

$$
\operatorname{Li}(x)=\overline{\mathrm{Ei}}(\log (x))
$$

(Logarithmic integral $\operatorname{Li}(x)$ is also denoted by $\operatorname{li}(x)$.)
(3) Sine integral $\operatorname{Si}(x)$
(1) $x<0.0$:

From $\operatorname{Si}(x)=-\operatorname{Si}(-x)$, following methods are applied to $\operatorname{Si}(-x)$.
(2) $x \geq 0.0$:
(a) $x \geq\left\{\begin{array}{l}\text { Double precision : } 2^{50} \cdot \pi \\ \text { Single precision : } 2^{18} \cdot \pi\end{array}\right\}$:

The function value is given as

$$
S i(x)=\frac{\pi}{2}
$$

(b) For cases other than those described in (a)
i. $x \leq 5.0$:

The function is calculated by generating the best approximation from

$$
S i(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} \cdot x^{2 k+1}}{(2 k+1) \cdot(2 k+1!)}
$$

The method of generating the best approximation is described in Section 2.1.2.22.
ii. $x \geq 42.0$:

The function is calculated from

$$
S i(x)=\frac{\pi}{2}-f(x) \cdot \cos (x)-g(x) \cdot \sin (x)
$$

where $f(x)$ and $g(x)$ are obtained by generating approximations of the following equations.

$$
\begin{aligned}
& f(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} \cdot(2 k)!}{x^{2 k+1}} \\
& g(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} \cdot(2 k+1)!}{x^{2 k+2}}
\end{aligned}
$$

The method of generating the best approximation is described in Section 2.1.2.22.
iii. $5.0<x<42.0$:

Let $Q=\operatorname{Si}\left(x_{n}\right)$ (where x_{n} is the closest integer to x and $S i\left(x_{n}\right)$ is the actual value of the sine integral at x_{n}) and let $z=x-x_{n}$.
A. If $|z|<$ (units for determining error) • x, then the function value is given as

$$
S i(x)=S i\left(x_{n}\right) .
$$

B. Otherwise, the following calculations are repeated until
$|Q Q|<\| Q \cdot$ (units for determining error) $\|$

$$
\begin{aligned}
f^{(J)}\left(x_{n}\right) & =\left\{\left(\sin \left(x_{n}\right)\right)^{(J-1)}-(J-1) \cdot f^{(J-1)}\left(x_{n}\right)\right\} / x_{n} \\
Q Q & =f^{(J)}\left(x_{n}\right) \cdot Z^{J} / J! \\
S i(x) & =Q
\end{aligned}
$$

(4) Cosine integral $\mathrm{Ci}(x)(x \geq 0.0)$
(1) $x \leq 2.0$:

The function is calculated by generating the best approximation from

$$
\operatorname{Ci}(x)=\gamma+\log (x)+\sum_{k=1}^{\infty} \frac{(-1)^{k} \cdot x^{2 k}}{2 k \cdot(2 k)!}
$$

where γ is the Euler number ($\gamma=0.57721566490153286061$).
The method of generating the best approximation is described in Section 2.1.2.22.
(2) $x \geq 42.0$:

The function is calculated from

$$
\operatorname{Ci}(x)=f(x) \cdot \sin (x)-g(x) \cdot \cos (x)
$$

where $f(x)$ and $g(x)$ are the same as described in (35) for the sine integral.
(3) $2.0<x<42.0$:

Let $Q=\mathrm{Ci}\left(x_{n}\right)$ (where x_{n} is the closest integer to x and $\mathrm{Ci}\left(x_{n}\right)$ is the actual value of the cosine integral at $\left.x_{n}\right)$ and let $z=x-x_{n}$.
(a) $|z|<$ (units for determining error) $\cdot x$, then the function value is given as

$$
\operatorname{Ci}(x)=\operatorname{Ci}\left(x_{n}\right)
$$

(b) Otherwise, assuming that

$$
\begin{aligned}
f^{(1)}\left(x_{n}\right) & =\left(\cos \left(x_{n}\right)-1\right) / x_{n} \\
Q & =Q+f^{(1)}\left(x_{n}\right) \cdot z
\end{aligned}
$$

the following calculations are repeated until $|Q Q|<\mid Q \cdot$ (units for determining error) \mid

$$
\begin{aligned}
f^{(J)}\left(x_{n}\right) & =\left\{\left(\cos \left(x_{n}\right)\right)^{(J-1)}-(J-1) \cdot f^{(J-1)}\left(x_{n}\right)\right\} / x_{n} \\
Q Q & =f^{(J)}\left(x_{n}\right) \cdot z^{J} / J! \\
Q & =Q+Q Q \quad(J=2,3, \cdots \cdots)
\end{aligned}
$$

and then the function value is given as

$$
\operatorname{Ci}(x)=Q+\log \left(\frac{x}{x_{n}}\right)
$$

(5) Fresnel integral $S(x)$ and $C(x)$

Fresnel integrals are defined by the following equations.

$$
\begin{aligned}
S(x) & =\int_{0}^{x} \sin \left(\frac{\pi}{2} \cdot t^{2}\right) d t \\
C(x) & =\int_{0}^{x} \cos \left(\frac{\pi}{2} \cdot t^{2}\right) d t
\end{aligned}
$$

(1) $x<0.0$:

From $S(x)=-S(-x)$ or $C(x)=-C(-x)$, following methods are applied to $S(-x)$ or $C(-x)$.
(2) $x \geq 0.0$:
(a) $x \leq 1.6$:

The functions are calculated by generating the best approximation from

$$
\begin{aligned}
& S(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} \cdot\left(\frac{\pi}{2}\right)^{2 k+1}}{(2 k+1)!\cdot(4 k+3)} \cdot x^{4 k+3} \\
& C(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k} \cdot\left(\frac{\pi}{2}\right)^{2 k}}{(2 k)!\cdot(4 k+1)} \cdot x^{4 k+1}
\end{aligned}
$$

The method of generating the best approximation is described in Section 2.1.2.22.
(b) $x \geq 5.0$:

The functions are calculated from

$$
\begin{aligned}
& S(x)=\frac{1}{2}-\left\{f(x) \cdot \cos \left(\frac{\pi}{2} \cdot x^{2}\right)+g(x) \cdot \sin \left(\frac{\pi}{2} \cdot x^{2}\right)\right\} \\
& C(x)=\frac{1}{2}+\left\{f(x) \cdot \sin \left(\frac{\pi}{2} \cdot x^{2}\right)-g(x) \cdot \cos \left(\frac{\pi}{2} \cdot x^{2}\right)\right\}
\end{aligned}
$$

where $f(x)$ and $g(x)$ are obtained by generating the best approximations of the following equations.

$$
\begin{aligned}
& f(x)=x \cdot \sum_{k=0}^{m} \frac{(-1)^{k} \cdot(4 k-1)!!}{\left(\pi \cdot x^{2}\right)^{2 k+1}} \\
& g(x)=x \cdot \sum_{k=0}^{m} \frac{(-1)^{k} \cdot(4 k+1)!!}{\left(\pi \cdot x^{2}\right)^{2 k+2}}
\end{aligned}
$$

The method of generating the best approximation is described in Section 2.1.2.22.
(c) $1.6<x<5.0$:

Using the conversion $Y=\frac{\pi}{2} \cdot x^{2}$, the functions are calculated from

$$
\begin{aligned}
& S(x)=\frac{1}{2}-\{f(Y) \cdot \cos (Y)+g(Y) \cdot \sin (Y)\} \\
& C(x)=\frac{1}{2}+\{f(Y) \cdot \sin (Y)-g(Y) \cdot \cos (Y)\}
\end{aligned}
$$

where $f(Y)$ and $g(Y)$ are as follows: Single precision:

$$
\begin{aligned}
& f(Y)=\frac{1}{x} \sum_{k=0}^{7} a_{k}^{(1)}\left(\frac{4}{Y}\right)^{k} \\
& g(Y)=\frac{1}{x} \sum_{k=0}^{8} b_{k}^{(1)}\left(\frac{4}{Y}\right)^{k}
\end{aligned}
$$

Double precision:

$$
\begin{aligned}
f(Y) & =\frac{1}{x} \sum_{k=0}^{34} a_{k}^{(2)}\left(\frac{4}{Y}\right)^{k} \\
g(Y) & =\frac{1}{x} \sum_{k=0}^{34} b_{k}^{(2)}\left(\frac{4}{Y}\right)^{k}
\end{aligned}
$$

The coefficients $a_{k}^{(1)}, b_{k}^{(1)}, a_{k}^{(2)}$ and $b_{k}^{(2)}$ are obtained with telescoping.
(6) Dawson integral $F(x)$

The value of the Dawson integral is defined by the following equation.

$$
F(x)=e^{-x^{2}} \int_{0}^{x} e^{t^{2}} d t
$$

(1) $x \geq 0.0$:

From $F(x)=-F(-x)$, following methods are applied to $F(-x)$.
(2) $x \geq 0.0$:
(a) $x \leq 2.5$:

The function is calculated from

$$
F(x)=x \frac{\sum_{k=0}^{m} a_{k}^{(1)} x^{2 k}}{\sum_{k=0}^{m} b_{k}^{(1)} x^{2 k}}
$$

(b) $2.5<x \leq 3.5$:

The function is calculated from
(c) $3.5<x \leq 5.0$:

The function is calculated from the same equation in case (b) except that the coefficients are $a_{k}^{(3)}$ and $b_{k}^{(3)}$.
(d) $5.0<x \leq 1 / \varepsilon(\varepsilon$:units for determining error)

The function is calculated from

$$
F(x)=\frac{1}{2 x} \cdot\left\{1+x^{-2} \cdot\left(a_{0}^{(4)}+\underset{k=1}{ \pm} \frac{b_{k-1}^{(4)} \mid}{\mid a_{k}^{(4)}+x^{2}}\right)\right\}
$$

(e) $x>1 / \varepsilon$:

The function is calculated from $F(x)=\frac{1}{2 x}$.
The coefficients $a_{k}^{(1 \sim 4)}$ and $b_{k}^{(1 \sim 4)}$ are described in reference (6).
(7) Normal distribution function and complementary normal distribution function $\Phi(x)$ and $\Psi(x)$

The function are calculated from the following equations.

$$
\begin{aligned}
& \Phi(x)=\frac{1}{2} \cdot \operatorname{ERF}(x / \sqrt{2}) \\
& \Psi(x)=\frac{1}{2} \cdot \operatorname{ERFC}(x / \sqrt{2})
\end{aligned}
$$

where error function ERF and complementary error function ERFC will be given later.

2.1.2.9 Associated Legendre Functions

(1) Associated Legendre function of the 1st kind $P_{n}^{m}(x)$
(1) For normalized Functions, see paragraph of Normalized Spherical Harmonics.
(2) $n<0$:

From $P_{n}^{m}(x)=P_{-n-1}^{m}(x)$, following methods are applied to $P_{-n-1}^{m}(x)$.
(3) $m<0$ and $n \geq 0$:

First, $P_{n}^{|m|}(x)$ is obtained using the methods described in (3) or (5), then $P_{n}^{m}(x)$ is calculated from the following expressions.
(a) $|x| \leq 1.0$:

$$
P_{n}^{m}(x)=(-1)^{m} \frac{(n-|m|)!}{(n+|m|)!} P_{n}^{|m|}(x)
$$

(b) $|x|>1.0$:

$$
P_{n}^{m}(x)=\frac{(n-|m|)!}{(n+|m|)!} P_{n}^{|m|}(x)
$$

(4) $m>n \geq 0$:

$$
P_{n}^{m}(x)=0.0
$$

(5) $m=0$:

The function $P_{n}^{m}(x)$ is equal to Legendre polynomial $P_{n}(x)$, its value is calculated using initial values $P_{0}(x)=1$ and $P_{1}(x)=x$ and the recurrence relation

$$
P_{k}(x)=\frac{2 k-1}{k} \cdot x \cdot P_{k-1}(x)-\frac{k-1}{k} \cdot P_{k-2}(x)(k=2, \cdots, n)
$$

(6) $n \geq m>0$:
(a) $n=1$ and $x \geq \sqrt{1 / \varepsilon}$:

The function is calculated from

$$
P_{n}^{m}(x)=x
$$

(b) $n=m$:

The function is calculated from

$$
P_{n}^{m}(x)=(2 n-1)!!\cdot\left(\sqrt{\left|1-x^{2}\right|}\right)^{m}
$$

(c) $n=m+1$:

The function is calculated from

$$
P_{n}^{m}(x)=(2 n-1)!!\cdot x \cdot\left(\sqrt{\left|1-x^{2}\right|}\right)^{m}
$$

(d) $n \geq m+2$:

The function is calculated using initial values

$$
F_{m}=(2 m-1)!!, F_{m+1}=(2 m+1)!!\cdot x=F_{m} \cdot(2 m+1) \cdot x
$$

and the recurrence relation

$$
\begin{aligned}
F_{k} & =\frac{2 k-1}{k-m} \cdot x \cdot F_{k-1}-\frac{k+m-1}{k-m} \cdot F_{k-2} \quad(k=m+2, \cdots n) \\
P_{n}^{m}(x) & =\left(\sqrt{\left|1-x^{2}\right|}\right)^{m} \cdot F_{n}
\end{aligned}
$$

(2) Associated Legendre function of the second kind $Q_{n}^{m}(x)(n \geq 0,|x|=1.0)$
(1) $m<0$:

First, $Q_{n}^{|m|}$ is obtained using described in the case (2) or (3), then $Q_{n}^{m}(x)$ is calculated from following expressions.
(a) $|x|<1.0$:

$$
Q_{n}^{m}(x)=(-1)^{m} \frac{(n-|m|)!}{(n+|m|)!} Q_{n}^{|m|}(x)
$$

(b) $|x|>1.0$:

$$
Q_{n}^{m}(x)=\frac{(n-|m|)!}{(n+|m|)!} Q_{n}^{|m|}(x)
$$

(2) $|x|<1.0$ and $m \geq 0$:

The values $Q_{n}^{0}(x)$ and $Q_{n-1}^{0}(x)$ are obtained bye using initial values

$$
Q_{0}^{0}(x)=\operatorname{artanh}(\mathrm{x}), \mathrm{Q}_{1}^{0}(\mathrm{x})=\mathrm{x} \cdot \mathrm{Q}_{0}^{0}(\mathrm{x})-1
$$

and the following recurrence relation

$$
Q_{k+1}^{0}(x)=\left\{(2 k+1) \cdot x \cdot Q_{k}^{0}(x)-k \cdot Q_{k-1}^{0}(x)\right\} /(k+1) \quad(k=1,2, \cdots, n-1)
$$

(If $m=0$, the calculation ends here.)
next, the value $Q_{n}^{1}(x)$ is obtained from

$$
Q_{n}^{1}(x)=\left\{-n \cdot x \cdot Q_{n}^{0}(x)+n \cdot Q_{n-1}^{0}(x)\right\} / \sqrt{1-x^{2}}
$$

If $n=0$, the following equation is used

$$
Q_{n}^{1}(x)=-1 / \sqrt{1-x^{2}}
$$

(If $m=1$, the calculation ends here.)
The $Q_{n}^{m}(x)$ is obtained by calculating the following recurrence relation

$$
\begin{aligned}
Q_{n}^{k+2}(x)= & 2 \cdot(k+1) \cdot\left(x / \sqrt{1-x^{2}}\right) \cdot Q_{n}^{k+1}(x)-(n-k) \cdot(n+k+1) \cdot Q_{n}^{k}(x) \\
& (k=0,1, \cdots, m-2)
\end{aligned}
$$

(3) $|x|>1.0$ and $m \geq 0$:
(a) $x>\sqrt{n+2}$ and $n \geq m$
i. $n=m=0$:

The function is calculated from

$$
Q_{n}^{m}(x)=\operatorname{artanh}(1 / \mathrm{x})
$$

ii. $|x|>\sqrt{(n+0.5) / \varepsilon}$:

The function is calculated from

$$
Q_{n}^{m}(x)=(-1)^{m} \frac{(n+m)!}{(2 n+1)!!} x^{-n-1}
$$

iii. Otherwise:

The function is calculated from the following series expansion

$$
\begin{aligned}
Q_{n}^{m}(x)= & (-1)^{m}\left(x^{2}-1\right)^{\frac{m}{2}} \frac{(n+m)!}{(2 n+1)!!} x^{-n-m-1} \\
& \cdot\left(1+\sum_{k=1}^{\infty} \frac{(n+m+1) \cdot(n+m+2) \cdots(n+m+2 \cdot k)}{2 k!!\cdot(2 n+3) \cdot(2 n+5) \cdots(2 n+2 k+1)} \cdot \frac{1}{x^{2 k}}\right)
\end{aligned}
$$

Where the summation Σ is calculated until the last term is sufficiently small compared with the first term.
(b) For values other than those in (a)

First, $Q_{0}^{0}(x)$ is calculated from the following expression

$$
Q_{0}^{0}(x)=\operatorname{artanh}(1 / \mathrm{x})
$$

(If $n=m=0$, the calculation ends here.)
Next, $Q_{n}^{0}(x)$ and $Q_{n-1}^{0}(x)$ are calculated using the series expansion of f as follows:

$$
\begin{aligned}
f & =\sum_{k=n}^{\infty} \frac{1}{(k+1) \cdot P_{k}(x) \cdot P_{k+1}(x)} \\
Q_{n}^{0}(x) & =P_{n}(x) \cdot f \\
Q_{n-1}^{0}(x) & =P_{n-1}(x) \cdot f+\frac{1}{n \cdot p_{n} \cdot(x)}
\end{aligned}
$$

where, $P_{k}(x)$ is solved using the algorithm shown in 2.1.2.10 (1).
(If $m=0$, the calculation ends.)
Next, $Q_{n}^{1}(x)$ is obtained from

$$
Q_{n}^{1}(x)=\left\{n \cdot x \cdot Q_{n}^{0}(x)-n \cdot Q_{n-1}^{0}(x)\right\} / \sqrt{x^{2}-1}
$$

However, if $n=0, Q_{n}^{1}(x)$ is calculated from

$$
Q_{n}^{1}(x)=-1 / \sqrt{x^{2}-1}
$$

(If $m=1$, the calculation ends here.)
Finally $Q_{n}^{m}(x)$ is obtained by calculating the following recurrence relation

$$
\begin{aligned}
Q_{n}^{k+2}(x)= & -2 \cdot(k+1) \cdot\left(x / \sqrt{x^{2}-1}\right) \cdot Q_{n}^{k+1}(x)+(n-k) \cdot(n+k+1) \cdot Q_{n}^{k}(x) \\
& (k=0,1, \cdots, m-2)
\end{aligned}
$$

2.1.2.10 Orthogonal Polynomials

(1) Legendre polynomial $P_{n}(x)(n \geq 0)$
$P_{n}(x)$ is obtained using initial values $P_{0}(x)=1.0$ and $P_{1}(x)=x$ and the following recurrence relation

$$
P_{k}(x)=\frac{2 k-1}{k} \cdot x \cdot P_{k-1}(x)-\frac{k-1}{k} \cdot P_{k-2}(x) \quad(k=2,3, \cdots, n)
$$

(2) Laguerre polynomial $L_{n}(x)(n \geq 0)$
$L_{n}(x)$ is obtained using initial values $L_{0}(x)=1.0$ and $L_{1}(x)=1.0-x$ and the following recurrence relation

$$
L_{k}(x)=\frac{(2 k-x-1)}{k} \cdot L_{k-1}(x)-\frac{(k-1)}{k} \cdot L_{k-2}(x) \quad(k=2,3, \cdots, n)
$$

(3) Hermite polynomial $H_{n}(x)(n \geq 0)$
$H_{n}(x)$ is obtained using initial values $H_{0}(x)=1.0$ and $H_{1}(x)=2 \cdot x$ and the following recurrence relation

$$
H_{k}(x)=2 \cdot x \cdot H_{k-1}(x)-2 \cdot(k-1) \cdot H_{k-2}(x) \quad(k=2,3, \cdots, n)
$$

(4) Chebyshev polynomial $T_{n}(x)(n \geq 0)$
$T_{n}(x)$ is obtained using initial values $T_{0}(x)=1.0$ and $T_{1}(x)=x$ and the following recurrence relation

$$
T_{k}(x)=2 \cdot x \cdot T_{k-1}(x)-T_{k-2}(x)(k=2,3, \cdots, n)
$$

(5) Chebyshev Function of the 2nd kind $U_{n}(x)(n \geq 0,|x| \leq 1.0)$
$U_{n}(x)$ is obtained using initial values $U_{0}(x)=0.0$ and $U_{1}(x)=\sqrt{1-x^{2}}$ and the following expression

$$
U_{n+1}(x)=2 \cdot x \cdot U_{n}(x)-U_{n-1}(x)
$$

(6) Generalized Laguerre polynomial $L_{n}^{(\alpha)}(x)(n \geq 0)$
$L_{n}^{\alpha}(x)$ is obtained by using initial values $L_{0}^{(\alpha)}(x)=1.0$ and $L_{1}^{(\alpha)}(x)=(1+\alpha)-x$ and the following recurrence relation

$$
L_{n}^{(\alpha)}(x)=\left((2 \cdot n+\alpha-x-1) \cdot L_{n-1}^{(\alpha)}(x)+(1-\alpha-n) \cdot L_{n-2}^{(\alpha)}(x)\right) / n
$$

2.1.2.11 Mathieu functions of integer orders

Consider the second order simultaneous ordinary differential equation as below

$$
\frac{d^{2} y}{d x^{2}}+(a-2 q \cos 2 x) y=0
$$

For a real parameter q, let $a=c_{0}, c_{1}, \cdots$ be the real parameters such that the solutions are 2π periodic and even functions. Here,

$$
c_{0}<c_{1}<c_{2}<\cdots
$$

Also, let $a=s_{1}, s_{2}, \cdots$ be the real parameters such that the solutions are 2π periodic and odd functions. Here,

$$
s_{1}<s_{2}<s_{3}<\cdots .
$$

For $a=c_{n}$ with an integer $n \geq 0$, normalize the periodic even solution $c_{n}(x, q)$ of the differential equation so that the following condition is satisfied.

$$
\int_{0}^{2 \pi} c e_{n}(x, q)^{2} d x=\pi
$$

The $c e_{n}(x, q)$ is referred to as Matheiu function of integer order. Similarly, for $a=s_{n}$ with an integer $n \geq 1$, normalize the periodic odd solution $s_{n}(x, q)$ of the differential equation so that the following condition is satisfied.

$$
\int_{0}^{2 \pi} s e_{n}(x, q)^{2} d x=\pi
$$

The $s e_{n}(x, q)$ is also referred to as Matheiu function of integer order.
It is known that $c e_{n}(x, q)$ and $s e_{n}(x, q)$ can be represented by the following Fourier expansions:
(1) If $\mathrm{s}=0$ (for $c e_{n}$ with even n)

$$
c e_{n}(x, q)=\sum_{r=0}^{\infty} X_{r} \cos (2 r x) .
$$

(2) If $s=1$ (for $s e_{n}$ with odd n)

$$
s e_{n}(x, q)=\sum_{r=0}^{\infty} X_{r} \sin ((2 r+1) x)
$$

(3) If $\mathrm{s}=2$ (for $c e_{n}$ with odd n)

$$
c e_{n}(x, q)=\sum_{r=0}^{\infty} X_{r} \cos ((2 r+1) x)
$$

(4) If $\mathrm{s}=3$ (for $s e_{n}$ with positive even n)

$$
s e_{n}(x, q)=\sum_{r=0}^{\infty} X_{r} \sin ((2 r+2) x) .
$$

These are referred to as Mathieu functions of order n. By substituting these formulas for $c e_{n}$ and $s e_{n}$ into the differential equation, the equation reduces to an eigenvalue problem of tridiagonal real symmetric matrix $A_{s}(q)$, and this gives the expansions X_{r}.

$$
\left.A_{s}(q)=\left[\begin{array}{ccccc}
K_{s}^{2}+d_{s} q & R_{s} q & & & \\
R_{s} q & \left(2+K_{s}\right)^{2} & q & 0 & \\
& q & \left(4+K_{s}\right)^{2} & q & \\
& 0 & & q & \left(6+K_{s}\right)^{2}
\end{array}\right] \cdot\right\}
$$

Here,
(1) $R_{0}=\sqrt{2}, R_{1}=R_{2}=R_{3}=1$
(2) $K_{0}=0, K_{1}=K_{2}=1, K_{3}=2$
(3) $d_{0}=0, d_{1}=-1, d_{2}=1, d_{3}=0$,
and $s=0,1,2$ or 3 . The s is determined by the kind of Mathieu functions (whether it is $c e_{n}(x, q)$ or $s e_{n}(x, q)$), and whether order n is odd or even. Eigenvalues $\left[R_{s} X_{0}, X_{1}, X_{2}, X_{3}, \cdots\right]^{t}$ of $A_{s}(q)$ are choose to become unit vectors. Define an integer constant l with the following conditions:
(1) For $c e_{n}$

$$
l=1+[n / 2]
$$

(2) For $s e_{n}$

$$
\begin{aligned}
& l=n / 2(\text { If } n \text { is odd. }) \\
& l=(n+1) / 2(\text { If } n \text { is even. })
\end{aligned}
$$

The direction of the eigenvector which corresponds to l-th smallest eigenvalue is selected to satisfy $X_{l}>0$. When $q \rightarrow 0$, Mathieu functions $c e_{n}(x, q)$ and $s e_{n}(x, q)$ which is obtained with this procedure converge to the following functions.
(1) $c e_{0}(x, q) \rightarrow \frac{1}{\sqrt{2}}$
(2) $c e_{n}(x, q) \rightarrow \cos n x(n=1,2, \cdots)$
(3) $s e_{n}(x, q) \rightarrow \sin n x(n=1,2, \cdots)$

2.1.2.12 Langevin function

(1) $x<0.0$:

From $L(x)=-L(-x)$, following methods are applied to $L(-x)$.
(2) $x \geq 0.0$:
(1) $x \leq 1.5$:

The function is calculated by generating the best approximation of the following equation.

$$
L(x)=x \cdot \sum_{k=1}^{\infty}(-1)^{k-1}\left\{\frac{2^{2 k} \cdot B_{k} \cdot x^{2 k+2}}{(2 k)!}\right\}
$$

The method of generating the best approximation is described in Section 2.1.2.22.
(2) $1.5<x<\left\{\begin{array}{l}\text { Double precision : } 45.0 \\ \text { Single precision :20.0 }\end{array}\right\}$:

The function is calculated from

$$
L(x)=\frac{2 \cdot e^{-2 \cdot x}}{1-e^{-2 \cdot x}}-\frac{1}{x}+1
$$

(3) $x \geq\left\{\begin{array}{l}\text { Double precision : } 45.0 \\ \text { Single precision }: 20.0\end{array}\right\}$:

The function is calculated from

$$
L(x)=1-\frac{1}{x}
$$

2.1.2.13 Gauss=Legendre integration formula

(1) Gauss=Legendre integration formula

Suppose an arbitrary Legendre polynomial $F(x)$ of degree $2 N-1$ or less is given. The remainder of $F(x)$ divided by $P_{N}(x)$, the Legendre polynomial of degree N, can be expressed as a linear combination of $P_{j}(x) \quad(j=0,1, \cdots, N-1)$:

$$
F(x)=P_{N}(x) Q(x)+b_{0}+\sum_{j=1}^{N-1} \sqrt{2 j+1} b_{j} P_{j}(x)
$$

where $Q(x)$ is a polynomial of degree $N-1$ or less and $b_{0}, b_{1}, \cdots, b_{N-1}$ are constants. An arbitrary polynomial $Q(x)$ of degree $N-1$ or less can be expressed as a linear combination of $P_{j}(x)(j=0,1, \cdots, N-1)$. Using the orthogonal relation

$$
\int_{-1}^{+1} P_{N}(x) P_{j}(x) d x=0(j=0,1, \cdots, N-1)
$$

it holds that

$$
\int_{-1}^{+1} P_{N}(x) Q(x) d x=0
$$

Also, by being aware of the fact:

$$
\int_{-1}^{+1} P_{j}(x) d x=0(j=1,2, \cdots, N-1)
$$

the relation below is induced from the expression formula for $F(x)$:

$$
\int_{-1}^{+1} F(x) d x=2 b_{0}
$$

Let $\alpha_{k}(k=1,2, \cdots, N)$ be the the N number of zero points of $P_{N}(x)$. Substituting $x=\alpha_{k}$ into the expression formula for $F(x)$, it holds that:

$$
F\left(\alpha_{k}\right)=b_{0}+\sum_{j=1}^{N-1} \sqrt{2 j+1} b_{j} P_{j}\left(\alpha_{k}\right) \cdot(k=1,2, \cdots, N)
$$

For $k=1,2, \cdots, N$, let take d_{k}^{2} such that:

$$
d_{k}^{2}=\sum_{n=0}^{N-1}(2 n+1) P_{n}^{2}\left(\alpha_{k}\right) .
$$

From the above expression for $F\left(\alpha_{k}\right)$ and

$$
\begin{aligned}
& \sum_{k=1}^{N} d_{k}^{-2} P_{j}\left(\alpha_{k}\right)=0(j=1,2, \cdots, N-1) \\
& \sum_{k=1}^{N} d_{k}^{-2}=1
\end{aligned}
$$

it holds that:

$$
b_{0}=\sum_{k=1}^{N} d_{k}^{-2} F\left(\alpha_{k}\right)
$$

Therefore, if a polynomial $F(x)$ is choose so that its values $F\left(\alpha_{k}\right)$ at $x=\alpha_{k}(k=1,2, \cdots, N)$ coincides with the values of the function $f(x)$, the integration formula of degree $2 N-1$ holds:

$$
\int_{-1}^{+1} f(x) d x \simeq \int_{-1}^{+1} F(x) d x=2 b_{0}=2 \sum_{k=1}^{N} d_{k}^{-2} F\left(\alpha_{k}\right)
$$

$$
=2 \sum_{k=1}^{N} d_{k}^{-2} f\left(\alpha_{k}\right)
$$

Here, the polynomial $F(x)$ of degree $2 N-1$ or less needs only to satisfy the conditions at the N number of zero points. This means that the choice of $F(x)$ has freedom of degree N at most. If the integrand function $f(x)$ can not be approximated by some polynomial $F(x)$ (for instance when $f(x)$ is a vibrating function), it is necessary to set the degree N sufficiently large when applying this integration formula.
(2) Zero points of Legendre polynomial

We set $X_{n}=\sqrt{2 n+1} P_{n}(\alpha)$. If α satisfies $P_{N}(\alpha)=0$ for $a_{n}=n / \sqrt{4 n^{2}-1}$, it holds that

$$
\begin{aligned}
& a_{1} X_{1}=\alpha X_{0}, a_{2} X_{2}+a_{1} X_{0}=\alpha X_{1}, a_{3} X_{3}+a_{2} X_{1}=\alpha X_{2}, \cdots, \\
& a_{N-1} X_{N-1}+a_{N-2} X_{N-3}=\alpha X_{N-2}, a_{N-1} X_{N-2}=\alpha X_{N-1} .
\end{aligned}
$$

Therefore, since all the zero points of Legendre polynomial are single solutions, they are eigenvalues of a real symmetric tridiagonal matrix whose diagonals are zero and whose subdiagonals are $a_{1}, a_{2}, \cdots, a_{N-1}$, and they are obtained with root-free QR method.
For a Legendre polynomial of a large degree, all the zero points gather closely together in the open interval ($1,1)$. In this case all of the N number of zero points can be calculated certainly by solving the eigenproblem of this real symmetric tridiagonal matrix using root free QR method, instead of computing them using Newton method.

2.1.2.14 Zero points of Bessel Functions

(1) Positive solution for the transcendency equation $a J_{0}(\alpha)+\alpha J_{1}(\alpha)=0$ containing the Bessel function Positive solution α for the transcendency equation

$$
a J_{0}(\alpha)+\alpha J_{1}(\alpha)=0
$$

is obtained with the following method.
By using the following method, the positive solution for the transcendency equation can be calculated up to $M=50$ in rough. (If it is calculated with the single precision, set to $\mathrm{M} \leq 24$, that is $\mathrm{N} \leq 192$.) The parameter a should be set to $a=0$ and $10^{-10} \leq|a| \leq 10^{4}$.

1. Calculate an approximate value with the finite element method.

The differential equation

$$
u^{\prime \prime}(r)+u^{\prime}(r) / r+\alpha^{2} u(r)=0
$$

with a boundary condition

$$
u^{\prime}(1)=a u(1)
$$

has a non-trivial solution $u(r)(0 \leq r \leq 1)$ where $u(+0)$ is finite, if and only if $a J_{0}(\alpha)+\alpha J_{1}(\alpha)=0$ is satisfied. Then it holds that $u(r)=C J_{0}(\alpha r)$.
Let $w_{j}(r)(j=0,1,2, \cdots, N-1, N)$ be the basis function which satisfy $w_{j}(j / N)=1, w_{j}(k / N)=0(k \neq j)$ at the nodal points $r=0,1 / N, 2 / N, \cdots,(N-1) / N, 1$. Using the w_{j}, interpolate $u(r)$ using the basis functions as below.

$$
u(r)=\sum_{j=0}^{N} u(j / N) w_{j}(r)
$$

Galerkin method can be applied to get

$$
\int_{0}^{1} w_{j}(r)\left(u^{\prime \prime}(r)+u^{\prime}(r) / r+\alpha^{2} u(r)\right) r d r=0
$$

Applying integration by parts to the factor including the second differential calculus, the above relation is reduced to the following integral relation.

$$
\int_{0}^{1} w_{j}^{\prime}(r) u^{\prime}(r) r d r-a w_{j}(1) u(1)=\alpha^{2} \int_{0}^{1} w_{j}(r) u(r) r d r
$$

Substitute the interpolated basis function

$$
A X=\alpha^{2} B X, X=(u(0), u(1 / N), \cdots, u(1))^{t}
$$

Where A and B are

$$
\begin{aligned}
& A_{i, j}=\int_{0}^{1} w_{j}^{\prime}(r) w_{i}^{\prime}(r) r d r-\delta_{i, N} \delta_{j, N} a \\
& B_{i, j}=\int_{0}^{1} w_{j}(r) w_{i}(r) r d r
\end{aligned}
$$

Therefore, the approximate values of solutions $\alpha(\alpha>0)$ for $a J_{0}(\alpha)+\alpha J_{1}(\alpha)=0$ are obtained by calculating $\sqrt{\beta}$ which are square roots of the positive eigenvalues β for the generalized eigenvalue problem $A X=\beta B X$.
2. Improving the Solution by Bisection and Newton method

Set $N=L M$. Here L is the approximate magnification ratio, which is preferred to be 8 in rough. The square roots of the positive eigenvalues β for the generalized eigenvalue problem the approximate the solutions for the transcendental equation.
E is defined as below:

$$
\begin{aligned}
& E=0(a<0) \\
& E=\alpha(0)^{2}(a \geq 0)
\end{aligned}
$$

Here $\alpha(0)$ is the positive smallest zero point of $J_{0}(x)$.
Let $\beta_{1}^{*}, \beta_{2}^{*}, \cdots, \beta_{M}^{*}$ be the eigenvalues greater than E in ascending order. We examine that the number of eigenvalues that is smaller than or equal to E does not reach 2 . We also examine that β_{j}^{*} is not a multiple root.
(1) Bisection method

If $\alpha^{*}=\sqrt{\beta_{j}^{*}}$ for $j \geq 2$ satisfies

$$
\left|a J_{0}\left(\alpha^{*}\right)+\alpha^{*} J_{1}\left(\alpha^{*}\right)\right|<0.1 *\left(\left|J_{0}\left(\alpha^{*}\right)\right|+\left|J_{1}\left(\alpha^{*}\right)\right|\right),
$$

then step forward to the process to improve the approximate solution using Newton method.
This condition holds when j is 10 or less. When j is larger than 10 , however, the condition is not satisfied because of the approximation error due to Galerkin method. In the latter case, therefore, improve α^{*} by Bisection method.
In Bisection method, use the property that $\left|a J_{0}\left(\alpha^{*}\right)+\alpha^{*} J_{1}\left(\alpha^{*}\right)\right|$ becomes small as the approximate solution α^{*} comes close to the exact solution. The interval $\left(\sqrt{\beta_{j}^{*}-\delta}, \sqrt{\beta_{j}^{*}+\delta}\right)$ such that includes
only the j -th solution is divided into two subintervals and α^{*} is replaced with one of the edges of these subintervals. Here, δ is positive real number which has the order of the approximate error. Divisions of intervals are repeated until α^{*} satisfies the condition above, and then step forward to the process to improve the approximate solution using Newton method.
(2) Newton method

The improvement using Newton method will be repeated until $\left|a J_{0}(x)+x J_{1}(x)\right|<e$ is satisfied, where $e=10^{-11}$ for double precision
or
$e=10^{-4}$ for single precision.
(2) Positive zero points of the Bessel function $J_{m+1}(x)$ with integer order

When $m=1,2, \cdots$, the holomorphic function $F_{m}(x)$ can be defined as

$$
J_{m}(x)=x^{m} F_{m}(x)
$$

and this satisfies

$$
F_{m}^{\prime \prime}(x)+(2 m+1) F_{m}^{\prime}(x) / x+F_{m}(x)=0
$$

Furthermore, it holds that $x^{m} F_{m}^{\prime}(x)=-J_{m+1}(x)$. Therefore, the method of algorithm (1) can be applied to

$$
\begin{aligned}
& A_{i, j}=\int_{0}^{1} w_{j}^{\prime}(r) w_{i}^{\prime}(r) r^{2 m+1} d r \\
& B_{i, j}=\int_{0}^{1} w_{j}(r) w_{i}(r) r^{2 m+1} d r
\end{aligned}
$$

The threshold p for determining whether an eigenvalue for generalized eigenvalue problem is positive or not is:
$p=10^{-3}$ (for double precision),
$p=10^{-1}$ (for single precision).
In Bisection method, the following error criterion is applied:

$$
\left|J_{m+1}\left(\alpha^{*}\right)\right| \leq 0.001
$$

(3) Positive zero points of each Bessel function J_{0}, J_{1} of the order 0 and 1

The zero point of $J_{1}(x)$ is obtained as the positive zero point of the transcendent equation in the algorithm (1) when setting $a=0$.

When a is set to a sufficiently large value, the solution of the transcendent equation $a J_{0}(\alpha)+\alpha J_{1}(\alpha)=0$ becomes the approximate value of the zero point of $J_{0}(x)$. Therefore the zero point of $J_{0}(x)$ is obtained by applying the algorithm (1) for a sufficiently large value a.

2.1.2.15 Positive zero points of the second kind Bessel function

(1) Obtain Positive zero point of the second kind Bessel function $Y_{n}(x)$ in window interval $\left[x_{1}, x_{1}+2 \pi\right]\left(x_{1}>0\right)$ with the following procedure.
(1) Positive zero point on each window interval

Set an initial value $x=x_{0}$ to the middle-point of the window interval. We let $F(x)=Y_{n}(x) \cos x-$ $J_{n}(x) \sin x$ and $G(x)=Y_{n}(x) \sin x+J_{n}(x) \cos x$. Furthermore, let α be an argument of the vector $(F(x), G(x))$.

$$
\begin{aligned}
& \cos \alpha=F(x) / S \\
& \sin \alpha=G(x) / S \\
& S=\sqrt{\left(F(x)^{2}+G(x)^{2}\right)}
\end{aligned}
$$

Here α is choose so that it lies in the window interval. The improved value x_{i+1} of the approximate zero point is given as the argument of the vector $(F(x), G(x))$. Repeat this improvement.
(2) Decision of existing the positive zero point When repetition of this improvement does not converge, we concluded that positive zero point does not exist in this window interval.
(2) Shifting the window interval for 2π per step, repeat the above procedures until the number of already obtained positive zero points reaches the number to be obtained.

2.1.2.16 Zeta function of Positive definite quadratic form $x^{2}+a y^{2}$

We initially define the zeta function $Z(s, a)$ of the positive definite quadratic form $x^{2}+a y^{2}$ as:

$$
Z(s, a)=\sum_{(m, n) \in Z^{2},(m, n) \neq(0,0)}\left(m^{2}+a n^{2}\right)^{-s}(s>1)
$$

Subtracting the function to eliminate the unique pole of $Z(s, a)$, the analytic continuation of $Z(s, a)$ is obtained as described below:

$$
\begin{aligned}
& Z(s, a)-\frac{\pi^{s} a^{-s / 2}}{\Gamma(s)(s-1)} \\
= & \frac{\pi^{s} a^{-s / 2}}{\Gamma(s)} \sum_{(m, n) \in Z^{2},(m, n) \neq(0,0)}\left(A_{m, n}^{-s} \int_{A_{m, n}}^{\infty} e^{-t} t^{s-1} d t+A_{m, n}^{s-1} \int_{A_{m, n}}^{\infty} e^{-t} t^{-s} d t\right)-\frac{\pi^{s} a^{-s / 2}}{\Gamma(s+1)} .
\end{aligned}
$$

Each integral in the above formula is a second kind incomplete gamma integral. Therefore, we obtain

$$
\begin{aligned}
& Z(s, a)-\frac{\pi^{s} a^{-s / 2}}{\Gamma(s)(s-1)} \\
= & \frac{\pi^{s} a^{-s / 2}}{\Gamma(s)} \sum_{(m, n) \in Z^{2},(m, n) \neq(0,0)}\left(A_{m, n}^{-s} \Gamma\left(s, A_{m, n}\right)+A_{m, n}^{s-1} \Gamma\left(1-s, A_{m, n}\right)\right)-\frac{\pi^{s} a^{-s / 2}}{\Gamma(s+1)}
\end{aligned}
$$

with $A_{m, n}=\pi\left(\sqrt{a} m^{2}+n^{2} / \sqrt{a}\right)$.
The summation in the last expression should be taken for all those integer pairs $(m, n) \neq(0,0)$ that satisfy $A_{m, n}<40$.

2.1.2.17 Di-log function

The value of

$$
L i_{2}(x)=-\int_{0}^{x} \log |t-1| \frac{d t}{t}
$$

is given as follows:
(1) For $x=1$

The functional value $L i_{2}(x)$ is $\pi^{2} / 6$.
(2) For $x>1$

The functional value $L i_{2}(x)$ is $\pi^{2} / 3-\frac{1}{2}(\log x)^{2}-L i_{2}\left(\frac{1}{x}\right)$, where $L i_{2}\left(\frac{1}{x}\right)$ is obtained as below.
(3) For $0 \leq x<1$
(1) If $x>\frac{1}{2}, L i_{2}(x)$ is calculated by $L i_{2}(x)=\pi^{2} / 6-\log (1-x) \log x-L i_{2}(1-x)$. Where, $L i_{2}(1-x)$ is obtained by applying 2 .
(2) If $x \leq \frac{1}{2}, L i_{2}(x)$ is

$$
L i_{2}(x)=\alpha-\frac{1}{4} \alpha^{2}-\sum_{k=1}^{8} \frac{c_{2 k}}{2 k+1} \alpha^{2 k+1}
$$

Where $\alpha=-\log (1-x)$ and $c_{2 k}$ is Bernoulli numbers.
The functional value $L i_{2}(x)$ can be calculated by using this relation.

2.1.2.18 Debye function

The Debye function $F_{D}(x)$ is defined as below:

$$
F_{D}(x)=\frac{3}{x^{3}} \int_{0}^{x} \frac{e^{t} t^{4}}{\left(e^{t}-1\right)^{2}} d t
$$

This is transformed as:

$$
F_{D}(x)=\frac{12}{x^{3}} \int_{0}^{x} \frac{t^{3}}{e^{t}-1} d t-\frac{3 x}{e^{x}-1}
$$

The value of this function is calculated by applying two kind of methods as below.
(1) For $0 \leq x \leq \log 2$ It can be obtained with

$$
F_{D}(x)=-\frac{3 x}{e^{x}-1}+12\left(\frac{1}{3}-\frac{x}{8}-\sum_{k=1}^{\infty} \frac{c_{2 k}}{2 k+3} x^{2 k}\right)=1+\sum_{k=1}^{\infty} \frac{3(2 k-1)}{2 k+3} c_{2 k} x^{2 k}
$$

Here $c_{2 k}$ is Bernoulli numbers. The summation of series for k is performed until the added factor becomes is less than or equal to the unit for determining error (Note Appendix B).
(2) For $x>\log 2$

It can be obtained with

$$
F_{D}(x)=\frac{12}{x^{3}} F(x)-\frac{3 x}{e^{x}-1}
$$

$$
\begin{aligned}
& F(x)=\frac{\pi^{4}}{15}+S_{1}(y)+S_{2}(y) \log y+S_{3}(y)(\log y)^{2}+y(\log y)^{3} \\
& S_{j}(y)=\sum_{k=1}^{\infty} b_{k, j} y^{k}(j=1,2,3)
\end{aligned}
$$

Here $y=-\log \left(1-e^{-x}\right)$. The summation of series for k is performed until the added factor becomes less than or equal to the unit for determining error (Note Appendix B). The coefficients $b_{k, j}$ are calculated with the following procedure.
For $F(x)=\int_{0}^{x} t^{3} d t /\left(e^{t}-1\right)$, use the parameter $y(0<y<\log 2)$

$$
F(x)=\int_{y}^{\infty}\left(-\log \left(1-e^{-u}\right)\right)^{3} d u=\int_{0}^{\infty}-\int_{0}^{y}=I_{1}-I_{2}
$$

Here,

$$
\begin{aligned}
& I_{1}=\int_{0}^{\infty}=F(\infty)=\frac{\pi^{4}}{15} \\
& I_{2}=\int_{0}^{y}=\int_{0}^{y}\left(\log \left(\frac{u}{1-e^{-u}}\right)-\log u\right)^{3} d u .
\end{aligned}
$$

Furthermore, $b_{k, j}$ is calculated by using the series expansion of $\log \left(\frac{u}{1-e^{-u}}\right)$

$$
\log \left(\frac{u}{1-e^{-u}}\right)=\frac{u}{2}+\sum_{k=1}^{\infty} \frac{c_{2 k}}{2 k} u^{2 k}
$$

where $c_{2 k}$ is Bernoulli numbers.

2.1.2.19 Normalized Spherical Harmonics

For a real number $x(-1 \leq x \leq 1)$, calculate the normalized spherical harmonic function (the normalized Legendre function)

$$
P_{n}^{* m}(x)=\frac{1}{4 \pi i^{m}} A_{n, m} \int_{-\pi}^{\pi}\left(x+i \sqrt{1-x^{2}} \cos \psi\right)^{n} \cos (m \psi) d \psi .
$$

Here, $i=\sqrt{-1}$,

$$
A_{n, 0}=\sqrt{\frac{2 n+1}{\pi}}
$$

and

$$
A_{n, m}=\sqrt{\frac{2(2 n+1)(n-m)!(n+m)!}{\pi(n!)^{2}}}(1 \leq m \leq n)
$$

To obtain the integral factor, apply the following Fourier expansion (set $x=\cos \theta, 0 \leq \theta \leq \pi$):

$$
(\cos \theta+i \sin \theta \cos \psi)^{n}=\sum_{m=0}^{n} i^{m} C_{n, m}(\theta) \cos (m \psi) .
$$

If we define $I_{n, m}$ as

$$
I_{n, m}=\frac{1}{i^{m} \sin ^{m} \theta} \int_{-\pi}^{\pi}(\cos \theta+i \sin \theta \cos \psi)^{n} \cos (m \psi) d \psi
$$

the coefficients $C_{n, m}(\theta)$ of the Fourier expansion can be obtained using the following recurrence formula:

$$
\begin{aligned}
& I_{n, n}=\frac{\pi}{2^{n-1}}, I_{n, n+1}=0 \\
& I_{n, m-2}=\frac{2}{m-n-2}\left\{-(m-1) \cos \theta I_{n, m-1}+(m+n) \frac{\sin ^{2} \theta}{2} I_{n, m}\right\} \\
& C_{n, m}(\theta)=\frac{\left(2-\delta_{m, 0}\right) \sin ^{m} \theta}{2 \pi} I_{n, m}
\end{aligned}
$$

Using the coefficients $C_{n, m}(\theta)$ of the Fourier expansion which can be obtained as procedure above, the normalized spherical harmonic function (the normalized Legendre function) $P_{n}^{* m}(\cos \theta)$ of the order n can be obtained as:

$$
P_{n}^{* m}(\cos \theta)=C_{n, m}(\theta) \frac{1}{h_{n, m}} .
$$

Here, the coefficients $h_{n, m}$ are:

$$
\begin{aligned}
& g_{n, 0}=1, g_{n, m}=g_{n, m-1}\left(1+\frac{m}{n}\right)^{-1}\left(1-\frac{m-1}{n}\right) \quad(m=1,2, \cdots) \\
& h_{n, m}=2 \sqrt{\frac{\left(2-\delta_{m, 0}\right) \pi g_{n, m}}{2 n+1}} .
\end{aligned}
$$

2.1.2.20 Hurwitz Zeta function for a real variable

(1) Definition

For real region $s>-1$ and $s \neq 1$ and for a parameter $a>0$, the Hurwitz zeta function $\zeta(s, a)$ is defined as follows :

$$
\zeta(s, a)=\frac{a^{-s+1}}{s-1}+\frac{a^{-s}}{2}+\int_{0}^{\infty}-s \psi(x)(x+a)^{-s-1} d x .
$$

Here, $\psi(x)$ is a periodic function (of period 1) defined as $x-[x]-\frac{1}{2}$.
(a) Definition for $s>1$

The Hurwitz zeta function is expressed as follows:

$$
\begin{aligned}
& \zeta(s, a)=\int_{0}^{\infty}(x+a)^{-s} d x+\frac{a^{-s}}{2}+\int_{0}^{\infty}-s \psi(x)(x+a)^{-s-1} d x \\
& =\sum_{n=0}^{\infty}\left\{\int_{n}^{n+1}(x+a)^{-s} d x+\int_{n}^{n+1}-s \psi(x)(x+a)^{-s-1} d x\right\}+\frac{a^{-s}}{2} \\
& =\sum_{n=0}^{\infty}\left\{\int_{n}^{n+1} \frac{d}{d x}\left(\psi(x)(x+a)^{-s}\right) d x\right\}+\frac{a^{-s}}{2} \\
& =\sum_{n=0}^{\infty}\left\{\frac{1}{2}(n+a)^{-s}+\frac{1}{2}(n+1+a)^{-s}\right\}+\frac{a^{-s}}{2} \\
& =\sum_{n=0}^{\infty}(n+a)^{-s} .
\end{aligned}
$$

Therefore, the Hurwitz zeta function is equal to the infinite series sum $\sum_{n=0}^{\infty}(n+a)^{-s}$ for $s>1$, which converges to a finite value.
(b) Definition for $s>-1$

An infinite integral

$$
\int_{0}^{\infty}-s \psi(x)(x+a)^{-s-1} d x
$$

is convergent also for $s>-1$. This is easy to see from the fact that the alternating series

$$
\sum_{m=0}^{M} \int_{\frac{m}{2}}^{\frac{m+1}{2}}-s \psi(x)(x+a)^{-s-1} d x
$$

converge as $M \rightarrow \infty$. Therefore, the Hurwitz zeta function can also be defined in this region.
Now it can be said that the Hurwitz zeta function

$$
\zeta(s, a)=\frac{a^{-s+1}}{s-1}+\frac{a^{-s}}{2}+\int_{0}^{\infty}-s \psi(x)(x+a)^{-s-1} d x
$$

is a function defined in the region $s \neq 1$, which is an extension of the infinite series sum $\sum_{n=0}^{\infty}(n+a)^{-s}$ that is defined for $s>1$. Also,

$$
\zeta(s, a)-\frac{1}{s-1}=\int_{0}^{1}\{\zeta(s, a)-\zeta(s, x+1)\} d x
$$

has an integral expression

$$
\int_{a}^{1} x^{-s} d x+\frac{a^{-s}}{2}+\int_{0}^{\infty}-s \psi(x)(x+a)^{-s-1} d x
$$

which can be defined for $s>-1$, including the case $s=1$.
(2) Algorithm for Calculation
(a) Set N to a fixed natural number $10 ; N=10$. The Hurwitz zeta function can be expanded as the formula below:

$$
\begin{aligned}
\zeta(s, a) & =\sum_{n=0}^{N-1}(n+a)^{-s}+Z(s, a)+\frac{(N+a)^{-s}}{2}+R(s, a), \\
Z(s, a) & =\frac{(N+a)^{-s+1}}{s-1}
\end{aligned}
$$

and

$$
R(s, a)=\int_{N}^{\infty}-s(x+a)^{-s-1} \psi(x) d x
$$

This expansion formula is obtained by applying the integral expression to the second summation term in the right hand side of the Hurwitz zeta function

$$
\zeta(s, a)=\sum_{n=0}^{N-1}(n+a)^{-s}+\sum_{n=N}^{\infty}(n+a)^{-s} .
$$

(b) The value of $R(s, a)$ is obtained from the following formula whose error is of the order 10^{-9} (for single precision) 10^{-18} (for double precision):

$$
R(s, a)=\sum_{j=0}^{m-2}(-s) \cdots(-s-j)(N+a)^{-s-1-j} \psi_{2+j}(0)
$$

Here, $\psi_{k}(x) \quad(k=2,3, \cdots)$ are defined as periodic functions (of period 1)

$$
-\psi(x)=\psi_{2}^{\prime}(x), \quad-\psi_{2}(x)=\psi_{3}^{\prime}(x), \quad-\psi_{3}(x)=\psi_{4}^{\prime}(x), \cdots
$$

satisfying

$$
\int_{0}^{1} \psi_{k}(x) d x=0
$$

Depending on whether double precision or single precision is assumed and depending on the value s, the function $R(s, a)$ is obtained as follows:
i. For single precision

If $s>10$ then, set $R(s, a)=0$.
If $0 \leq s \leq 10$, then apply expansion formula with $m=10$.
ii. For double precision

If $s>20$, then set $R(s, a)=0$.
If $10<s \leq 20$, then apply expansion formula with $m=10$.
If $5<s \leq 10$, then apply expansion formula with $m=15$.
If $0 \leq s \leq 5$, then apply expansion formula with $m=20$.
Using the Bernoulli numbers $B_{l}, \psi_{k}(0)$ is represented as

$$
\psi_{2 j+1}(0)=0
$$

and

$$
\psi_{2 j}(0)=(-1)^{j} \frac{B_{j}}{(2 j)!} .
$$

For arbitrary real numbers x and $t \quad(|t|<2 \pi)$, it holds that

$$
\frac{t e^{x_{1} t}}{e^{t}-1}=1-\sum_{k=1}^{\infty} \psi_{k}(x)(-t)^{k}
$$

Here, x_{1} is fractional part of x. The Bernoulli polynomials $\psi_{k}(x)$ are expressed using the Fourier expansions as

$$
(-1)^{\frac{k+1}{2}} 2 \sum_{n=1}^{\infty} \frac{\sin (2 \pi n x)}{(2 \pi n)^{k}} \quad(k: \text { oddnumber })
$$

and

$$
(-1)^{\frac{k}{2}} 2 \sum_{n=1}^{\infty} \frac{\cos (2 \pi n x)}{(2 \pi n)^{k}} \quad(k: \text { evennumber })
$$

This implies that these absolute values are of the order $(2 \pi)^{-k}$.
(3) Removal of Singular point

Since the Hurwitz zeta function has a pole at the point $s=1$, it is not able to obtain the value of the function when s is equal to 1 . But, as $\zeta(s, a)-1 /(s-1)$ can be defined as a regular function, as far as $|s-1|<10^{-4}$ (for single precision) or $|s-1|<10^{-8}$ (for double precision), we replace $Z(s, a)$ in the expansion formula of the Hurwitz zeta function $\zeta(s, a)$ with:

$$
-\log (N+a)\left(1-\frac{1}{2} \log (N+a)(s-1)\left(1-\frac{1}{3} \log (N+a)(s-1)\right)\right)
$$

which is an approximation formula for

$$
\frac{(N+a)^{-s+1}-1}{s-1}
$$

whose error is less than 10^{-9} (single precision) 10^{-18} (double precision). Here

$$
\lim _{s \rightarrow 1}\left(\zeta(s, a)-\frac{1}{s-1}\right)=-\frac{\Gamma^{\prime}(a)}{\Gamma(a)}
$$

2.1.2.21 The functions related to the error function

(1) The error function for complex values $e^{-z^{2}} \operatorname{Erfc}(-i z)$

The error function for complex values $e^{-z^{2}} \operatorname{Erfc}(-i z)$ can be obtained from the value of definite integral
$e^{-z^{2}} \int_{0}^{z} e^{w^{2}} d w$.
(a) When the absolute value of $\Im(z)$ is small and less than 10^{-4}, we apply the following formula to avoid the small denominator due to some special values of $\Re(z)$ (also including the case $\Re(z)=0$)

$$
f(z)=f_{0}+f_{1}\left(z-z_{0}\right)+f_{2}\left(z-z_{0}\right)^{2} / 2+f_{3}\left(z-z_{0}\right)^{3} / 6
$$

where $f(z)=e^{-z^{2}}+\frac{2 i}{\sqrt{\pi}} D_{w}(z)\left(D_{w}(z)\right.$ is the Dawson integral) and

$$
f_{0}=f\left(z_{0}\right), f_{1}=-2 z_{0} f_{0}+\frac{2 i}{\sqrt{\pi}}, f_{2}=-2 z_{0} f_{1}-2 f_{0}, f_{3}=-2 z_{0} f_{2}-4 f_{1}, z_{0}=\Re(z)
$$

(b) Assume that z is not real and set $z=\beta=R+i I(R$ and I are real and $I>0)$. If the imaginary part is negative, this problem is reduced to the case when the imaginary part is positive using the fact that the relation

$$
F(z)+F(-z)=2 e^{-z^{2}}
$$

holds for $F(z)=e^{-z^{2}} \operatorname{Erfc}(-i z)$.
(c) Suppose that $z=\beta=R+i I(R, I$ are real and $I>0)$. Set

$$
f(x)=\int_{-\infty}^{\infty} e^{-x t^{2}} /(t+\beta) d t=\int_{0}^{\infty} 2 \beta e^{-x t^{2}} /\left(\beta^{2}-t^{2}\right) d t(x \geq 0)
$$

For $x>0$, since

$$
\left(e^{\beta^{2} x} f(x)\right)^{\prime}=(\sqrt{\pi} \beta / \sqrt{x}) e^{\beta^{2} x}
$$

it holds that

$$
e^{\beta^{2}} f(1)-f(0)=\sqrt{\pi} \beta \int_{0}^{1} \frac{e^{\beta^{2} x}}{\sqrt{x}} d x .
$$

Therefore,

$$
\int_{0}^{\beta} e^{w^{2}} d w=\frac{1}{2 \sqrt{\pi}}\left(e^{\beta^{2}} f(1)-f(0)\right)
$$

Furthermore, in $f(0)=\int_{0}^{\infty} 2 \beta /\left(\beta^{2}-t^{2}\right) d t$, changing the integration pass $[0, \infty)$ to $[0, i \beta \infty)$ and considering the residual that is added with this change, it follows that

$$
e^{-\beta^{2}} \int_{0}^{\beta} e^{w^{2}} d w=\frac{1}{2 \sqrt{\pi}}\left(\int_{-\infty}^{\infty} e^{-t^{2}} /(t+\beta) d t+\pi i e^{-\beta^{2}}\right)
$$

Now we apply the Poisson formula. Setting

$$
g(x)=h \sum_{n=-\infty}^{\infty} \frac{e^{-h^{2}(n+x)^{2}}}{h(n+x)+\beta},
$$

$g(x)$ is a periodic function of the period 1 and can be expanded by the Fourier series. Evaluate each coefficient as

$$
\begin{aligned}
& \int_{0}^{1} g(x) e^{-2 \pi i n x} d x=\int_{-\infty}^{\infty} h \frac{e^{-h^{2} x^{2}}}{h x+\beta} e^{-2 \pi i n x} d x \\
& =\int_{-\infty}^{\infty} \frac{e^{-x^{2}}}{x+\beta} e^{-2 \pi i n x / h} d x \\
& =\int_{-\infty}^{\infty} \frac{e^{-(x+\pi i n / h)^{2}}}{x+\beta} d x e^{-\pi^{2} n^{2} / h^{2}}
\end{aligned}
$$

here, moving the integration pass and considering the residuals if they are added, we get

$$
\begin{aligned}
& =e^{-\pi^{2} n^{2} / h^{2}} \int_{-\infty}^{\infty} \frac{e^{-x^{2}}}{x+\beta-\pi i n / h} d x(\pi n / h<I) \\
& =e^{-\pi^{2} n^{2} / h^{2}}\left(\int_{-\infty}^{\infty} \frac{e^{-x^{2}}}{x+\beta-\pi i n / h} d x-2 \pi i e^{-(-\beta+\pi i n / h)^{2}}\right)(\pi n / h>I)
\end{aligned}
$$

Therefore, taking h such that $\pi / h>\sqrt{\log \left(10^{16}\right)}$ and neglecting the terms of the order 10^{-16}, it is obtained that:

$$
h \sum_{n=-\infty}^{\infty} \frac{e^{-h^{2} n^{2}}}{h n+\beta}=\int_{-\infty}^{\infty} \frac{e^{-x^{2}}}{x+\beta} d x-2 \pi i \sum_{\pi n / h>I} \exp \left(2 \pi i n \beta / h-\beta^{2}\right)
$$

The infinite series on the both sides of this equation converge in a few terms. $e^{-z^{2}} \operatorname{Erfc}(-i z)$ becomes:

$$
\frac{i}{\pi} \int_{-\infty}^{\infty} \frac{e^{-x^{2}}}{x+\beta} d x
$$

with $z=\beta$.
(2) The inverse function of the co-error function

The co-error function is defined as follows:

$$
y=\operatorname{Erfc}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} d t
$$

Here, y is a non-negative real number.
To obtain values of its inverse function $y=\operatorname{Erfc}^{-1}(x)$, calculate y satisfying

$$
f(y)=\left(\frac{2}{\sqrt{\pi}} \int_{y}^{\infty} e^{-t^{2}} d t-x\right) e^{y^{2}}=0
$$

using Newton method first. The derivative of $f(y)$ is given by $f^{\prime}(y)=2 y f(y)-2 / \sqrt{\pi}$. Classifying by the range of x, the initial value $y_{\text {init }}$ for y is taken as follows:
(a) When $x \geq \operatorname{Erfc}(2)$

Set $y_{\text {init }}=0$.
(b) When $x<\operatorname{Erfc}(2)$

For a given x, the initial value $y_{\text {init }}$ is calculated using the formula below:

$$
y_{1}=1 /(\sqrt{\pi} x), y_{2}=\sqrt{\log y_{1}}, y_{3}=1 /\left(\sqrt{\pi} x y_{2}\right), y_{i n i t}=\sqrt{\log y_{3}}
$$

The initial value $y_{\text {init }}$ obtained by this procedure is an approximation of y which satisfies:

$$
\frac{\sqrt{\pi}}{2} x=e^{-y^{2}} \frac{1}{2 y}\left(1+O\left(\frac{1}{y^{2}}\right)\right)
$$

(3) The error function and the co-error function
(a) For $|x| \leq 0.476563$
i. Co-error function is obtained as $\operatorname{Erfc}(x)=1-\operatorname{Erf}(x)$.
ii. The error function $\operatorname{Erf}(x)$ is obtained as follows:

$$
\operatorname{Erf}(x)=\frac{e^{-x^{2}}}{\sqrt{\pi}} \frac{2 x}{1-\frac{2 x^{2}}{3+\frac{4 x^{2}}{5-\frac{6 x^{2}}{7+\frac{8 x^{2}}{9-\cdots}}}}}
$$

(b) For $|x|>0.476563$
i. Co-error function $\operatorname{Erfc}(x)$ is obtained as follows:

For $0 \leq x \leq 8.0$, using the best-fit formula.
For $8.0<x \leq 26.628736$,

$$
\operatorname{Erfc}(x)=\frac{e^{-x^{2}}}{\sqrt{\pi}} \frac{1.0}{x+\frac{0.5}{x+\frac{1.0}{x+\frac{1.5}{x+\cdots}}}}
$$

and if $x>26.628736$,then $\operatorname{Erfc}(x)=0$.
For negative value of $x, \operatorname{Erfc}(x)=2-\operatorname{Erfc}(-x)$ is applied.
Then error function is obtained as $\operatorname{Erf}(x)=1-\operatorname{Erfc}(x)$.

2.1.2.22 Coefficient Calculation Method

The subroutines in this library adopt arithmetic techniques to save the amount of calculation without degrading the accuracy.

2.1.2.23 Method of Calculating Related Special Functions

(1) Incomplete elliptic integral of the 3rd kind

$$
\begin{array}{rlr}
\Pi(\varphi ; c, m) & =\int_{0}^{\varphi} \frac{d \theta}{\left(1+c \sin ^{2} \theta\right) \sqrt{1-m \sin ^{2} \theta}} & \\
& =\int_{0}^{x} \frac{d t}{\left(1+c t^{2}\right) \sqrt{\left(1-t^{2}\right)\left(1-m t^{2}\right)}} & (x=\sin \varphi) \\
& =\int_{0}^{u} \frac{d w}{1+c \cdot \mathrm{sn}^{2} w} & (x=\operatorname{sn} u)
\end{array}
$$

If this integral is represented using the Π function, it appears as follows:

$$
\Pi(\varphi ; c, m)=u+\frac{\operatorname{sn} \alpha}{\operatorname{cn} \alpha \cdot \operatorname{dn} \alpha} \cdot \Pi(u, \alpha)
$$

(α is set so that $\operatorname{sn}^{2} \alpha=-\frac{c}{m}$.)
$(u=F(x, m)=F(\sin \varphi, m))$
Another method is described below.

- $-m<c<0$:

$$
\begin{aligned}
& \epsilon=\sqrt{-\frac{c}{m}} \\
& \beta=\frac{\pi}{2} \cdot F(\epsilon, m) / K(m) \\
& v=\frac{\pi}{2} \cdot F(x, m) / K(m) \quad(x=\sin \varphi) \\
& \delta_{1}=\sqrt{\frac{-c}{(1+c)(m+c)}} \\
& \Pi(\varphi ; c, m)=\delta_{1}\left[-\frac{1}{2} \log \frac{\vartheta_{4}(v+\beta)}{\vartheta_{4}(v-\beta)}+v \cdot \frac{\vartheta_{1}^{\prime}(\beta)}{\vartheta_{1}(\beta)}\right]
\end{aligned}
$$

Assume that the nome q for modulus m. Then the above function can be calculated using the following expressions.

$$
\begin{aligned}
\frac{1}{2} \log \frac{\vartheta_{4}(v+\beta)}{\vartheta_{4}(v-\beta)} & =2 \sum_{s=1}^{\infty} \frac{q^{s}}{s \cdot\left(1-q^{2 s}\right)} \cdot \sin (2 \cdot s \cdot v) \cdot \sin (2 \cdot s \cdot \beta) \\
\frac{\vartheta_{1}^{\prime}(\beta)}{\vartheta_{1}(\beta)} & =\cot \beta+4 \sum_{s=1}^{\infty} \frac{q^{2 s}}{1-2 \cdot q^{2 s} \cdot \cos (2 \cdot \beta)+q^{4 s}} \cdot \sin (2 \cdot \beta)
\end{aligned}
$$

The summation calculation are continued until the last term is sufficiently small relative to the first term.

- $c<-1$:

Assume $N=\frac{m}{c}, p_{1}=\sqrt{(-c-1)\left(1+\frac{m}{c}\right)}$. Then the function is calculated using the following expressions.

$$
\Pi(\varphi ; c, m)=-\pi(\varphi ; N, m)+F(x, m)+\frac{1}{2 p_{1}} \log \left[\frac{\Delta(\varphi)+p_{1} \tan \varphi}{\Delta(\varphi)-p_{1} \tan \varphi}\right]
$$

where, $\Delta(\varphi)=\sqrt{1-m \sin ^{2} \varphi}$.
$\Pi(\varphi ; N, m)$ is obtained using the calculations described above for $-m<c<0$.

- $-1<c<-m$:

$$
\begin{aligned}
& \epsilon=\sqrt{\frac{1+c}{1-m}} \\
& \beta=\frac{\pi}{2} \cdot F(\epsilon, 1-m) / K(m) \\
& v=\frac{\pi}{2} \cdot F(x, m) / K(m) \\
& \delta_{2}=\sqrt{\frac{c}{(1+c)(m+c)}} \\
& \lambda=a \cdot \tan (\tanh \beta \cdot \tan v)+2 \sum_{s=1}^{\infty} \frac{(-1)^{s-1} \cdot q^{2 s}}{s \cdot\left(1-q^{2 s}\right)} \cdot \sin (2 \cdot s \cdot v) \cdot \sinh (2 \cdot s \cdot \beta) \\
& \sum_{s=1}^{\infty} s q^{s^{2}} \sinh (2 \cdot s \cdot \beta) \\
& \mu=\frac{1+2 \sum_{s=1}^{\infty} q^{s^{2}} \cosh (2 \cdot s \cdot \beta)}{\Pi(\varphi ; c, m)=\delta_{2} \cdot(\lambda-4 \cdot \mu \cdot v)} \\
& \Pi(\lambda)
\end{aligned}
$$

- $c>0.0$:

$$
\begin{aligned}
N & =-\frac{m+c}{1+c} \\
p_{2} & =\sqrt{\frac{c \cdot(m+c)}{1+c}}
\end{aligned}
$$

$$
\begin{aligned}
\Pi(\varphi ; c, m)= & \left\{\sqrt{(1+N) \cdot\left(1+\frac{m}{N}\right)} \cdot \Pi(\varphi ; N, m)+\frac{m \cdot F(x, m)}{p_{2}}\right. \\
& \left.+a \tan \left(\frac{1}{2} p_{2} \cdot \sin \left(\frac{2 \cdot \varphi}{\Delta(\varphi)}\right)\right)\right\} / \sqrt{(1+c)\left(1+\frac{m}{c}\right)}
\end{aligned}
$$

Where, $\Delta(\varphi)=\sqrt{1-m \sin ^{2} \varphi}$.
$\Pi(\varphi ; N, m)$ is obtained using the calculations described above for $-m<c<0.0$.
(Refer to bibliography reference (1).)
(2) Heuman's lambda function

$$
\Lambda_{0}(\varphi \backslash \alpha)=\frac{2}{\pi}\left\{K(\alpha) E\left(\varphi \backslash 90^{\circ}-\alpha\right)-(K(\alpha)-E(\alpha)) \cdot F\left(\varphi \backslash 90^{\circ}-\alpha\right)\right\}
$$

Let $m=\sin ^{2} \alpha$. Then lambda function is obtained from the following equations.

$$
\begin{aligned}
K(\alpha) & =K(m) \\
E\left(\varphi \backslash 90^{\circ}-\alpha\right) & =E(\sin \varphi, 1-m) \\
E(\alpha) & =E(m) \\
F\left(\varphi \backslash 90^{\circ}-\alpha\right) & =F(\sin \varphi, 1-m)
\end{aligned}
$$

(Refer to bibliography reference (1).)
(3) Legendre function

- $x>1.0$:

$$
\begin{aligned}
P_{-1 / 2}(x) & =\frac{2}{\pi} \sqrt{\frac{2}{x+1}} K\left(\frac{x-1}{x+1}\right) \\
P_{1 / 2}(x) & =\frac{2}{\pi} \sqrt{x-\sqrt{x^{2}-1} E\left(\frac{2 \sqrt{x^{2}-1}}{x+\sqrt{x^{2}-1}}\right)} \\
Q_{-1 / 2}(x) & =\sqrt{\frac{2}{x+1}} K\left(\frac{2}{x+1}\right) \\
Q_{1 / 2}(x) & =x \sqrt{\frac{2}{x+1}} K\left(\frac{2}{x+1}\right)-\sqrt{2(x+1)} E\left(\frac{2}{x+1}\right)
\end{aligned}
$$

- $x \leq 1.0$:

$$
\begin{aligned}
P_{-1 / 2}(x) & =\frac{2}{\pi} K\left(\frac{1-x}{2}\right) \\
P_{1 / 2}(x) & =\frac{2}{\pi}\left\{2 E\left(\frac{1-x}{2}\right)-K\left(\frac{1-x}{2}\right)\right\} \\
Q_{-1 / 2}(x) & =K\left(\frac{1+x}{2}\right) \\
Q_{1 / 2}(x) & =K\left(\frac{1+x}{2}\right)-2 E\left(\frac{1+x}{2}\right)
\end{aligned}
$$

(E and K are complete elliptic integrals)

2.1.3 Reference Bibliography

(1) Abramowitz, M. and Stegur, I. A. , eds. , "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables", Dover Publications, Inc. (1965).
(2) Hart, J. F. , ed. , "Computer approximation", John Wiley and Sons (1968).
(3) Cody W. J., Strecok A. J. and Thacher H. C. , "Chebyshev approximations for the psi function", Math. Comp. , Vol.27, No.121, pp.123-127 (1973).
(4) Cody W. J. and Thacher H. C. , "Rational Chebyshev approximations for the exponential integral $E_{1}(x)$ ", Math. Comp. , Vol.22, pp.641-649 (1968).
(5) Cody W. J. and Thacher H. C., "Chebyshev approximations for the exponential integral $E_{i}(x)$ ", Math. Comp. , Vol.23, pp.289-303 (1969).
(6) Cody W. J. , Paciorek K. A. and Thacher H. C. Jr. , "Chebyshev approximations for Dawson's integral", Math. Comp. , Vol.24, pp.171-178 (1970).
(7) Luke Y. L. , "The special functions and their approximations, II", Academic Press, (1969).

2.2 BESSEL FUNCTIONS

2.2.1 WIBJ0X, VIBJ0X

Bessel Function of the 1st Kind (Order 0)

(1) Function

For $x=X_{i}$, calculates values of the Bessel function of the 1 st kind (order 0)

$$
J_{0}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \sin (t)) d t
$$

(2) Usage

Double precision:
CALL WIBJ0X (NV, XI, XO, IERR)
Single precision:
CALL VIBJ0X (NV, XI, XO, IERR)
(3) Arguments
$\begin{array}{ll}\begin{array}{l}\text { D:Double precision real } \\ \text { R:Single precision real }\end{array} & \begin{array}{l}\text { Z:Double precision complex } \\ \text { C:Single precision complex }\end{array}\end{array} \quad$ I: $\left\{\begin{array}{l}\text { INTEGER(4) as for } 32 \mathrm{bit} \text { Integer } \\ \text { INTEGER(8) as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	NV	I	1	Input	number of input data
2	XI	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	NV	Input	X_{i}
3	XO	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	NV	Output	$J_{0}\left(X_{i}\right)$
4	IERR	I	1		

(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(b) $|\mathrm{XI}(\mathrm{i})| \leq M$
where, $M=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(5) Error indicator

IERR value	Meaning	Processing	
0	Normal termination.		
3000	Restriction (a) was not satisfied.	Processing is aborted.	
$3000+i$	Restriction (b) was not satisfied by XI(i).		

(6) Notes
(a) Bessel function of the 1st kind $J_{\nu}(z)$ is the basic solution of Bessel's differential equation

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-\nu^{2}\right) w=0
$$

and defined as

$$
J_{\nu}(z)=\left(\frac{z}{2}\right)^{\nu} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!\Gamma(m+\nu+1)}\left(\frac{z}{2}\right)^{2 m} .
$$

(b) Bessel function of the 1st kind is also called cylindrical function of the 1st kind.
(7) Example
(a) Problem

Obtain $J_{0}(x)$ for $x=0.0,0.1,0.2, \cdots, 0.9$.
(b) Main program

PROGRAM EIBJOX
IMPLICIT REAL (8) ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
PARAMETER (NV=10)
REAL (8) XI (NV) , XO (NV)
CHARACTER* 6 CNAME CFNC
CHARACTER*6 CNAME , CFNC
PARAMETER (CNAME='WIBJOX', CFNC=, JO')
$!$
DNV=NV
DO $1000 \quad I=1, N V$
1000 CONTINUE
CALL WIBJOX (NV, XI, XO, IERR)
WRITE $(6,6000)$ CNAME
WRITE $(6,6100)$
DO 2000 I=1,NV
WRITE $(6,6200)$ I,XI (I)
2000 CONTINUE
WRITE $(6,6300)$
WRITE $(6,6400)$ IERR
DO $3000 \quad I=1$, NV
WRITE $(6,6500)$ CFNC,XI(I), XO(I)
3000 CONTINUE
!
6000 FORMAT (1X,'*** ', A6,' *')
6100 FORMAT (1X,'*** INPUT *'
6100 FORMAT (1X,' $* * *$ INPUT *',
6200 FORMAT (1X,'XI, I2,' $)=,, F 10.6$)
6200 FORMAT (1X,'XI (', I2,' $)=,$, F10
6300 FORMAT (1X,' $* * *$ OUTPUT *' $)$
6400 FORMAT (1X,' IERR=', I5)
6500 FORMAT (1X,A6,' (', F10.6,') $=$ ', F10.6)
END
(c) Output results

2.2.2 WIBY0X, VIBY0X

Bessel Function of the 2nd Kind (Order 0)

(1) Function

For $x=X_{i}$, calculates values of the Bessel function of the 2 nd kind (order 0)

$$
Y_{0}(x)=-\frac{2}{\pi} \int_{0}^{\infty} \cos (x \cosh (t)) d t \quad(x>0.0)
$$

(2) Usage

Double precision:
CALL WIBY0X (NV, XI, XO, IERR)
Single precision:
CALL VIBY0X (NV, XI, XO, IERR)
(3) Arguments
$\begin{array}{l}\text { D:Double precision real } \begin{array}{l}\text { Z:Double precision complex } \\ \text { R:Single precision real }\end{array} \quad \text { C:Single precision complex }\end{array}$ I: $\left.\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}$
(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(b) $\mathrm{XI}(\mathrm{i}) \geq 0.0$
(c) $\mathrm{XI}(\mathrm{i}) \leq M$
where $M=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
2000	$\mathrm{XI}(\mathrm{i})=0.0$ (overflow)	$\mathrm{XO}(\mathrm{i})=($ Minimum value $)$ is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.
$3000+i$	Restriction (b) or (c) was not satisfied by XI(i).	

(6) Notes
(a) Bessel function of the 2nd kind $Y_{\nu}(z)$ is the basic solution of Bessel's differential equation

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-\nu^{2}\right) w=0
$$

and defined as

$$
Y_{\nu}(z)=\frac{J_{\nu}(z) \cos \nu \pi-J_{-\nu}(z)}{\sin \nu \pi}
$$

When ν is equal to integer n, the following limiting value is used for definition.

$$
Y_{n}(z)=\lim _{\nu \rightarrow n} Y_{\nu}(z)
$$

(b) Bessel function of the 2nd kind is also called cylindrical function of the 2nd kind.
(c) The Neumann function $N_{\nu}(z)$ is the same as the Bessel function of the 2nd kind $Y_{\nu}(z)$.

(7) Example

(a) Problem

Obtain $Y_{0}(x)$ for $x=0.1,0.2, \cdots, 1.0$.
(b) Main program

PROGRAM EIBYOX
IMPLICIT REAL (8) (A-H, O-Z)
PARAMETER (NV=10)
REAL (8) XI (NV) XO (NV)
CHARACTER*6 CNAME , CFNC
PARAMETER (CNAME='WIBYOX', CFNC=' YO')
$!$
DNV=NV
DO $1000 \mathrm{I}=1$,NV
1000 CONTINUE
CALL WIBYOX (NV, XI, XO, IERR)
WRITE $(6,6000)$ CNAME
WRITE $(6,6100)$
DO 2000 I=1, NV
200) I,XI(I)

2000 CONTINUE
$\operatorname{WRITE}(6,6300)$
WRITE $(6,6400)$ IERR
DO $3000 \mathrm{I}=1$, NV
WRITE $(6,6500)$ CFNC, XI (I), XO(I)
3000 CONTINUE
6000 FORMAT ($1 \mathrm{X},{ }^{\prime} * * *$, ,A6,' *')
6100 FORMAT (1X,'*** INPUT *')
6200 FORMAT (1X,'XI (', I2,') $=$ ', F10. 6)
6300 FORMAT (1X,' $* * *$ OUTPUT *')
6400 FORMAT (1X,' IERR=', I5)
6500 FORMAT (1X,A6, '(', F10.6,') $=$ ', F10. 6)
END
(c) Output results

*** WIBYOX *	
*** INPUT	
XI (1) =	0.100000
XI(2) =	0.200000
XI(3) =	0.300000
XI(4) =	0.400000
XI(5) =	0.500000
XI(6) =	0.600000
XI (7) =	0.700000
XI(8) =	0.800000
XI (9) =	0.900000
XI (10) =	1.000000
*** OUTPUT *	
IERR=	0
YO	$0.100000)=-1.534239$
YO	$0.200000)=-1.081105$
YO	$0.300000)=-0.807274$
YO	$0.400000)=-0.606025$
YO	$0.500000)=-0.444519$
YO	$0.600000)=-0.308510$

$\mathrm{YO}(0.700000)=-0.190665$
$\mathrm{YO}(0.800000)=-0.086802$
YO $(0.900000)=0.005628$
$\mathrm{YO}(1.000000)=0.088257$

2.2.3 WIBJ1X, VIBJ1X

Bessel Function of the 1st Kind (Order 1)

(1) Function

For $x=X_{i}$, calculates values of the Bessel function of the 1st kind (order 1)

$$
J_{1}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \sin (t)-t) d t
$$

(2) Usage

Double precision:
CALL WIBJ1X (NV, XI, XO, IERR)
Single precision:
CALL VIBJ1X (NV, XI, XO, IERR)
(3) Arguments
$\begin{array}{l}\text { D:Double precision real } \begin{array}{l}\text { Z:Double precision complex } \\ \text { R:Single precision real }\end{array} \quad \text { C:Single precision complex }\end{array}$ I: $\left.\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}$
(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(b) $|\mathrm{XI}(\mathrm{i})| \leq M$ with $M=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(5) Error indicator

IERR value	Meaning	Processing	
0	Normal termination.		
3000	Restriction (a) was not satisfied.	Processing is aborted.	
$3000+i$	Restriction (b) was not satisfied by XI(i).		

(6) Notes

(a) Bessel function of the 1st kind $J_{\nu}(z)$ is the basic solution of Bessel's differential equation

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-\nu^{2}\right) w=0
$$

and defined as

$$
J_{\nu}(z)=\left(\frac{z}{2}\right)^{\nu} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!\Gamma(m+\nu+1)}\left(\frac{z}{2}\right)^{2 m}
$$

(b) Bessel function of the 1st kind is also called cylindrical function of the 1st kind.

(7) Example

(a) Problem

Obtain $J_{1}(x)$ for $x=0.0,0.1,0.2, \cdots, 0.9$.
(b) Main program

PROGRAM EIBJ1X
IMPLICIT REAL (8) ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
PARAMETER (NV=10)
CHARACTER*6 CNAME XO (NV)
PARAMETER(CNAME='WIBJ1X', CFNC=, J1')
$!$
DNV=NV
DO $1000 \mathrm{I}=1$, NV
XI(I) $=(I-1) / D N V$
1000
CALL WIBJ1X (NV, XI, XO, IERR)
WRITE $(6,6000)$ CNAME
WRITE $(6,6100)$
DO 2000 I=1,NV
WRITE $(6,6200) \mathrm{I}, \mathrm{XI}(\mathrm{I})$
2000 CONTINUE
WRITE $(6,6300)$
WRITE $(6,6400)$ IERR
DO 3000 I =1, NV WRITE $(6,6500)$ CFNC,XI(I), XO(I)
3000 CONTINUE
! 0000 FOR
6000 FORMAT (1X,'*** ', A6,' *')
6100 FORMAT (1X,'*** INPUT *')
6200 FORMAT (1X,'XI (, ,I2,' $)=,, F 10.6$)
6300 FORMAT (1X,', *** OUTPUT *')
6400 FORMAT (1X,' IERR=', I5)
6500 FORMAT (1X, A6,' (', 'F10.6,') = , F 10.6) END
(c) Output results

*** WIBJ1X *		
*** INPUT *		
XI (1)	$1)=0.000000$	
XI (2)	0.100000	
XI (3)	0.200000	
XI (4)	0.300000	
XI (5)	0.400000	
XI (6)	0.500000	
XI (7)	0.600000	
XI (8)	0.700000	
XI (9)	0.800000	
XI (10)	0.900000	
*** OU'	*	
IERR=	$=0$	
	$J 1(0.000000)=$	0.000000
	$J 1(0.100000)=$	0.049938
	$J 1(0.200000)=$	0.099501
	$\mathrm{J} 1(0.300000)=$	0.148319
	$\mathrm{J} 1(0.400000)=$	0.196027
	$J 1(0.500000)=$	0.242268
	$J 1(0.600000)=$	0.286701
	$\mathrm{J} 1(0.700000)=$	0.328996
	$J 1(0.800000)=$	0.368842
	$\mathrm{J} 1(0.900000)=$	0.405950

2.2.4 WIBY1X, VIBY1X

Bessel Function of the 2nd Kind (Order 1)

(1) Function

For $x=X_{i}$, calculates values of the Bessel function of the 2 nd kind (order 1)

$$
Y_{1}(x)=\frac{1}{\pi} \int_{0}^{\pi} \sin (x \sin (t)-t) d t-\frac{1}{\pi} \int_{0}^{\infty} e^{-x \sinh (t)}\left[e^{t}-e^{-t}\right] d t
$$

(2) Usage

Double precision:
CALL WIBY1X (NV, XI, XO, IERR)
Single precision:
CALL VIBY1X (NV, XI, XO, IERR)
(3) Arguments

D:Double precision real R:Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	NV	I	1	Input	number of input data
2	XI	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	NV	Input	X_{i}
3	XO	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	NV	Output	$Y_{1}\left(X_{i}\right)$
4	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(b) $\mathrm{XI}(\mathrm{i}) \geq 0.0$
(c) $\mathrm{XI}(\mathrm{i}) \leq M$
where $M=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
$2000+i$	$\mathrm{XI}(\mathrm{i}) \leq 1.0 /$ (Maximum value) (overflow)	$\mathrm{XO}(\mathrm{i})=$ (Minimum value) is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.
$3000+i$	Restriction (b) or (c) was not satisfied by XI(i).	

(6) Notes

(a) Bessel function of the 2nd kind $Y_{\nu}(z)$ is the basic solution of Bessel's differential equation

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-\nu^{2}\right) w=0
$$

and defined as

$$
Y_{\nu}(z)=\frac{J_{\nu}(z) \cos \nu \pi-J_{-\nu}(z)}{\sin \nu \pi}
$$

When ν is equal to integer n, the following limiting value is used for definition.

$$
Y_{n}(z)=\lim _{\nu \rightarrow n} Y_{\nu}(z)
$$

(b) Bessel function of the 2nd kind is also called cylindrical function of the 2 nd kind.
(c) The Neumann function $N_{\nu}(z)$ is the same as the Bessel function of the 2nd kind $Y_{\nu}(z)$.
(7) Example
(a) Problem

Obtain $Y_{1}(x)$ for $x=0.1,0.2, \cdots, 1.0$.
(b) Main program

```
PROGRAM EIBY1X
    IMPLICIT REAL(8)(A-H,0-Z)
    PARAMETER (NV=10)
    REAL(8) XI (NV)
    CHARACTER*6 CNAME CFNC
    PARAMETER( CNAME='WIBY1X', CFNC=' Y1' )
DNV=NV
DO 1000 I=1,NV
1000 CONTINUE
CALL WIBY1X( NV, XI, XO, IERR )
! WRITE (6,6000) CNAME
    WRITE(6,6100)
    DO 2000 I=1,NV
        WRITE (6,6200) I,XI(I)
    2000 CONTINUE
    WRITE (6,6300)
    WRITE (6,6400) IERR
    DO 3000 I=1,NV
        WRITE(6,6500) CFNC,XI(I), XO(I)
    3000 CONTINUE
        STOP
6000 FORMAT(1X,'*** ',A6,' *')
100 FORMAT(1X','*** INPUT *')
6200 FORMAT (1X,'XI(',I2,')=',F10.6 )
6300 FORMAT (1X,',*** OUTPUT *',')
6400 FORMAT (1X,',IERR=, I5 )
6500 FORMAT(1X,A6,'(',F10.6,')=',F10.6 )
```

(c) Output results
*** WIBY1X *
*** INPUT *
XI $(1)=0.100000$
$X I(2)=0.200000$
$X I(3)=0.300000$
$\mathrm{XI}(4)=0.400000$
$\mathrm{XI}(5)=0.500000$
$\operatorname{XI}(6)=0.600000$
XI $(7)=0.700000$
XI $(8)=0.800000$
$X I(9)=0.900000$
$\mathrm{XI}(9)=0.900000$
$\operatorname{XI}(10)=1.000000$
XI (10) $=1.00$
$* * *$ OUTPUT
IERR= 0
Y1 $(0.100000)=-6.458951$
Y1 $(\quad 0.200000)=-3.323825$
Y1 $(0.300000)=-2.293105$
Y1 $(\quad 0.400000)=-1.780872$
Y1 $(0.500000)=-1.471472$
Y1 $(\quad 0.600000)=-1.260391$
Y1 $(\quad 0.700000)=-1.103250$
$Y 1(\quad 0.700000)=-1.103250$
$Y 1(\quad 0.800000)=-0.978144$
Y1 $(\quad 0.900000)=-0.873127$
Y1 $(1.000000)=-0.781213$

2.2.5 DIBJNX, RIBJNX

Bessel Function of the 1st Kind (Integer Order)

(1) Function

Calculates a value of the Bessel function of the 1st kind (integer order)

$$
J_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \sin (t)-n t) d t
$$

(2) Usage

Double precision:
CALL DIBJNX (N, XI, XO, IERR)
Single precision:
CALL RIBJNX (N, XI, XO, IERR)
(3) Arguments

D:Double precision real R :Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	N	I	1	Input	Order n
2	XI	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
3	XO	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Output	Value of $J_{n}(x)$
4	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $|\mathrm{XI}| \leq M$
where, $M=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	$\|n\|\left(\log _{e}\left\|\frac{n}{x}\right\|-M_{1}\right)>M_{2}$ (See Note (c)) $(\mathrm{XI} \neq 0.0$ and $\mathrm{N} \neq 0)$ (underflow)	$\mathrm{XO}=0.0$ is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes

(a) The computation time of $J_{n}(x)$ becomes longer as x and n increase. Generally it is desirable to set $|\mathrm{N}|<1000$ and $|\mathrm{XI}|<1000.0$.
(b) To calculate $J_{n}(x), J_{n+1}(x), J_{n+2}(x), \cdots$ at a time, it is faster to successively use the recurrence relation below than to call this subroutine repeatedly. The computation, however, becomes unstable if it is done with increasing n. Therefore the recurrence relation should be used with decreasing n.
Recurrence relation:

$$
J_{n-1}=\frac{2 n}{x} J_{n}(x)-J_{n+1}(x)
$$

(c) When IERR becomes 1000 in this subroutine, the values of M_{1} and M_{2} are as follows:
$M_{1}=0.3068$,
$M_{2}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(d) Bessel function of the 1st kind $J_{\nu}(z)$ is the basic solution of Bessel's differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-\nu^{2}\right) w=0
$$

and defined as

$$
J_{\nu}(z)=\left(\frac{z}{2}\right)^{\nu} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!\Gamma(m+\nu+1)}\left(\frac{z}{2}\right)^{2 m}
$$

(e) Bessel function of the 1st kind is also called cylindrical function of the 1st kind.

(7) Example

(a) Problem

Obtain the value of $J_{n}(x)$ at $x=1.5$ for $n=5$.
(b) Input data
$\mathrm{N}=5$ and $\mathrm{XI}=1.5$.
(c) Main program

```
program bibjnx
! *** EXAMPLE OF DIBJNX ***
    IMPLICIT REAL ( 8 ) (A-H, \(0-Z\) )
    READ (5,*) N
    READ (5,*) XI
    WRITE \((6,1000)\) N,XI
    CALL DIBJNX (N, XI, XO, IERR)
    WRITE (6, 2000) IERR, XO
```


(d) Output results

```
*** DIBJNX ***
    ** INPUT **
    N = 5 XI = 1.50
    ** OUTPUT**
            IERR = 0
            VALUE OF JN(X)
```

 \(\mathrm{XO}=0.1799421767 \mathrm{D}-02\)

2.2.6 DIBYNX, RIBYNX

Bessel Function of the 2nd Kind (Integer Order)

(1) Function

Calculates a value of the Bessel function of the 2nd kind (integer order)

$$
Y_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi} \sin (x \sin (t)-n t) d t-\frac{1}{\pi} \int_{0}^{\infty} e^{-x \sinh (t)}\left[e^{n t}+(-1)^{n} e^{-n t}\right] d t
$$

(2) Usage

Double precision:
CALL DIBYNX (N, XI, XO, IERR)
Single precision:
CALL RIBYNX (N, XI, XO, IERR)
(3) Arguments
$\begin{array}{l}\text { D:Double precision real } \begin{array}{l}\text { Z:Double precision complex } \\ \text { R:Single precision real }\end{array} \quad \text { C:Single precision complex }\end{array}$ I: $\left.\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}$
(4) Restrictions
(a) $\mathrm{XI} \geq 0.0$
(b) $\mathrm{XI} \leq M$
where, $M=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
2000	$\mathrm{XI} \leq 2.0 /($ Maximum value $)$	If $\mathrm{N} \geq 0, \mathrm{XO}=($ Minimum value $)$ is per- or $\|n\|\left(\log _{e} \frac{\|n\|}{x}-M_{1}\right)>M_{2}$ (See Note (c)) formed. $(\mathrm{XI} \neq 0.0$ and $\mathrm{N} \neq 0)$ (overflow) $\mathrm{N}<0, \mathrm{XO}=($ Minimum value $) \times(-1)^{\mathrm{N}}$ 3000
Restriction (a) or (b) was not satisfied.	Processing is aborted.	

(6) Notes

(a) The computation time of $Y_{n}(x)$ becomes longer as x and n increase. Generally it is desirable to set $|\mathrm{N}|<1000$ and $\mathrm{XI}<1000.0$.
(b) To calculate $Y_{n}(x), Y_{n+1}(x), Y_{n+2}(x), \cdots$ at a time, it is faster to successively use the recurrence relation below than to call this subroutine repeatedly.
Recurrence relation:

$$
Y_{n+1}(x)=\frac{2 n}{x} Y_{n}(x)-Y_{n-1}(x)
$$

(c) When IERR becomes 2000 in this subroutine, the values of M_{1} and M_{2} are as follows:
$M_{1}=0.3068$,
$M_{2}=\{$ double precision: 709.7827 , single precision: 88.72284$\}$
(d) Bessel function of the 2nd kind $Y_{\nu}(z)$ is the basic solution of Bessel's differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-\nu^{2}\right) w=0
$$

and defined as

$$
Y_{\nu}(z)=\frac{J_{\nu}(z) \cos \nu \pi-J_{-\nu}(z)}{\sin \nu \pi} .
$$

When ν is equal to integer n, the following limiting value is used for definition.

$$
Y_{n}(z)=\lim _{\nu \rightarrow n} Y_{\nu}(z)
$$

(e) Bessel function of the 2nd kind is also called cylindrical function of the 2nd kind.
(f) The Neumann function $N_{\nu}(z)$ is the same as the Bessel function of the 2nd kind $Y_{\nu}(z)$.

(7) Example

(a) Problem

Obtain the value of $Y_{n}(x)$ at $x=1.5$ for $n=5$.
(b) Input data
$\mathrm{N}=5$ and $\mathrm{XI}=1.5$.
(c) Main program

PROGRAM BIBYNX

! *** EXAMPLE OF DIBYNX ***
IMPLICIT REAL (8) (A-H, $0-\mathrm{Z}$)
READ (5,*) N
WRITE $(6,1000)$ N, XI
CALL DIBYNX (N, XI, XO, IERR)
$\left.\begin{array}{c}\text { CALL DIBYNX } \\ \text { WRITE }(6,2000)\end{array}\right)$ IERR, XO
1000 FORMAT ($; 2,1, /, 5 \mathrm{X}, ; * * *$ DIBYNX

(d) Output results

```
*** DIBYNX ***
** INPUT **
    N = 5 XI = 1.50
** OUTPUT**
IERR = 0
VALUE OF YN(X)
```

$\mathrm{x} 0=-0.3719030840 \mathrm{D}+02$

2.2.7 DIBJMX, RIBJMX

Bessel Function of the 1st Kind (Real Number Order)

(1) Function

Calculates a value of the Bessel function of the 1st kind (real number order)

$$
J_{\nu}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \sin (t)-\nu t) d t-\frac{\sin (\pi \nu)}{\pi} \int_{0}^{\infty} e^{-x \sinh (t)} e^{-\nu t} d t
$$

(2) Usage

Double precision:
CALL DIBJMX (R, XI, XO, IERR)
Single precision:
CALL RIBJMX (R, XI, XO, IERR)
(3) Arguments

D:Double precision real R:Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	R	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Order ν
2	XI	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Input	Value of variable x
3	XO	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Output	Value of $J_{\nu}(x)$
4	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) When R corresponds with an integer:
$|\mathrm{R}| \leq M_{1}$
$|\mathrm{XI}| \leq M_{2}$
(b) When R does not correspond with an integer:
$0<\mathrm{R} \leq M_{1}$
$0<\mathrm{XI} \leq M_{2}$
where, $M_{1}=\left\{\right.$ double precision: 2^{31}, single precision: $\left.2^{31}\right\}$,
$M_{2}=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$

(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	$\nu\left(\log _{e} \frac{\nu}{x}-M_{3}\right)>M_{4}$ (See Note (e)) (XI \neq	$\mathrm{XO}=0.0$ is performed.
	0.0 and $\mathrm{R} \neq 0.0)$ (underflow) (Note: When ν corresponds with an inte- ger, $\|\nu\|$ and $\|x\|$ are used for judging.)	
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.

(6) Notes

(a) The computation time of $J_{\nu}(x)$ becomes longer as x and n increase. Generally it is desirable to set $\mathrm{R}<1000.0$ and $\mathrm{XI}<1000.0$.
(b) If the order is half an integer (a half of an odd integer), the spherical Bessel function should be used instead.

$$
J_{n+\frac{1}{2}}(x)=\sqrt{\frac{2 x}{\pi}} j_{n}(x)
$$

(c) If ν is negative and is not an integer, the Bessel function of the 1st kind cannot be calculated by using this subroutine. Therefore, it should be calculated by using a recurrence relation.
(d) To calculate $J_{\nu}(x), J_{\nu+1}(x), J \nu+2(x), \cdots$ at a time, it is faster to successively use the recurrence relation below than to call this subroutine repeatedly. The computation, however, becomes unstable if it is done with increasing ν. Therefore the recurrence relation should be used with decreasing ν. Recurrence relation:

$$
J_{\nu-1}(x)=\frac{2 \nu}{x} J_{\nu}(x)-J_{\nu+1}(x)
$$

(e) When IERR becomes 1000 in this subroutine, the values of M_{3} and M_{4} are as follows:
$M_{3}=0.3068$,
$M_{4}=\{$ double precision: 709.7827 , single precision: 88.72284$\}$
(f) Bessel function of the 1st kind $J_{\nu}(z)$ is the basic solution of Bessel's differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-\nu^{2}\right) w=0
$$

and defined as

$$
J_{\nu}(z)=\left(\frac{z}{2}\right)^{\nu} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!\Gamma(m+\nu+1)}\left(\frac{z}{2}\right)^{2 m}
$$

(g) Bessel function of the 1st kind is also called cylindrical function of the 1st kind.

(7) Example

(a) Problem

Obtain the value of $J_{\nu}(x)$ at $x=1.5$ for $\nu=3.3$.
(b) Input data
$\mathrm{R}=3.3$ and $\mathrm{XI}=1.5$.
(c) Main program

PROGRAM BIBJMX
! *** EXAMPLE OF DIBJMX ***
IMPLICIT REAL (8) ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
READ $(5, *) \mathrm{R}$
$\operatorname{READ}(5, *) \mathrm{XI}$
$\operatorname{WRITE}(6,1000) \mathrm{R}, \mathrm{XI}$
CALL DIBJMX (R, XI, XO, IERR)
WRITE $(6,2000)$ IERR, XO
1000 FORMAT (' ${ }^{\prime}, / /, /, 5 \mathrm{X},{ }^{\prime} * * *$ DIBJMX $* * * ', /, /, 6 \mathrm{X},{ }^{\prime} * *$ INPUT ${ }^{* *}$ ',\&

(d) Output results

```
*** DIBJMX ***
** INPUT **
    R = 3.30 XI = 1.50
```

** OUTPUT**
IERR = 0
VALUE OF JM(X)
$X 0=0.3827927999 D-01$

2.2.8 DIBYMX, RIBYMX

Bessel Function of the 2nd Kind (Real Number Order)

(1) Function

Calculates a value of the Bessel function of the 2nd kind (real number order)

$$
Y_{\nu}(x)=\frac{1}{\pi} \int_{0}^{\pi} \sin (x \sin (t)-\nu t) d t-\frac{1}{\pi} \int_{0}^{\infty} e^{-x \sinh (t)}\left[e^{\nu t}+\cos (\pi \nu) e^{-\nu t}\right] d t
$$

(2) Usage

Double precision:
CALL DIBYMX (R, XI, XO, IERR)
Single precision:
CALL RIBYMX (R, XI, XO, IERR)
(3) Arguments

$\begin{array}{ll}\text { Z:Double precision complex } \\ \text { gle precision real } & \text { C:Single precision complex }\end{array}$					$\text { I: }\left\{\begin{array}{l} \text { INTEGER (4) as for } 32 \mathrm{bit} \text { Integer } \\ \text { INTEGER (8) as for } 64 \mathrm{bit} \text { Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	R	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Order ν
2	XI	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
3	XO	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Output	Value of $Y_{\nu}(x)$
4	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) When R corresponds with an integer, $|\mathrm{R}| \leq M_{1}$
(b) When R does not corresponds with an integer,
$0<\mathrm{R} \leq M_{1}$
where, $M_{1}=\left\{\right.$ double precision: 2^{31}, single precision: 2^{31} \}
(c) $\mathrm{XI} \geq 0.0$
(d) $\mathrm{XI} \leq M_{2}$
where, $M_{2}=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$

(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
2000	$\mathrm{XI} \leq 2.0 /($ Maximum value)	
or $\nu\left(\log _{e} \frac{\nu}{x}-M_{3}\right)>M_{4}$ (See Note (e))		
	$\mathrm{XI} \neq 0.0$ and $\mathrm{R} \neq 0)$ (overflow) Note: When ν corresponds with an inte- ger, $\|\nu\|$ is used for judging.	$\mathrm{XO}=($ Minimum value) is performed. Note: If $\mathrm{R}<0$, $\mathrm{XO}=(-1)^{\mathrm{R}+1} \times($ Maximum value) is performed.
3000	Restriction (a), (b) or (c) was not satisfied.	Processing is aborted.

(6) Notes
(a) The Bessel function of the 2 nd kind $N_{n}(x)$ is the same as $Y_{n}(x)$.
(b) The computation time of $Y n(x)$ becomes longer as x and n increase. Generally it is desirable to set $\mathrm{R}<1000.0$ and XI <1000.0.
(c) If the order is half an integer (a half of an odd integer), the spherical Bessel function should be used instead.

$$
Y_{n+\frac{1}{2}}(x)=\sqrt{\frac{2 x}{\pi}} y_{n}(x)
$$

(d) If ν is negative and is not an integer, the Bessel function of the 1st kind cannot be calculated by using this subroutine. Therefore, it should be calculated by using a recurrence relation.

$$
Y_{\nu-1}(x)=\frac{2 \nu}{x} Y_{\nu}(x)-Y_{\nu+1}(x)
$$

(e) To calculate $Y_{\nu}(x), Y_{\nu+1}(x), Y \nu+2(x), \cdots$ at a time, it is faster to successively use the recurrence relation than to call this subroutine repeatedly.
(f) When IERR becomes 2000 in this subroutine, the values of M_{3} and M_{4} are as follows:
$M_{3}=0.3068$,
$M_{4}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(g) Bessel function of the 2 nd kind $Y_{\nu}(z)$ is the basic solution of Bessel's differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-\nu^{2}\right) w=0
$$

and defined as

$$
Y_{\nu}(z)=\frac{J_{\nu}(z) \cos \nu \pi-J_{-\nu}(z)}{\sin \nu \pi}
$$

When ν is equal to integer n, the following limiting value is used for definition.

$$
Y_{n}(z)=\lim _{\nu \rightarrow n} Y_{\nu}(z)
$$

(h) Bessel function of the 2nd kind is also called cylindrical function of the 2nd kind.
(i) The Neumann function $N_{\nu}(z)$ is the same as the Bessel function of the 2nd kind $Y_{\nu}(z)$.

(7) Example

(a) Problem

Obtain the value of $Y_{\nu}(x)$ at $x=1.5$ for $\nu=3.3$.
(b) Input data
$\mathrm{R}=3.3$ and $\mathrm{XI}=1.5$.
(c) Main program

PROMMPLE OF DIBYMX ***
IMPLICIT REAL (8) ($\mathrm{A}-\mathrm{H}, 0-\mathrm{Z}$)
READ $(5, *)$ R
READ $(5, *)$
READ
$(5, *)$
XI
WRITE (6,1000) R,XI
CALL DIBYMX (R, XI , XO, IERR)
WRITE (6, 2000) IERR, XO
1000 FORMAT (',, , /,/,5X,'*** DIBYMX $* * * ', /, /, 6 \mathrm{X},{ }^{\prime} * *$ INPUT $* * ', \&$

/,/, 8 X , 'VALUE ÓF YM (X) ', $/, /, 10 \mathrm{X}, ' \mathrm{XO}=$, $=\mathrm{D} 18.10$)
END
(d) Output results
*** DIBYMX ***
** INPUT **
$R=3.30 \quad X I=1.50$

** OUTPUT**

$\operatorname{IERR}=0$
VALUE OF YM(X)
$\mathrm{XO}=-0.2895226697 \mathrm{D}+01$

2.2.9 ZIBJNZ, CIBJNZ

Bessel Function of the 1st Kind with Complex Variable (Integer Order)

(1) Function

Calculates a value of the Bessel function of the 1st kind with complex variable (integer order)

$$
J_{n}(z)=\frac{1}{\pi} \int_{0}^{\pi} \cos (z \sin (t)-n t) d t
$$

(2) Usage

Double precision:
CALL ZIBJNZ (N, ZI, ZO, IERR)
Single precision:
CALL CIBJNZ (N, ZI, ZO, IERR)
(3) Arguments
$\begin{array}{l}\text { D:Double precision real } \\ \begin{array}{l}\text { Z:Single precision real }\end{array} \text { C:Single precision complex }\end{array}$ I: $\left.\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}$
(4) Restrictions
(a) $|\Im(\mathrm{ZI})| \leq M_{1}$
where, $M_{1}=\{$ double precision: 709.7827 , single precision: 88.72284$\}$
(b) $|\mathrm{ZI}| \leq M_{2}$
where, $M_{2}=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	$\|n\|\left(\log _{e} \frac{\|n\|}{z}-M_{3}\right)>M_{4}$ (See Note (c)) $(\|\mathrm{ZI}\| \neq 0.0$ and $\mathrm{N} \neq 0)$ (underflow)	$\mathrm{ZO}=(0.0,0.0)$ is performed.
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.

(6) Notes

(a) The computation time of $J_{n}(z)$ becomes longer as $|z|$ and n increase. Generally it is desirable to set $|\mathrm{N}|<1000$ and $|\mathrm{ZI}|<1000.0$.
(b) To calculate $J_{n}(z), J_{n+1}(z), J_{n+2}(z), \cdots$ at a time, it is faster to successively use the recurrence relation below than to call this subroutine repeatedly. The computation, however, becomes unstable if it is done with increasing n. Therefore the recurrence relation should be used with decreasing n.
Recurrence relation:

$$
J_{n-1}(z)=\frac{2 n}{z} J_{n}(z)-J_{n+1}(z)
$$

(c) When IERR becomes 1000 in this subroutine, the values of M_{3} and M_{4} are as follows: $M_{3}=0.3068$, $M_{4}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(d) Bessel function of the 1st kind $J_{\nu}(z)$ is the basic solution of Bessel's differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-\nu^{2}\right) w=0
$$

and defined as

$$
J_{\nu}(z)=\left(\frac{z}{2}\right)^{\nu} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{m!\Gamma(m+\nu+1)}\left(\frac{z}{2}\right)^{2 m} .
$$

(e) Bessel function of the 1st kind is also called cylindrical function of the 1st kind.
(7) Example
(a) Problem

Obtain the value of $J_{n}(z)$ at $z=1+2 \sqrt{-1}$ for $n=3$.
(b) Input data
$\mathrm{N}=3$ and $\mathrm{ZI}=(1.0,2.0)$.
(c) Main program

```
PROGRAM AIBJNZ
! *** EXAMPLE OF ZIBJNZ ***
    IMPLICIT COMPLEX(8) (A-H,O-Z)
    READ (5,*) N
    READ (5,'(D6.1,D6.1)') ZI
    WRITE (6,1000) N,ZI
    CALL ZIBJNZ(N,ZI, ZO,IERR)
    WRITE (6, 2000) IERR,ZO
1000 FORMAT(',',/,/,5X,'*** ZIBJNZ ***',/,/,,6X,'** INPUT **',&
2000 F,',8X,',N ,=,',XX,**OUTPUT**;', &',',M, 2, , , )
```


(d) Output results

```
*** ZIBJNZ ***
** INPUT **
    N = 3 ZI = ( 1.00 , 2.00 )
```

 ** OUTPUT**
 IERR \(=0\)
 VALUE OF JN(Z)
 \(\mathrm{ZO}=(-0.2810396668 \mathrm{D}+00,0.1717506200 \mathrm{D}-01 \quad)\)

2.2.10 ZIBYNZ, CIBYNZ

Bessel Function of the 2nd Kind with Complex Variable (Integer Order)

(1) Function

Calculates a value of the Bessel function of the 2nd kind with complex variable (integer order)

$$
Y_{n}(z)=\frac{1}{\pi} \int_{0}^{\pi} \sin (z \sin (t)-n t) d t-\frac{1}{\pi} \int_{0}^{\infty} e^{-z \sinh (t)}\left[e^{n t}+(-1)^{n} e^{-n t}\right] d t
$$

(2) Usage

Double precision:
CALL ZIBYNZ (N, ZI, ZO, IERR)
Single precision:
CALL CIBYNZ (N, ZI, ZO, IERR)
(3) Arguments
D:Double precision real

R:Single precision real | Z:Double precision complex |
| :--- |
| C:Single precision complex |\quad I: \(\left\{\begin{array}{l}INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	N	I	1	Input	Order n
2	ZI	$\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}$	1	Input	Value of variable z
3	ZO	$\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}$	1	Output	Value of $Y_{n}(z)$
4	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $|\mathrm{ZI}|>0.0$
(b) $|\Im(\mathrm{ZI})| \leq M_{1}$ where, $M_{1}=\{$ double precision: 709.7827 , single precision: 88.72284$\}$
(c) $|\mathrm{ZI}| \leq M_{2}$
where, $M_{2}=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a), (b) or (c) was not satisfied.	Processing is aborted.
4000	$\|\mathrm{ZI}\| \leq 2.0 /($ Maximum value $)$ or $\|n\|\left(\log _{e} \frac{\|n\|}{\|z\|}-M_{3}\right)>M_{4}$ (See Note (d)) $(\|\mathrm{ZI}\| \neq 0.0$ and $\mathrm{N} \neq 0)$	

(6) Notes

(a) The Bessel function of the 2 nd kind $N_{n}(z)$ is the same as $Y_{n}(z)$.
(b) The computation time of $Y_{n}(z)$ becomes longer as $|z|$ and n increase. Generally it is desirable to set $|\mathrm{N}|<1000$ and $|\mathrm{ZI}|<1000.0$.
(c) To calculate $Y_{n}(z), Y_{n+1}(z), Y_{n+2}(z), \cdots$ at a time, it is faster to successively use the recurrence relation than to call this subroutine repeatedly.
Recurrence relation:

$$
Y_{n+1}(z)=\frac{2 n}{z} Y_{n}(z)-Y_{n-1}(z)
$$

(d) When IERR becomes 4000 in this subroutine, the values of M_{3} and M_{4} are as follows:
$M_{4}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(e) Bessel function of the 2nd kind $Y_{\nu}(z)$ is the basic solution of Bessel's differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-\nu^{2}\right) w=0
$$

and defined as

$$
Y_{\nu}(z)=\frac{J_{\nu}(z) \cos \nu \pi-J_{-\nu}(z)}{\sin \nu \pi} .
$$

When ν is equal to integer n, the following limiting value is used for definition.

$$
Y_{n}(z)=\lim _{\nu \rightarrow n} Y_{\nu}(z)
$$

(f) Bessel function of the 2nd kind is also called cylindrical function of the 2nd kind.
(g) The Neumann function $N_{\nu}(z)$ is the same as the Bessel function of the 2nd kind $Y_{\nu}(z)$.
(7) Example
(a) Problem

Obtain the value of $Y_{n}(z)$ at $z=1+2 \sqrt{-1}$ for $n=3$.
(b) Input data
$\mathrm{N}=3$ and $\mathrm{ZI}=(1.0,2.0)$.
(c) Main program

```
PROGRAM AIBYNZ
! *** EXAMPLE OF ZIBYNZ ***
    IMPLICIT COMPLEX(8) (A-H,O-Z)
    READ (5,*) N
    READ (5,'(D6.1,D6.1)') ZI
    WRITE(6,1000) N,ZI
    CALL ZIBYNZ(N,ZI,ZO,IERR)
    WRITE (6, 2000) IERR,ZO
000 FORMAT (',',/,/,5X,'*** ZIBYNZ ***',/,/,6X,'** INPUT **',&
```



```
    /,/, 8X,'VALUE ÓF YN(Z)',/,l,10X,',ZO = (',D18.10,', ,',D18.10,' )' )
```

(d) Output results

```
*** ZIBYNZ ***
    ** INPUT **
        N=3 ZI = (1.00 , 2.00 )
** OUTPUT**
        IERR = 0
        VALUE OF YN(Z)
                ZO}=(0.2901532942D+00, -0.2121187705D+00) 
```


2.3 ZERO POINTS OF THE BESSEL FUNCTIONS

2.3.1 DIZBS0, RIZBS0

Positive Zero Points of the Bessel Function of the 1st Kind (Order 0)
(1) Function

Obtain positive zero points of the Bessel function of the first kind of the order 0 .
(2) Usage

Double precision:
CALL DIZBS0 (N, Z, IERR)

Single precision:
CALL RIZBS0 (N, Z, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	N	I	1	Input	Number of zero points
2	Z	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	N	Output	Zero points (stored in ascending order)
3	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $1 \leq \mathrm{N} \leq 50$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes

None

(7) Example

(a) Problem

Set $\mathrm{N}=20$ to get the positive zero points of $J_{0}(x)$ to 20 -th one.
(b) Main program

```
PROGRAM BIZBSO
IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (N=20)
REAL (8) Z(N)
CALL DIZBSO(N,Z,IERR)
WALLTE (6,60)
WRITE (6,80) N
WRITE (6,90) N
WRITE (6,110) 0, IERR
DO 1000 I=1,N
CALL DIBJOX(Z(I),Y,IERR)
WRITE(6,6000) I,0 ,Z(I),Y
CONTINUE
STOP
FORMAT (1X,',*** DIZBSO ***',/,/)
80 FORMAT(1X,' *** INPUT ***
100 FORMAT(1X,, *** ÓUTPUT *** , //,/)
```



```
END
```

1000
(c) Output results

```
*** DIZBSO ***
    *** INPUT ***
    N= 20
*** OUTPUT ***
ORDER = 0 IERR = 0
```

	TH	ZERO	OF			2.4048255577	ERR $=0.000 \mathrm{E}+00$
2	TH	ZERD	OF	J	0	5.5200781103	$E R R=-0.555 \mathrm{E}-16$
3	TH	ZERO	OF	J	0	8.6537279129	$E R R=-0.855 \mathrm{E}-16$
4	TH	ZERO	OF	J	0	11.7915344390	ERR= $0.561 \mathrm{E}-15$
5	TH	ZERO	OF	J	0	14.9309177085	ERR= $0.314 \mathrm{E}-16$
6	TH	ZERO	OF	J	0	18.0710639679	ERR= $0.206 \mathrm{E}-16$
7	TH	ZERO	OF	J	0	21.2116366299	$E R R=0.235 \mathrm{E}-15$
8	TH	ZERO	OF	J	0	24.3524715307	$E R R=-0.287 \mathrm{E}-15$
9	TH	ERO	F		0	27.4934791320	$E R R=-0.163 \mathrm{E}-15$
10	TH	ZERO	OF		0	30.6346064684	$E R R=-0.461 \mathrm{E}-16$
11	TH	ZERO	OF	J	0	33.7758202136	$E R R=-0.170 \mathrm{E}-15$
12	TH	ZERO	OF	J	0	36.9170983537	ERR $=-0.458 \mathrm{E}-15$
13	TH	ZERO	OF		0	40.0584257646	ERR $=-0.374 \mathrm{E}-15$
14	TH	ZERO	OF	J	0	43.1997917132	ERR= $0.223 \mathrm{E}-15$
15	TH	ZERO	OF	J	0	46.3411883717	ERR= $0.411 \mathrm{E}-15$
16	TH	ZERO	OF		0	49.4826098974	ERR= $0.353 \mathrm{E}-16$
17	TH	ZERO	OF	J	0	52.6240518411	$\mathrm{ERR}=0.292 \mathrm{E}-15$
18	TH	ZERO	OF	J	0	55.7655107550	$E R R=-0.231 \mathrm{E}-15$
19	TH	ZERO	OF		0	58.9069839261	$E R R=-0.845 \mathrm{E}-16$
20		ZERO	OF	J		62.0484691902	$E R R=-0.862 \mathrm{E}-16$

2.3.2 DIZBS1, RIZBS1

Positive Zero Points of the Bessel Function of the 1st Kind (Order 1)
(1) Function

Evaluate positive zero points of the Bessel function of the first kind of order 1.
(2) Usage

Double precision:
CALL DIZBS1 (N, Z, IERR)
Single precision:

> CALL RIZBS1 (N, Z, IERR)
(3) Arguments
D:Double precision real

R:Single precision real | Z:Double precision complex |
| :--- |
| C:Single precision complex |\quad I: \(\left\{\begin{array}{l}INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer\end{array}\right\}\)
(4) Restrictions
(a) $1 \leq \mathrm{N} \leq 50$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes

None

(7) Example

(a) Problem

Set $\mathrm{N}=20$ to get positive zero points of $J_{1}(x)$ to 20 -th one.
(b) Main program

```
PROGRAM BIZBS1
IMPLICIT REAL (8) (A-H,O-Z)
PARAMETER (N=20)
REAL(8) Z(N)
CALL DIZBS1(N,Z,IERR)
WRITE(6,60)
WRITE (6,60)
WRITE (6,80) N
WRITE (6,90) N
WRITE (6,110) 1, IERR
DO 1000 I=1,N
CALL DIBJ1X(Z(I) ,Y,IERR)
WRITE(6,6000) I,1 ,Z(I),Y
CONTINUE
STOP
FORMAT (1X,',*** DIZBS1 ***',/,/)
80 FORMAT(1X,', *** INPUT ***
90 FORMAT(1X,', N= ',I3,/,/)
```



```
END
```

1000
(c) Output results

```
*** DIZBS1 ***
    *** INPUT ***
    N= 20
*** OUTPUT ***
ORDER = 1 IERR = 0
```


2.3.3 DIZBSN, RIZBSN

Positive Zero Points of Bessel Function of the 1st Kind (Integer Order)

(1) Function

Evaluate positive zero points of Bessel function of the first kind and integer order $J_{m}(x)$.
(2) Usage

Double precision:
CALL DIZBSN (N,M,LF, Z, WORK, IERR)
Single precision:
CALL RIZBSN (N,M,LF, Z, WORK, IERR)
(3) Arguments

D:Double precision real	Z:Double precision complex
R:Single precision real	C:Single precision complex

\operatorname{INTEGER}(8) as for 64 bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	N	I	1	Input	Number of positive zero points
2	M	I	1	Input	m
3	LF	I	1	Input	Approximate magnification ratio
4	Z	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	N	Output	Positive zero points (stored in ascending order)
5	WORK	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	See Contents	Work	Work area size: $2 \times(\mathrm{LF} \times \mathrm{N}+1) \times(\mathrm{LF} \times \mathrm{N}+2)$
6	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $1 \leq \mathrm{N} \leq 50(\mathrm{M}=-1,0,+1), 1 \leq \mathrm{N}$ (otherwise)
(b) $\mathrm{LF} \geq 1$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.
3500	The solution could not be improved.	
3600	The solution of eigenvalue problem was not obtained.	

(6) Notes

(a) N should be about 50 at most.
(b) Maximum iteration count for iterative improvement is $\mathrm{LF} \times \mathrm{N}$. This value is also used as the order of the eigenvalue problem which has to be solved to obtain an initial approximation value for iterative improvement. If this value is not sufficiently large, the precision for approximation of the initial value which is used in iterative improvement may become bad, which may cause $\operatorname{IERR}=3500,3600$. On the other hand, if this value is too large, processing time required to calculate the initial approximation value which is used in iterative improvement becomes large. As a criterion, $\mathrm{N} \times \mathrm{LF}$ may be taken to be no less than 24 if M is around 10 , and may be taken to be no less than 30 if M is around 18 .
(c) For $\mathrm{M}=-1,0,+1$, processing time becomes rather small because this subroutine refers to an numerical table.
(7) Example
(a) Problem

Set $\mathrm{N}=20$ and $\mathrm{M}=10$ to obtain positive zero points of $J_{10}(x)$ to 20 -th one.
(b) Main program

PROGRAM BIZBSN
IMPLICIT REAL (8) (A-H, O-Z)
PARAMETER (N=20)
$\operatorname{REAL}(8) \mathrm{Z}(\mathrm{N}), \operatorname{WORK}(2 *(1+8 * \mathrm{~N}) *(2+8 * \mathrm{~N}))$
II=10
CALL DIZBSN ($\mathrm{N}, \mathrm{II}, 8, \mathrm{Z}$, WORK, IERR)
WRITE $(6,10)$
WRITE $(6,20)$
WRITE $(6,30) \mathrm{N}$, II
WRITE $(6,40)$
WRITE (6, $5=1$ II, IERR
CALL DIBJNX $(I I, ~ Z(I), ~ D E R R, ~ I E R R) ~$
WRITE $(6,6000)$ I, II , Ź(I) , DERR'
1000 CONTINUE
STOP
10 FORMAT (1X, , *** DIZBSN *** ', /, /)
20 FORMAT (1X,', *** INPUT $* * *$,',/, //)
40 FORMAT (1X,', $\quad * * *$ OUTPUT $* * *, 1, /, /)$
50 FORMAT (1X', $\operatorname{ORDER}=,, I 3, '$ IERR $=,, I 4, /, /)$
6000 FORMAT(1X,I2,' TH ZERO Ó O J J, I2,' ',F13.10,\&
END
(c) Output results

```
*** DIZBSN ***
*** INPUT ***
N= 20 M= 10
*** OUTPUT ***
ORDER = 10 IERR = 0
```

1	TH	ZERO	OF	J10	14.4755006866	ERR	-0.167E-15
2	TH	ZERO	OF	J10	18.4334636670	ERR	$0.194 \mathrm{E}-15$
3	TH	ZERO	OF	J10	22.0469853647	ERR	$0.194 \mathrm{E}-15$
4	TH	ZERO	OF	J10	25.5094505542	ERR	-0.264E-15
5	TH	ZERO	OF	J10	28.8873750635	ERR	$0.139 \mathrm{E}-16$
6	TH	ZERD	OF	J10	32.2118561997	ERR	-0.319E-15
7	TH	ZERO	OF	J10	35.4999092054	ERR	$0.444 \mathrm{E}-15$
8	TH	ZERO	OF	J10	38.7618070179	ERR	$0.194 \mathrm{E}-15$
9	TH	ZERO	OF	J10	42.0041902367	ERR	$0.555 \mathrm{E}-16$
10	TH	ZERO	OF	J10	45.2315741035	ERR	$0.250 \mathrm{E}-15$
	TH	ZERO	OF	J10	48.4471513873	ERR	-0.555E-16
12	TH	ZERO	OF	J10	51.6532516682	ERR	$0.167 \mathrm{E}-15$
13	TH	ZERO	OF	J10	54.8516190760	ERR	-0.160E-15
14	TH	ZERD	OF	J10	58.0435879282	ERR	-0.694E-16
15	TH	ZERO	OF	J10	61.2301979773	ERR	-0.340E-15
16	TH	ZERD	OF	J10	64.4122724129	ERR	$0.354 \mathrm{E}-15$

[^0]
2.3.4 DIZBYN, RIZBYN

Positive Zero Points of the Second Kind Bessel Function

(1) Function

Evaluate positive zero points of Bessel function of the second kind and integer order $Y_{m}(x)$.
(2) Usage

Double precision:
CALL DIZBYN (N, M, Z, NCONV, IERR)
Single precision:
CALL RIZBYN (N, M, Z, NCONV, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \mathrm{bit} \text { Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	N	I	1	Input	Number of zero points
2	M	I	1	Input	Degree m
3	Z	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	N	Output	Positive zeros (from smallest one)
4	NCONV	I	1	Output	Maximum number of iteration
5	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{N} \geq 1$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.
4000	The iterative improvement did not con- verge within the maximum number of iterations.	

(6) Notes
(a) The double precision version should be used to get zero points for the second kind Bessel function with the absolute value of the degree ≥ 5.

(7) Example

(a) Problem

For $Y_{10}(x)$, obtain zero points for 20 -th one.
(b) Input data
$\mathrm{N}=20$ and $\mathrm{M}=10$.
(c) Main program

PROGRAM BIZBYN
EXAMPLE OF DIZBYN *** IMPLICIT NONE
$!$ INTEGER N
INTEGER M, NCONV, IERR, I
PARAMETER ($N=20$)
REAL (8) Z(N), DERR
$!$
$M=10$
! $\operatorname{WRITE}(6,6000) \mathrm{N}, \mathrm{M}$
CALL DIZBYN (N,M,Z,NCONV,IERR)
WRITE $(6,6010)$ IERR, NCONV, M
DO $100 \mathrm{I}=1$, N
CALL DIBYNX (M, Z(I), DERR, IERR)
IF (IERR.NE.0) WRITE (6,6020)
(6,6030$)$ I,M , Z(I) ,DERR
100 CONTINUE
STOP
0 FORMAT (/,\&
$1 \mathrm{X},{ }^{\prime}, * * *$
DIZBYN $* * *,, /, /, \&$
INPUT $* *$,
1X,

6010 FORMAT

1X,', \quad NCONV $=,, 14,1, /, \&$

6020 FORMAT(1X,' \quad ** ERROR IN DIBYNX',/) \quad, ,D13.3) END
(d) Output results
*** DIZBYn ***
** InPut **
$\mathrm{N}=20 \quad \mathrm{M}=10$
** OUTPUT **
IERR = 0
nCONV $=29$
NO Y10 (ZERO POINT) VALUE OF YM (X)
$2 \mathrm{Y} 10(16.5222843948) \quad-0.468 \mathrm{D}-1$
Y10(20.2659845012)
Y10 (23.7916697195) $\quad 0.145 \mathrm{D}-12$
$\begin{array}{rr}\mathrm{Y} 10(27.2065688816) & -0.144 \mathrm{D}-13\end{array}$
Y10 (30.5550200110) $\quad 0.247 \mathrm{D}-13$
$\begin{aligned} \mathrm{Y} 10(33.8596838727) & -0.322 \mathrm{D}-14\end{aligned}$
$\left.\begin{array}{lr}Y 10(37.1336497603\end{array}\right) \quad 0.178 D-13$
-0.357D-14
$0.541 \mathrm{D}-15$
$0.798 \mathrm{D}-15$
$0.352 \mathrm{D}-14$
$0.125 \mathrm{D}-15$
-0.101D-14
$0.194 \mathrm{D}-14$
-0.196D-14
0.330D-14
$-0.251 \mathrm{D}-13$
$0.351 \mathrm{D}-14$
$-0.410 \mathrm{D}-14$

2.3.5 DIZBSL, RIZBSL

Positive Zero Points of the Function $a J_{0}(\alpha)+\alpha J_{1}(\alpha)$
(1) Function

Evaluate the positive solutions α of the transcendental equation $a J_{0}(\alpha)+\alpha J_{1}(\alpha)=0$
(2) Usage

Double precision:
CALL DIZBSL (N,A,LF, Z, WORK, IERR)
Single precision:
CALL RIZBSL (N,A,LF, Z, WORK, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	N	I	1	Input	Number of positive solutions
2	A	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Input	a
3	LF	I	1	Input	Approximate magnification ratio
4	Z	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	N	Output	Positive solutions α (stored in ascending order)
5	WORK	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	See Contents	Work	Work area size: $2 \times(\mathrm{LF} \times \mathrm{N}+1) \times(\mathrm{LF} \times \mathrm{N}+2)$
6	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{N} \geq 1$
(b) $\mathrm{LF} \geq 1$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.
3500	The solution could not be improved.	
3600	The solution of eigenvalue problem was not obtained.	

(6) Notes
(a) The effective range for parameter a (input value A) is $10^{-10} \leq|a| \leq 10^{4}$ or $a=0$.
(b) N should be about 50 at most.
(c) Maximum iteration count for iterative improvement is $\mathrm{LF} \times \mathrm{N}$.
(d) As a criterion, LF may be taken to be about 8 .
(7) Example
(a) Problem

Set $a=-\beta \frac{J_{1}(\beta)}{J_{0}(\beta)}(\beta=2.304780), \mathrm{N}=20$ and $\mathrm{LF}=8$ to obtain the positive solutions α of $a J_{0}(\alpha)+$ $\alpha J_{1}(\alpha)=0$.
(b) Main program

```
PROGRAM BIZBSL
    IMPLICIT REAL (8) ( \(\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}\) )
    PARAMETER \((8)\)
\(\mathrm{R}=2(\mathrm{~N})\),
REAL \(\mathrm{WORK}(2 *(1+8 * \mathrm{~N}) *(2+8 * \mathrm{~N}))\)
    \(!\quad \mathrm{A}=2.304780 \mathrm{DO}\)
        \(\mathrm{A}=2.304780 \mathrm{DO}\)
CALL DIBJOX ( \(\mathrm{A}, \mathrm{F}\), IERR)
        CALL DIBJ1X (A, D, IERR)
        \(\mathrm{A}=-\mathrm{D} * \mathrm{~A} / \mathrm{F}\)
        \(\operatorname{WRITE}(6,10)\)
\(\operatorname{WRITE}(6,20)\)
        \(\operatorname{WRITE}(6,20)\)
\(\operatorname{WRITE}(6,6000)\)
        WRITE (6,6000) A
        CALL DIZBSL ( \(\mathrm{N}, \mathrm{A}, 8, \mathrm{Z}\), WORK , IERR)
        WRITE \((6,30)\)
        WRITE \((6,40)\) IERR
        DO \(1000 \mathrm{~J}=1\), N
        CALL DIBJOX (Z(J),F,IERR)
        CALL DIBJ1X (Z(J), D, IERR)
        \(\mathrm{P}=\mathrm{A} * \mathrm{~F}+\mathrm{D} * \mathrm{Z}(\mathrm{J})\)
        WRITE \((6,6100) \mathrm{J}, \mathrm{Z}(\mathrm{J}), \mathrm{P}\)
    1000 CONTINUE
    STOP
        10 FORMAT (1X,', \(* * *\) DIZBSL \(* * *, ', /, /)\)
        30 FORMAT (1X,' \(* * *\) OUTPUT \(* * *\),',',
    30 FORMAT (1X,', *** OUTPUT \(* * *, ~, ~\)
    6000 FORMAT (1X,' INPUT \(A=,\), , \(10.6, /, /\) )
6100 FORMAT \((1 X, ' \operatorname{ALPHA}(,, I 2, ')=,, F 10.6, \prime \quad\) ERR \(=,, E 11.4)\)
END
```

(c) Output results
*** DIZBSL ***
*** INPUT ***

INPUT A = -23.456847
*** OUTPUT ***
$\operatorname{IERR}=0$

ALPHA (1) =	2.304780	ERR=	$0.0000 \mathrm{E}+00$
ALPHA (2) =	5.293488	ERR=	$0.1332 \mathrm{E}-14$
ALPHA (3) =	8.306597	ERR=	-0.4885E-14
ALPHA (4) =	11.333025	ERR=	-0.1243E-13
ALPHA (5) =	14.371644	ERR=	$0.6217 \mathrm{E}-14$
ALPHA (6) =	17.421959	ERR=	-0.5773E-14
ALPHA (7) =	20.483189	ERR=	$0.4441 \mathrm{E}-14$
ALPHA (8) =	23.554295	ERR=	$0.1332 \mathrm{E}-14$
ALPHA (9) =	26.634127	ERR=	$0.0000 \mathrm{E}+00$
ALPHA (10) =	29.721552	ERR=	$0.5773 \mathrm{E}-14$
ALPHA (11) =	32.815519	ERR=	-0.3553E-14
ALPHA (12) =	35.915098	ERR=	$0.1421 \mathrm{E}-13$
ALPHA (13) =	39.019482	ERR=	-0.1865E-13
ALPHA (14) =	42.127984	ERR=	$0.1510 \mathrm{E}-13$
ALPHA (15) =	45.240020	ERR=	-0.4441E-15
ALPHA (16) =	48.355101	ERR=	-0.6661E-14
ALPHA (17) =	51.472814	ERR=	$0.1554 \mathrm{E}-13$
ALPHA (18) =	54.592810	ERR=	$0.1732 \mathrm{E}-13$
ALPHA (19) =	57.714796	ERR=	$0.2309 \mathrm{E}-13$
ALPHA (20) =	60.838523	ERR=	$0.1199 \mathrm{E}-13$

2.4 MODIFIED BESSEL FUNCTIONS

2.4.1 WIBI0X, VIBIOX

Modified Bessel Function of the 1st Kind (Order 0)
(1) Function

For $x=X_{i}$, calculates values of the Modified Bessel function of the 1st kind (order 0)

$$
I_{0}(x)=\frac{1}{\pi} \int_{0}^{\pi} e^{x \cos (t)} d t
$$

(2) Usage

Double precision:
CALL WIBI0X (NV, XI, XO, IERR)
Single precision:
CALL VIBIOX (NV, XI, XO, IERR)
(3) Arguments

D:Double precision real R :Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	NV	I	1	Input	number of input data
2	XI	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	NV	Input	X_{i}
3	XO	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	NV	Output	$I_{0}\left(X_{i}\right)$
4	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
2000	Restriction (a) was not satisfied.	Processing is aborted.
$2000+i$	$\|\mathrm{XI}(\mathrm{i})\|>\mathrm{M}$ (See Note (a)) (overflow)	$\mathrm{XO}(\mathrm{i})=$ (Maximum value) is performed.

(6) Notes
(a) When $\operatorname{IERR}=2000$ in this subroutine, the value of M is as follows:
$M=\{$ double precision: 713.067 , single precision: 90.978$\}$
(b) Modified Bessel function of the 1st kind $I_{\nu}(z)$ is the particular solution of modified Bessel's differential equation

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}-\left(z^{2}+\nu^{2}\right) w=0
$$

and defined as

$$
I_{ \pm \nu}(z)=e^{\mp \sqrt{-1} \pi / 2} J_{ \pm \nu}(\sqrt{-1} z)
$$

(7) Example

(a) Problem

Obtain $I_{0}(x)$ for $x=0.0,0.1, \cdots, 0.9$.
(b) Main program

PROGRAM EIBIOX
IMPLICIT REAL (8) (A-H, O-Z)
PARAMETER (NV=10)
REAL (8) XI (NV) , XO (NV)
CHARACTER*6 CNAME , CFNC
PARAMETER (CNAME='WIBIOX', CFNC=' IO')
$!$
DNV=NV
DO $1000 \mathrm{I}=1$, NV
XI (I) $=(\mathrm{I}-1) / \mathrm{DNV}$
1000 CONTINUE
CALL WIBIOX (NV, XI, XO, IERR)
WRITE $(6,6000)$ CNAME
WRITE $(6,6100)$
DO $2000\binom{I=1, N V}{\operatorname{WRITE}(6200)}$
2000 CONTINUE
WRITE $(6,6300)$
WRITE $(6,6400)$ IERR
DO 3000 I=1, NV
6500) CFNC,XI(I), XO(I)

3000 CONTINUE

6000 FORMAT (1X,'*** ',A6,' *')
6100 FORMAT (1X,' $* * *$ INPUT *')
6200 FORMAT (1X','XI (', I2,' $)='$, F10. 6)
6300 FORMAT (1X, ',*** OUTPUT *'')
6400 FORMAT (1X,' IERR=',I5)
6500 FORMAT (1X,A6,'(',F10.6,') =', F10.6)
END
(c) Output results

*** WIBIOX * *** INPUT *		
* $\mathrm{XI}(1)=0.000000$		
XI(2) =	. 100000	
XI(3) =	0.200000	
XI(4) =	0.300000	
XI(5) =	0.400000	
$\mathrm{XI}(6)=$	0.500000	
XI(7) =	0.600000	
XI(8) =	0.700000	
XI(9) =	0.800000	
$\mathrm{XI}(10)=$	0.900000	
*** OUTPUT *		
IERR=	0	
$10($	$0.000000)=$	1.000000
IO($0.100000)=$	1.002502
IO	$0.200000)=$	1.010025
IO($0.300000)=$	1.022627
IO($0.400000)=$	1.040402
IO	$0.500000)=$	1.063483
IO($0.600000)=$	1.092045
IO	$0.700000)=$	1.126303
IO($0.800000)=$	1.166515
IO 1	$0.900000)=$	1.212985

2.4.2 WIBK0X, VIBK0X

Modified Bessel Function of the 2nd Kind (Order 0)
(1) Function

For $x=X_{i}$, calculates values of the modified Bessel function of the 2nd kind (order 0)

$$
K_{0}(x)=\int_{0}^{\infty} e^{-x \cosh (t)} d t
$$

(2) Usage

Double precision:
CALL WIBK0X (NV, XI, XO, IERR)
Single precision:
CALL VIBK0X (NV, XI, XO, IERR)
(3) Arguments
$\begin{array}{l}\text { D:Double precision real } \begin{array}{l}\text { Z:Double precision complex } \\ \text { R:Single precision real }\end{array} \quad \text { C:Single precision complex }\end{array}$ I: $\left.\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}$
(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(b) $\mathrm{XI}(\mathrm{i}) \geq 0.0$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	$\mathrm{XI}(\mathrm{i})>\mathrm{M}$ (See Note (a)) (underflow)	$\mathrm{XO}(\mathrm{i})=0.0$ is performed.
2000	$\mathrm{XI}(\mathrm{i})=0.0$ (overflow)	$\mathrm{XO}(\mathrm{i})=$ (Maximum value) is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.
$3000+\mathrm{i}$	Restriction (b) was not satisfied by XI(i).	

(6) Notes
(a) When IERR becomes 1000 in this subroutine, the value of M is as follows:
$M=\{$ double precision: 705.117 , single precision: 85.114$\}$
(b) Modified Bessel function of the 2nd kind $K_{\nu}(z)$ is the particular solution of modified Bessel's differential equation

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}-\left(z^{2}+\nu^{2}\right) w=0
$$

and defined as

$$
K_{\nu}(z)=\frac{\pi}{2} \frac{I_{-\nu}(z)-I_{\nu}(z)}{\sin \nu \pi} .
$$

When ν is equal to integer n, the following limiting value is used for definition.

$$
K_{n}(z)=\lim _{\nu \rightarrow n} K_{\nu}(z)
$$

(7) Example
(a) Problem

Obtain $K_{0}(x)$ for $x=0.1,0.2, \cdots, 1.0$.
(b) Main program

```
        PROGRAM EIBKOX
        IMPLICIT REAL (8) (A-H, O-Z)
        PARAMETER (NV=10)
        REAL (8) XI (NV) , XO (NV)
        CHARACTER*6 CNAME , CFNC
        PARAMETER( CNAME='W̉IBKOX', CFNC=' KO' )
    \(!\)
        DNV=NV
        DO \(1000 \mathrm{I}=1\),NV
    XI(I)=I/DNV
1000 CONTINUE
CALL WIBKOX( NV, XI, XO, IERR )
    WRITE \((6,6000)\) CNAME
    WRITE \((6,6100)\)
    DO \(2000 \mathrm{I}=1\), NV
    2000 CONTINUE
        \(\operatorname{WRITE}(6,6300)\)
        WRITE \((6,6400)\) IERR
    DO 3000 I \(=1\), NV
        \(\operatorname{WRITE}(6,6500)\) CFNC,XI(I), XO(I)
    3000 CONTINUE
    STOP
6000 FORMAT (1X, '*** ',A6,' *')
    6100 FORMAT (1X,',*** INPUT *')
    \(6200 \operatorname{FORMAT}(1 \mathrm{X}, ' \mathrm{XI}(', \mathrm{I} 2, ')=', F 10.6\) )
    6300 FORMAT (1X,'*** OUTPUT *')
    6400 FORMAT (1X,'IERR=', I5 )
    6500 FORMAT (1X, A6,' (', F10.6,') =', F10.6 )
    END
```

(c) Output results

*** WIBKOX *		
* INPUT *		
XI(1) =	0. 100000	
XI(2) =	0.200000	
XI(3) =	0.300000	
XI(4) =	0.400000	
XI(5) =	0.500000	
XI(6) =	0.600000	
XI(7) =	0.700000	
XI(8) =	0.800000	
XI (9) =	0.900000	
XI (10) =	1.000000	
*** OUT	-	
IERR=	0	
K0	0.100000) =	2.427069
K0	$0.200000)=$	1.752704
K0	$0.300000)=$	1.372460
K0	$0.400000)=$	1.114529
K0	$0.500000)=$	0.924419

2.4.3 WIBI1X, VIBI1X

Modified Bessel Function of the 1st Kind (Order 1)

(1) Function

For $x=X_{i}$, calculates values of the modified Bessel function of the 1st kind (order 1)

$$
I_{1}(x)=\frac{1}{\pi} \int_{0}^{\pi} e^{x \cos (t)} \cos (t) d t
$$

(2) Usage

Double precision:
CALL WIBI1X (NV, XI, XO, IERR)
Single precision:
CALL VIBI1X (NV, XI, XO, IERR)
(3) Arguments
D:Double precision real

R:Single precision real | Z:Double precision complex |
| :--- |
| C:Single precision complex |\quad I: \(\left\{\begin{array}{l}INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	NV	I	1	Input	Number of input data
2	XI	$\left\{\begin{array}{l}\text { D } \\ \text { R }\end{array}\right\}$	NV	Input	X_{i}
3	XO	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	NV	Output	$I_{1}\left(X_{i}\right)$
4	IERR	I	1		

(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
2000	Restriction (a) was not satisfied.	Processing is aborted.
$2000+\mathrm{i}$	$\|\mathrm{XI}(\mathrm{i})\|>$ M (See Note (a))	
	(overflow)	In the case where XI(i) ≥ 0.0, $\mathrm{XO}(\mathrm{i})=($ Maximum value $)$ is performed.
In the case where XI(i) <0.0, $\mathrm{XO}(\mathrm{i})=-($ Maximum value $)$ is performed.		

(6) Notes
(a) When IERR becomes 2000 in this subroutine, the value of M is as follows:
$M=\{$ double precision: 713.067, single precision: 90.978$\}$
(b) Modified Bessel function of the 1st kind $I_{\nu}(z)$ is the particular solution of modified Bessel's differential equation

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}-\left(z^{2}+\nu^{2}\right) w=0
$$

and defined as

$$
I_{ \pm \nu}(z)=e^{\mp \sqrt{-1} \pi / 2} J_{ \pm \nu}(\sqrt{-1} z)
$$

(7) Example
(a) Problem

Obtain $I_{1}(x)$, for $x=0.0,0.1,0.2, \cdots, 0.9$.
(b) Main program

PROGRAM EIBI1X
IMPLICIT REAL (8) ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
PARAMETER $\quad(N V=10)$
REAL (8) XI (NV) , XO (NV)
PARAMETER (CNAME='WIBI1X', CFNC=, I1')
DNV=NV
DO $1000 \mathrm{I}=1$, NV
$X I(I)=(I-1) / D N V$
1000 CONTINUE
CALL WIBI1X (NV, XI, XO, IERR)
WRITE $(6,6000)$ CNAME
WRITE $(6,6100)$
DO 2000 I=1,NV
WRITE $(6,6200) \mathrm{I}, \mathrm{XI}(\mathrm{I})$
2000 CONTINUE
WRITE $(6,6300)$
WRITE $(6,6400)$ IERR
DO $3000 \mathrm{I}=1$, NV
WRITE $(6,6500)$ CFNC,XI (I), XO(I)
3000 CONTINUE

6000 FOR
6000 FORMAT (1X,'*** ',A6,' *')
6100 FORMAT (1X,'*** INPUT *'
6200 FORMAT (1X,'XI (, I2, ') $=$, , 10.6)
6200 FORMAT(1X,'XI (', I2,' $)='$, F10.
6400 FORMAT (1X,' IERR=, , I5)
6400 FORMAT (1X,'IERR=', I5)
6500 FORMAT (1X, A6,'(', F10.6,') $=$ ', F10.6)
END
(c) Output results

*** WIBIIX *		
*** INPUT *		
XI(1) =	0.000000	
XI(2) =	0.100000	
XI(3) =	0.200000	
XI(4) =	0.300000	
XI(5) =	0.400000	
XI(6) =	0.500000	
XI(7) =	0.600000	
$\mathrm{XI}(8)=$	0.700000	
XI (9) =	0.800000	
$\mathrm{XI}(10)=$	0.900000	
*** OUT	T	
IERR=	0	
I1	$0.000000)=$	0.000000
I1	$0.100000)=$	0.050063
I1	$0.200000)=$	0.100501
I1	$0.300000)=$	0.151694
I1	$0.400000)=$	0.204027
I1	$0.500000)=$	0.257894
I1	$0.600000)=$	0.313704
I1	$0.700000)=$	0.371880
I1	$0.800000)=$	0.432865
I1	$0.900000)=$	0.497126

2.4.4 WIBK1X, VIBK1X

Modified Bessel Function of the 2nd Kind (Order 1)

(1) Function

For $x=X_{i}$, calculates values of the modified Bessel function of the 2nd kind (order 1)

$$
K_{1}(x)=\int_{0}^{\infty} e^{-x \cosh (t)} \cosh (t) d t
$$

(2) Usage

Double precision:
CALL WIBK1X (NV, XI, XO, IERR)
Single precision:
CALL VIBK1X (NV, XI, XO, IERR)
(3) Arguments
$\begin{array}{l}\text { D:Double precision real } \\ \begin{array}{l}\text { Z:Single precision real }\end{array} \text { C:Single precision complex }\end{array}$ I: $\left.\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}$
(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(b) $\mathrm{XI}(\mathrm{i}) \geq 0.0$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	$\mathrm{XI}(\mathrm{i})>\mathrm{M}($ See Note (a)) (underflow)	$\mathrm{XO}(\mathrm{i})=0.0$ is performed.
2000	$\mathrm{XI}(\mathrm{i}) \leq 1.0 /$ (Maximum value) (overflow)	$\mathrm{XO}(\mathrm{i})=$ (Maximum value) is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.
$3000+\mathrm{i}$	Restriction (b) was not satisfied by XI(i).	

(6) Notes
(a) When IERR becomes 1000 in this subroutine, the value of M is as follows:
$M=\{$ double precision: 705.117 , single precision: 85.114$\}$
(b) Modified Bessel function of the 2nd kind $K_{\nu}(z)$ is the particular solution

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}-\left(z^{2}+\nu^{2}\right) w=0
$$

and defined as

$$
K_{\nu}(z)=\frac{\pi}{2} \frac{I_{-\nu}(z)-I_{\nu}(z)}{\sin \nu \pi} .
$$

When ν is equal to integer n, the following limiting value is used for definition.

$$
K_{n}(z)=\lim _{\nu \rightarrow n} K_{\nu}(z)
$$

(7) Example
(a) Problem

Obtain $K_{1}(x)$ for $x=0.1,0.2, \cdots, 1.0$.
(b) Main program

PROGRAM EIBK1X
IMPLICIT REAL (8) (A-H,O-Z)
PARAMETER (NV=10)
REAL (8) XI (NV), XO (NV)
CHARACTER*6 CNAME , CFNC
PARAMETER (CNAME='WIBK1X', CFNC=' K1')
$!$
DNV=NV
DO $1000 \mathrm{I}=1$, NV
XI $(I)=I / D N V$
1000 CONTINUE
CALL WIBK1X(NV, XI, XO, IERR)
WRITE $(6,6000)$ CNAME
WRITE $(6,6100)$
DO
WRITE $(6,6200)$ I,XI (I)
2000 CONTINUE
$\operatorname{WRITE}(6,6300)$
WRITE $(6,6400)$ IERR
DO $3000 \mathrm{I}=1$, NV
WRITE $(6,6500)$ CFNC, XI (I), XO(I)
3000 CONTINUE
STOP
!
6000 FORMAT (1X,'*** ',A6,' *'
6100 FORMAT (1X,'*** INPUT *'
6200 FORMAT (1X,'XI (', I2,') =', F10.6)
6300 FORMAT (1X,'*** OUTPUT *')
6400 FORMAT (1X,' IERR=', I5)
6500 FORMAT (1X,A6,'(', F10.6, ') = ', F10.6)
END
(c) Output results

```
*** WIBK1X *
*** INPUT *
XI( 1)= 0.100000
XI( 2)= 0.200000
XI( 3)= 0.300000
XI( 3)= 0.300000
XI( 4)=0.400000
XI( 5)= 0.500000
XI( 6)=0.600000
XI( 7) = 0.700000
XI( 8) = 0.800000
XI( 9) = 0.900000
XI (10)=1.000000
*** OUTPUT
K1( 0.100000) = 9.853845
K1( 0.200000)=4.775973
K1( 0.300000)=3.055992
K1( 0.400000) = 2.184354
K1( 0.500000)= 1.656441
K1( 0.600000)= 1.302835
K1( 0.700000)= 1.050284
```


2.4.5 DIBINX, RIBINX

Modified Bessel Function of the 1st Kind (Integer Order)
(1) Function

Calculates a value of the modified Bessel function of the 1st kind (integer order)

$$
I_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi} e^{x \cos (t)} \cos (n t) d t
$$

(2) Usage

Double precision:
CALL DIBINX (N, XI, XO, IERR)
Single precision:
CALL RIBINX (N, XI, XO, IERR)
(3) Arguments
$\begin{array}{l}\text { D:Double precision real } \begin{array}{l}\text { Z:Double precision complex } \\ \text { R:Single precision real }\end{array} \quad \text { C:Single precision complex }\end{array}$ I: $\left.\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}$
(4) Restrictions
(a) $|\mathrm{XI}| \leq M$ where, $M=\{$ double precision: 713.067 , single precision: 90.978$\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	$\|n\|\left(\log _{e}\left\|\frac{n}{x}\right\|-M_{1}\right)>M_{2}($ See Note (c)) (XI $\neq 0.0$ and $\mathrm{N} \neq 0$) (underflow)	$\mathrm{XO}=0.0$ is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes

(a) The computation time of $I_{n}(x)$ becomes longer as x and n increase. Generally it is desirable to set $|\mathrm{N}|<1000$ and $|\mathrm{XI}|<1000.0$.
(b) To calculate $I_{n}(x), I_{n+1}(x), I_{n+2}(x), \cdots$ at a time, it is faster to successively use the recurrence relation below than to call this subroutine repeatedly. The computation, however, becomes unstable if it is done with increasing n. Therefore the recurrence relation should be used with decreasing n.
Recurrence relation :

$$
I_{n-1}=\frac{2 n}{x} I_{n}(x)+I_{n+1}(x)
$$

(c) When IERR becomes 1000 in this subroutine, the values of M_{1} and M_{2} are as follows:
$M_{1}=0.3068$,
$M_{2}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(d) Modified Bessel function of the 1st kind $I_{\nu}(z)$ is the particular solution of modified Bessel's differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}-\left(z^{2}+\nu^{2}\right) w=0
$$

and defined as

$$
I_{ \pm \nu}(z)=e^{\mp \sqrt{-1} \pi / 2} J_{ \pm \nu}(\sqrt{-1} z)
$$

(7) Example

(a) Problem

Obtain the value of $I_{n}(x)$ at $x=1.5$ for $n=5$.
(b) Input data
$\mathrm{N}=5$ and $\mathrm{XI}=1.5$.
(c) Main program

PROGRAM BIBINX

! *** EXAMPLE OF DIBINX ***
IMPLICIT REAL (8) (A-H,0-Z)
READ $(5, *) \mathrm{N}$
READ
$\operatorname{WRITE}(6,1000)$
N, XI
WRITE (6, 1000) N, XI WRITE $(6,2000)$ IERR, XO

(d) Output results

```
*** DIBINX ***
** INPUT **
    N = 5 XI = 1.50
```

** OUTPUT**
IERR $=0$
VALUE OF IN(X)
$\mathrm{XO}=0.2170559569 \mathrm{D}-02$

2.4.6 DIBKNX, RIBKNX

Modified Bessel Function of the 2nd Kind (Integer Order)
(1) Function

Calculates a value of the modified Bessel function of the second kind (integer order)

$$
K_{n}(x)=\int_{0}^{\infty} e^{-x \cosh (t)} \cosh (n t) d t
$$

(2) Usage

Double precision:
CALL DIBKNX (N, XI, XO, IERR)
Single precision:
CALL RIBKNX (N, XI, XO, IERR)
(3) Arguments
$\begin{array}{l}\text { D:Double precision real } \begin{array}{l}\text { Z:Double precision complex } \\ \text { R:Single precision real }\end{array} \quad \text { C:Single precision complex }\end{array}$ I: $\left.\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}$
(4) Restrictions
(a) $\mathrm{XI} \geq 0.0$
(b) $\mathrm{XI} \leq M$
where, $M=\{$ double precision: 705.117 , single precision: 85.114$\}$
(5) Error indicator

IERR value	Meaning	Processing
	Normal termination.	
2000	$\mathrm{XI} \leq 2.0 /($ Maximum value $)$	
	or $\|n\|\left(\log _{e} \frac{\|n\|}{x}-M_{1}\right)>M_{2}$ (See Note (c)) $(\mathrm{XI} \neq 0.0$ and $\mathrm{N} \neq 0)$ (overflow)	
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.

(6) Notes

(a) The computation time of $K_{n}(x)$ becomes longer as x and n increase. Generally it is desirable to set $|\mathrm{N}|<1000$ and XI <1000.0.
(b) To calculate $K_{n}(x), K_{n+1}(x), K_{n+2}(x), \cdots$ at a time, it is faster to successively use the recurrence relation below than to call this subroutine repeatedly.
Recurrence relation:

$$
K_{n+1}(x)=\frac{2 n}{x} K_{n}(x)+K_{n-1}(x)
$$

(c) When IERR becomes 2000 in this subroutine, the values of M_{1} and M_{2} are as follows:
$M_{1}=0.3068$,
$M_{2}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(d) Modified Bessel function of the 2nd kind $K_{\nu}(z)$ is the particular solution of modified Bessel's differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}-\left(z^{2}+\nu^{2}\right) w=0
$$

and defined as

$$
K_{\nu}(z)=\frac{\pi}{2} \frac{I_{-\nu}(z)-I_{\nu}(z)}{\sin \nu \pi} .
$$

When ν is equal to integer n, the following limiting value is used for definition.

$$
K_{n}(z)=\lim _{\nu \rightarrow n} K_{\nu}(z)
$$

(7) Example

(a) Problem

Obtain the value of $K_{n}(x)$ at $x=1.5$ for $n=5$.
(b) Input data
$\mathrm{N}=5$ and $\mathrm{XI}=1.5$.
(c) Main program

PROGRAM BIBKNX
! *** EXAMPLE OF DIBKNX ***
 READ $(5, *)$ N READ (5,* XI
WRITE $(6,1000) \mathrm{N}, \mathrm{XI}$
CALL DIBKNX (N, XI, XO, IERR)
WRITE $(6,2000)$ IERR, XO

(d) Output results

```
*** DIBKNX ***
** INPUT **
    N = 5 XI = 1.50
```

** OUTPUT**
IERR $=0$
VALUE OF KN(X)
$X 0=0.4406778116 \mathrm{D}+02$

2.4.7 DIBIMX, RIBIMX

Modified Bessel Function of the 1st Kind (Real Number Order)
(1) Function

Calculates a value of the modified Bessel function of the 1st kind (real number order)

$$
I_{\nu}(x)=\frac{1}{\pi} \int_{0}^{\pi} e^{x \cos (t)} \cos (\nu t) d t-\frac{\sin (\pi \nu)}{\pi} \int_{0}^{\infty} e^{-x \cosh (t)-\nu t} d t .
$$

(2) Usage

Double precision:
CALL DIBIMX (R, XI, XO, IERR)
Single precision:
CALL RIBIMX (R, XI, XO, IERR)
(3) Arguments

D:Double precision real | Z:Double precision complex |
| :--- |
| R:Single precision real |\quad I: \(\left\{$$
\begin{array}{l}\text { C:Single precision complex }\end{array}
$$ \quad \begin{array}{l}INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	R	$\left\{\begin{array}{l}\text { D } \\ \text { R }\end{array}\right\}$	1	Input	Order ν
2	XI	$\left\{\begin{array}{l}\text { D } \\ \text { R }\end{array}\right\}$	1	Input	Value of variable x
3	XO	$\left\{\begin{array}{l}\text { D } \\ \text { R }\end{array}\right\}$	1	Output	Value of $I_{\nu}(x)$
4	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) When R corresponds with an integer:
$|\mathrm{R}| \leq M_{1}$
$|\mathrm{XI}| \leq M_{2}$
(b) When R does not correspond with an integer:
$0<\mathrm{R} \leq M_{1}$
$0<\mathrm{XI} \leq M_{2}$
where, $M_{1}=\left\{\right.$ double precision: 2^{31}, single precision: $\left.2^{31}\right\}$,
$M_{2}=\{$ double precision: 713.067, single precision: 90.978$\}$

(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	$\nu\left(\log _{e} \frac{\nu}{x}-M_{3}\right)>M_{4}$ (See Note (e)) (XI \neq	$\mathrm{XO}=0.0$ is performed.
	0.0 and $\mathrm{R} \neq 0.0)$ (underflow)	
	(Note: When ν corresponds with an inte-	
	ger, $\|\nu\|$ and $\|x\|$ are used for judging.)	
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.

(6) Notes
(a) The computation time of $I_{\nu}(x)$ becomes longer as x and n increase. Generally it is desirable to set $\mathrm{R}<1000.0$ and $\mathrm{XI}<1000.0$.
(b) If the order is half an integer (a half of an odd integer), the spherical Bessel function should be used instead.

$$
I_{n+\frac{1}{2}}(x)=\sqrt{\frac{2 x}{\pi}} i_{n}(x)
$$

(c) If ν is negative and is not an integer, the Bessel function of the 1st kind cannot be calculated by using this subroutine. Therefore, it should be calculated by using a recurrence relation.
(d) To calculate $I_{\nu}(x), I \nu+1(x), I_{\nu+2}(x), \cdots$ at a time, it is faster to successively use the recurrence relation below than to call this subroutine repeatedly. The computation, however, becomes unstable if it is done with increasing ν. Therefore the recurrence relation should be used with decreasing ν.
Recurrence relation:

$$
I_{\nu-1}(x)=\frac{2 \nu}{x} I_{\nu}(x)+I_{\nu+1}(x)
$$

(e) When IERR becomes 1000 in this subroutine, the values of M_{3} and M_{4} are as follows:
$M_{3}=0.3068$,
$M_{4}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(f) Modified Bessel function of the 1st kind $I_{\nu}(z)$ is the particular solution of modified Bessel's differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}-\left(z^{2}+\nu^{2}\right) w=0
$$

and defined as

$$
I_{ \pm \nu}(z)=e^{\mp \sqrt{-1} \pi / 2} J_{ \pm \nu}(\sqrt{-1} z)
$$

(7) Example

(a) Problem

Obtain the value of $I_{\nu}(x)$ at $x=1.5$ for $\nu=3.3$.
(b) Input data
$\mathrm{R}=3.3$ and $\mathrm{XI}=1.5$.
(c) Main program

PROGRAM BIBIMX
! *** EXAMPLE OF DIBIMX ***
IMPLICIT REAL (8) ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
READ $(5, *) \mathrm{R}$
READ (5,*) XI
WRITE (6,1000) R,XI
CALL DIBIMX (R,XI, XO, IERR)
WRITE $(6,2000)$ IERR, XO
1000 FORMAT ($,{ }^{\prime}, /, /, 5 \mathrm{X}, ' * * *$ DIBIMX $* * * ', /, /, 6 \mathrm{X},{ }^{\prime} * * \operatorname{INPUT} * * '$, \&

/,/,8X, 'VALUE OF IM (X)',/,/,10X,'XO = ', D18.10) END
(d) Output results

```
*** DIBIMX ***
** INPUT **
    R=3.30 XI = 1.50
```

** OUTPUT**
IERR $=0$
VALUE OF IM (X)
$X 0=0.4973088526 \mathrm{D}-01$

2.4.8 DIBKMX, RIBKMX

Modified Bessel Function of the 2nd Kind (Real Number Order)

(1) Function

Calculates a value of the modified Bessel function of the 2nd kind (real number order)

$$
K_{\nu}(x)=\int_{0}^{\infty} e^{-x \cosh (t)} \cosh (\nu t) d t
$$

(2) Usage

Double precision:
CALL DIBKMX (R, XI, XO, IERR)
Single precision:
CALL RIBKMX (R, XI, XO, IERR)
(3) Arguments

D:Double precision real R:Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \operatorname{INTEGER}(4) \text { as for 32bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	R	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Order ν
2	XI	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
3	XO	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Output	Value of $K_{\nu}(x)$
4	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $|\mathrm{R}| \leq M_{1}$ where, $M_{1}=\left\{\right.$ double precision: 2^{31}, single precision: $\left.2^{31}\right\}$
(b) $\mathrm{XI} \geq 0.0$
(c) $\mathrm{XI} \leq M_{2}$
where, $M_{2}=\{$ double precision: 705.117 , single precision: 85.114$\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
2000	$\mathrm{XI} \leq 2.0 /($ Maximum value $)$ or $\nu\left(\log _{e} \frac{\nu}{x}-M_{3}\right)>M_{4}$ (See Note (d)) $(\mathrm{XI} \neq 0.0$ and $\mathrm{R} \neq 0.0)$ (overflow)	
3000	Restriction (a), (b) or (c) was not satisfied.	Processing is aborted.

(6) Notes
(a) The computation time of $K_{n}(x)$ becomes longer as x and n increase. Generally it is desirable to set $\mathrm{R}<1000.0$ and $\mathrm{XI}<1000.0$.
(b) If the order is half an integer (a half of an odd integer), the spherical Bessel function should be used instead.

$$
K_{n+\frac{1}{2}}(x)=\sqrt{\frac{2 x}{\pi}} k_{n}(x)
$$

(c) To calculate $K_{\nu}(x), K_{\nu+1}(x), K_{\nu+2}(x), \cdots$ at a time, it is faster to successively use the recurrence relation below than to call this subroutine repeatedly.
Recurrence relation:

$$
K_{\nu+1}(x)=\frac{2 \nu}{x} K_{\nu}(x)+K_{\nu-1}(x)
$$

(d) When IERR becomes 2000 in this subroutine, the values of M_{3} and M_{4} are as follows:
$M_{3}=0.3068$,
$M_{4}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(e) Modified Bessel function of the 2nd kind $K_{\nu}(z)$ is the particular solution of modified Bessel's differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}-\left(z^{2}+\nu^{2}\right) w=0
$$

and defined as

$$
K_{\nu}(z)=\frac{\pi}{2} \frac{I_{-\nu}(z)-I_{\nu}(z)}{\sin \nu \pi} .
$$

When ν is equal to integer n, the following limiting value is used for definition.

$$
K_{n}(z)=\lim _{\nu \rightarrow n} K_{\nu}(z)
$$

(7) Example

(a) Problem

Obtain the value of $K_{\nu}(x)$ at $x=1.5$ for $\nu=3.3$.
(b) Input data
$\mathrm{R}=3.3$ and $\mathrm{XI}=1.5$.
(c) Main program

PROGRAM BIBKMX
! *** EXAMPLE OF DIBKMX ***
IMPLICIT REAL (8) ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
READ $(5, *) \mathrm{R}$
READ $(5, *)$ XI
$\operatorname{WRITE}(6,1000)$
CALL DIBKMX (R, XI, XO, IERR)
WRITE $(6,2000)$ IERR, XO

(d) Output results

```
*** DIBKMX ***
** INPUT **
    R = 3.30 XI = 1.50
```

** OUTPUT**
IERR = 0
VALUE OF KM(X)
$X 0=0.2759863620 D+01$

2.4.9 ZIBINZ, CIBINZ

Modified Bessel Function of the 1st Kind with Complex Variable (Integer Order)

(1) Function

Calculates a value of the modified Bessel function of the 1st kind with complex variable (integer order)

$$
I_{n}(z)=\frac{1}{\pi} \int_{0}^{\pi} e^{z \cos (t)} \cos (n t) d t
$$

(2) Usage

Double precision:
CALL ZIBINZ (N, ZI, ZO, IERR)
Single precision:
CALL CIBINZ (N, ZI, ZO, IERR)
(3) Arguments

| D:Double precision real
 R:Single precision real | Z:Double precision complex
 C:Single precision complex |
| :--- | :--- |\quad I: \(\left\{\begin{array}{l}INTEGER(4) as for 32 \mathrm{bit} Integer

INTEGER(8) as for 64 \mathrm{bit} Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	N	I	1	Input	Order n
2	ZI	$\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}$	1	Input	Value of variable z
3	ZO	$\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}$	1	Output	Value of $I_{n}(z)$
4	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $|\mathrm{ZI}| \leq M_{1}$ where, $M_{1}=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $2^{18} \pi$ \}
(b) $|\Re(\mathrm{ZI})| \leq M_{2}$ where, $M_{2}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	$\|n\|\left(\log _{e} \frac{\|n\|}{\|z\|}-M_{3}\right)>M_{4}$ (See Note (c))	$\mathrm{ZO}=(0.0,0.0)$ is performed.
	$(\|\mathrm{ZI}\| \neq 0.0$ and $\mathrm{N} \neq 0)$ (underflow)	
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.

(6) Notes

(a) The computation time of $I_{n}(z)$ becomes longer as $|z|$ and n increase. Generally it is desirable to set $|\mathrm{N}|<1000$ and $|\mathrm{ZI}|<1000.0$.
(b) To calculate $I_{n}(z), I_{n+1}(z), I_{n+2}(z), \cdots$ at a time, it is faster to successively use the recurrence relation below than to call this subroutine repeatedly. The computation, however, becomes unstable if it is done with increasing n. Therefore the recurrence relation should be used with decreasing n.
Recurrence relation:

$$
I_{n-1}(z)=\frac{2 n}{z} I_{n}(z)+I_{n+1}(z)
$$

(c) When IERR becomes 1000 in this subroutine, the values of M_{3} and M_{4} are as follows:
$M_{3}=0.3068$,
$M_{4}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(d) Modified Bessel function of the 1st kind $I_{\nu}(z)$ is the particular solution of modified Bessel's differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}-\left(z^{2}+\nu^{2}\right) w=0
$$

and defined as

$$
I_{ \pm \nu}(z)=e^{\mp \sqrt{-1} \pi / 2} J_{ \pm \nu}(\sqrt{-1} z)
$$

(7) Example

(a) Problem

Obtain the value of $I_{n}(z)$ at $z=1+2 \sqrt{-1}$ for $n=3$.
(b) Input data
$\mathrm{N}=3$ and $\mathrm{ZI}=(1.0,2.0)$.
(c) Main program

PROGRAM AIBINZ
! *** EXAMPLE OF ZIBINZ ***
IMPLICIT COMPLEX (8) (A-H,0-Z)
READ ($5, *$) N
READ (5,' (D6. 1, D6.1)') ZI
$\operatorname{WRITE}(6,1000)$ N, ZI
CALL ZIBINZ(N, ZI, ZO, IERR)
WRITE $(6,2000)$ IERR, ZO

2000 FORMAT(' ' $, /, /, 6 \mathrm{X},{ }^{\prime} * *$ OUTPUT**',$/, /, 8 \mathrm{X}$, ' $\operatorname{IERR}=$ ', I5,\&

(d) Output results

```
*** ZIBINZ ***
    ** INPUT **
        N = 3 ZI = ( 1.00 , 2.00 )
    ** OUTPUT**
        IERR = 0
        valuE OF In(Z)
```

 ZO \(=(-0.1753534440 \mathrm{D}+00,-0.8243079895 \mathrm{D}-01)\)

2.4.10 ZIBKNZ, CIBKNZ
 Modified Bessel Function of the 2nd Kind with Complex Variable (Integer Order)

(1) Function

Calculates a value of the modified Bessel function of the second kind with complex variable (integer order)

$$
K_{n}(z)=\int_{0}^{\infty} e^{-z \cosh (t)} \cosh (n t) d t
$$

(2) Usage

Double precision:
CALL ZIBKNZ (N, ZI, ZO, IERR)
Single precision:
CALL CIBKNZ (N, ZI, ZO, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	N	I	1	Input	Order n
2	ZI	$\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}$	1	Input	Value of variable z
3	ZO	$\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}$	1	Output	Value of $K_{n}(z)$
4	IERR	I	1		

(4) Restrictions
(a) $|\mathrm{ZI}|>0.0$
(b) $|\mathrm{ZI}| \leq M_{1}$
where, $M_{1}=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(c) $|\Re(\mathrm{ZI})| \leq M_{2}$
where, $M_{2}=\{$ double precision: 709.7827, single precision: 88.72284$\}$

(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a), (b) or (c) was not satisfied.	Processing is aborted.
4000	$\|\mathrm{ZI}\| \leq 2.0 /($ Maximum value $)$ or $\|n\|\left(\log _{e} \frac{\|n\|}{\|z\|}-M_{3}\right)>M_{4}$ (See Note (c)) $(\|\mathrm{ZI}\| \neq 0.0$ and $\mathrm{N} \neq 0)$	

(6) Notes
(a) The computation time of $K_{n}(z)$ becomes longer as $|z|$ and n increase. Generally it is desirable to set $|\mathrm{N}|<1000$ and $|\mathrm{ZI}|<1000.0$.
(b) To calculate $K_{n}(z), K_{n+1}(z), K_{n+2}(z), \cdots$ at a time, it is faster to successively use the recurrence relation given below than to call this subroutine repeatedly.
Recurrence relation:

$$
K_{n+1}(z)=\frac{2 n}{z} K_{n}(z)+K_{n-1}(z)
$$

(c) When IERR becomes 4000 in this subroutine, the values of M_{3} and M_{4} are as follows:
$M_{3}=0.3068$,
$M_{4}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(d) Modified Bessel function of the 2nd kind $K_{\nu}(z)$ is the particular solution of modified Bessel's differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}-\left(z^{2}+\nu^{2}\right) w=0
$$

and defined as

$$
K_{\nu}(z)=\frac{\pi}{2} \frac{I_{-\nu}(z)-I_{\nu}(z)}{\sin \nu \pi} .
$$

When ν is equal to integer n, the following limiting value is used for definition.

$$
K_{n}(z)=\lim _{\nu \rightarrow n} K_{\nu}(z)
$$

(7) Example

(a) Problem

Obtain the value of $K_{n}(z)$ at $z=1+2 \sqrt{-1}$ for $n=3$.
(b) Input data
$\mathrm{N}=3$ and $\mathrm{ZI}=(1.0,2.0)$.
(c) Main program

PROGRAM AIBKNZ
! *** EXAMPLE OF ZIBKNZ ***
IMPLICIT COMPLEX (8) ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
$\mathrm{READ}(5, *) \mathrm{N}$
READ (5,*) N 1 , 1 , 6.1$)^{\prime}$) ZI
WRITE (6,1000) N, ZI
CALL ZIBKNZ (N, ZI , ZO, IERR
WRITE $(6,2000)$ IERR, ZO
1000 FORMAT(${ }^{\prime}{ }^{\prime}, /, /, 5 \mathrm{SX},{ }^{\prime} * * *$ ZIBKNZ $* * * ', /, /, 6 \mathrm{X},{ }^{\prime} * *$ INPUT ${ }^{* *}$ ', $\&$

END
ENX
(d) Output results

```
*** ZIBKNZ ***
** INPUT **
    N = 3 ZI = ( 1.00 , 2.00
** OUTPUT**
IERR = 0
VALUE OF KN(Z)
ZO = ( -0.6814364280D+00 , 0.6251546546D+00 )
```


2.5 SPHERICAL BESSEL FUNCTIONS

2.5.1 DIBSJN, RIBSJN

Spherical Bessel Function of the 1st Kind (Integer Order)

(1) Function

Calculates a value of the spherical Bessel function of the 1st kind (integer order)

$$
j_{n}(x)=\sqrt{\frac{\pi}{2 x}} J_{n+\frac{1}{2}}(x)
$$

(2) Usage

Double precision:
CALL DIBSJN (N, XI, XO, IERR)
Single precision:
CALL RIBSJN (N, XI, XO, IERR)
(3) Arguments
D:Double precision real

R:Single precision real | Z:Double precision complex |
| :--- |
| C:Single precision complex |\quad I: \(\left\{\begin{array}{l}INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	
1	N	I	1	Input	Order n
2	XI	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
3	XO	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Output	Value of $j_{n}(x)$
4	IERR	I	1		

(4) Restrictions
(a) $\mathrm{XI} \geq 0.0$
(b) $\mathrm{XI} \leq M$
where, $M=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	$\|n\|\left(\log _{e} \frac{\|n\|}{x}-M_{1}\right)>M_{2}$ (See Note (c))	If $\mathrm{N} \geq 0, \mathrm{XO}=0.0$ is performed.
	$(\mathrm{XI} \neq 0.0$ and $\mathrm{N} \neq 0) \quad$ (underflow or	If $\mathrm{N}<0$,
	overflow)	$\mathrm{XO}=(-1)^{\mathrm{N}+1} \times$ (Maximum value)
		is performed.
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.

(6) Notes
(a) The computation time of $j_{n}(x)$ becomes longer as x and n increase. Generally it is desirable to set $|\mathrm{N}|<1000$ and XI <1000.0.
(b) To calculate $j_{n}(x), j_{n+1}(x), j_{n+2}(x) \cdots$ at a time, it is faster to successively use the recurrence relation bellow than to call this subroutine repeatedly.
The computation, however, becomes unstable if it is done with increasing n. Therefore the recurrence relation should be used with decreasing n.
Recurrence relation:

$$
j_{n-1}(x)=\frac{2 n+1}{x} j_{n}(x)-j_{n+1}(x)
$$

(c) When IERR becomes 1000 in this subroutine, the values of M_{1} and M_{2} are as follows:
$M_{1}=0.3068$,
$M_{2}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(d) Spherical Bessel function of the 1st kind $j_{n}(z)$ is the particular solution of differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+2 z \frac{d w}{d z}+\left\{z^{2}-n(n+1)\right\} w=0 \quad(n=0, \pm 1, \pm 2, \cdots)
$$

and defined as

$$
j_{n}(z)=\sqrt{\frac{\pi}{2 z}} J_{n+\frac{1}{2}}(z)
$$

(7) Example

(a) Problem

Obtain the value of $j_{n}(x)$ at $x=1.5$ for $n=5$.
(b) Input data
$\mathrm{N}=5$ and $\mathrm{XI}=1.5$.
(c) Main program

PROGRAM BIBSJN
! *** EXAMPLE OF DIBSJN ***
IMPLICIT REAL (8) (A-H,0-Z)
READ $(5, *)$ N
READ $(5, *)$ XI
$\operatorname{WRITE}(6,1000)$
CALL DIBSJN (N, XI, XO, IERR)
WRITE $(6,2000)$ IERR, XO

(d) Output results

```
*** DIBSJN ***
** INPUT **
    N = 5 XI = 1.50
```

** OUTPUT**
IERR = 0
VALUE OF SPHERICAL JN(X)
$X 0=0.6696205963 \mathrm{D}-03$

2.5.2 DIBSYN, RIBSYN

Spherical Bessel Function of the 2nd Kind (Integer Order)

(1) Function

Calculate a value of the spherical Bessel function of the 2nd kind (integer Order)

$$
y_{n}(x)=\sqrt{\frac{\pi}{2 x}} Y_{n+\frac{1}{2}}(x)
$$

(2) Usage

Double precision:
CALL DIBSYN (N, XI, XO, IERR)
Single precision:
CALL RIBSYN (N, XI, XO, IERR)
(3) Arguments

D:Double precision real R:Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	N	I	1	Input	Order n
2	XI	$\left\{\begin{array}{l}\text { D } \\ \text { R }\end{array}\right\}$	1	Input	Value of variable x
3	XO	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Output	Value of $y_{n}(x)$
4	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{XI} \geq 0.0$
(b) $\mathrm{XI} \leq M$
where, $M=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
2000	$\mathrm{XI} \leq 2.0 /($ Maximum value $)$	If $\mathrm{N} \geq 0, \mathrm{XO}=$ (Minimum value) is per- or $\|n\|\left(\log _{e} \frac{\|n\|}{x}-M_{1}\right)>M_{2}$ (See Note (c)) formed. (XI $\neq 0.0$ and $\mathrm{N} \neq 0)$ (overflow or underflow)
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.

(6) Notes

(a) The computation time of $y_{n}(x)$ becomes longer as x and n increase. Generally it is desirable to set $|\mathrm{N}|<1000$ and XI <1000.0.
(b) To calculate $y_{n}(x), y_{n+1}(x), y_{n+2}(x) \cdots$ at a time, it is faster to successively use the recurrence relation below than to call this subroutine repeatedly.
Recurrence relation:

$$
y_{n+1}(x)=\frac{2 n+1}{x} y_{n}(x)-y_{n-1}(x)
$$

(c) When IERR becomes 2000 in this subroutine, the values of M_{1} and M_{2} are as follows:
$M_{1}=0.3068$,
$M_{2}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(d) Spherical Bessel function of the 2nd kind $y_{n}(z)$ is the particular solution of differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+2 z \frac{d w}{d z}+\left\{z^{2}-n(n+1)\right\} w=0 \quad(n=0, \pm 1, \pm 2, \cdots)
$$

and defined as

$$
y_{n}(z)=\sqrt{\frac{\pi}{2 z}} Y_{n+\frac{1}{2}}(z)
$$

(e) The spherical Neumann function $n_{n}(z)$ is the same as the spherical Bessel function of the 2nd kind $y_{n}(z)$.

(7) Example

(a) Problem

Obtain the value of $y_{n}(x)$ at $x=1.5$ for $n=5$.
(b) Input data
$\mathrm{N}=5$ and $\mathrm{XI}=1.5$.
(c) Main program

PROGRAM BIBSYN

! *** EXAMPLE OF DIBSYN *** IMPLICIT REAL (8) (A-H,0-Z) READ ($5, *$) ${ }^{\text {N }}$ WRITE $(6,1000) \mathrm{n}, \mathrm{XI}$ CALL DIBSYN (N, XI, XO, IERR) $\operatorname{WRITE}(6,2000)$ IERR, XO
1000 FORMAT (${ }^{2}, 1, /, 5 \mathrm{XX}, * * *$ DIBSYN $* * *$ ', $/, /, 6 \mathrm{X},{ }^{\prime} * *$ INPUT ${ }^{* *}$ ', \&

END
FORMA
,
(d) Output results

```
*** DIBSYN ***
** INPUT **
    N = 5 XI = 1.50
** OUTPUT**
IERR = 0
VALUE OF SPHERICAL YN(X)
x0 = -0.9423611009D+02
```


2.5.3 DIBSIN, RIBSIN

Modified Spherical Bessel Function of the 1st Kind (Integer Order)

(1) Function

Obtain the value of the modified spherical Bessel function of the 1st kind (integer Order)

$$
i_{n}(x)=\sqrt{\frac{\pi}{2 x}} I_{n+\frac{1}{2}}(x)
$$

(2) Usage

Double precision:
CALL DIBSIN (N, XI, XO, IERR)
Single precision:
CALL RIBSIN (N, XI, XO, IERR)
(3) Arguments
D:Double precision real

| Z:Double precision complex |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R:Single precision real | C:Single precision complex I: \(\left\{\begin{array}{l}INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer\end{array}\right\}\)
(4) Restrictions
(a) $\mathrm{N} \geq 0$
(b) $\mathrm{XI} \geq 0.0$
(c) $\mathrm{XI} \leq M$
where, $M=\{$ double precision: 709.7827 , single precision: 88.72284$\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	$n\left(\log _{e} \frac{n}{x}-M_{1}\right)>M_{2} \quad($ See Note (d)) $(\mathrm{XI} \neq 0.0$ and $\mathrm{N} \neq 0)$ (underflow)	$\mathrm{XO}=0.0$ is performed.
3000	Restriction (a), (b) or (c) was not satisfied.	Processing is aborted.

(6) Notes

(a) The computation time of $i_{n}(x)$ becomes longer as x and n increase. Generally it is desirable to set $\mathrm{N}<1000$ and XI <1000.0.
(b) If n is negative and is not an integer, the Bessel function of the 1st kind cannot be calculated by using this subroutine. Therefore, it should be calculated by using a recurrence relation.
(c) To calculate $i_{n}(x), i_{n+1}(x), i_{n+2}(x) \cdots$ at a time, it is faster to successively use the recurrence relation than to call this subroutine repeatedly.
The computation, however, becomes unstable if it is done with increasing n. Therefore the recurrence relation should be used with decreasing n.
Recurrence relation:

$$
i_{n-1}(x)=\frac{2 n+1}{x} i_{n}(x)+i_{n+1}(x)
$$

(d) When IERR becomes 1000 in this subroutine, the values of M_{1} and M_{2} are as follows:
$M_{1}=0.3068$,
$M_{2}=\{$ double precision: 709.7827 , single precision: 88.72284$\}$
(e) Modified spherical Bessel function of the 1st kind $i_{n}(z)$ is the particular solution of differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+2 z \frac{d w}{d z}-\left\{z^{2}+n(n+1)\right\} w=0 \quad(n=0, \pm 1, \pm 2, \cdots)
$$

and defined as

$$
i_{n}(z)=\sqrt{\frac{\pi}{2 z}} I_{n+\frac{1}{2}}(z)
$$

(7) Example
(a) Problem

Obtain the value of $i_{n}(x)$ at $x=1.5$ for $n=5$.
(b) Input data
$\mathrm{N}=5$ and $\mathrm{XI}=1.5$.
(c) Main program

PROGRAM BIBSIN

! *** EXAMPLE OF DIBSIN ***
IMPLICIT REAL (8) ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
READ $(5, *)$
$\operatorname{READ}(5, *)$
XI
WRITE $(6,1000) \mathrm{N}, \mathrm{XI}$
CALL DIBSIN ($\mathrm{N}, \mathrm{XI}, \mathrm{XO}, \mathrm{IERR}$)
WRITE $(6,2000)$ IERR , IE
1000 FORMAT (' $, /, /, 5 \mathrm{X},{ }^{\prime} * * *$ DIBSIN ${ }^{* * *}$ ', /, /, $6 \mathrm{X},{ }^{\prime} * * \operatorname{INPUT} *^{*}$ ', $\&$
2000 FÓRMAT' ', , $, /, 6 X,{ }^{\prime} * *$ OUTPUT**' $/, /, 8 \mathrm{X},{ }^{\prime}$ IERR $=,, \mathrm{I} 5, \&$

(d) Output results

```
*** DIBSIN ***
    ** INPUT **
        N = 5 XI = 1.50
    ** OUTPUT**
        IERR = 0
        VALUE OF SPHERICAL IN(X)
        XO = 0.7961612655D-03
```


2.5.4 DIBSKN, RIBSKN

Modified Spherical Bessel Function of the 2nd Kind (Integer Order)

(1) Function

Calculate a value of the modified spherical Bessel function of the 2nd kind (integer order)

$$
k_{n}(x)=\sqrt{\frac{\pi}{2 x}} K_{n+\frac{1}{2}}(x)
$$

(2) Usage

Double precision:
CALL DIBSKN (N, XI, XO, IERR)
Single precision:
CALL RIBSKN (N, XI, XO, IERR)
(3) Arguments
D:Double precision real

| Z:Double precision complex |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R:Single precision real | C:Single precision complex I: \(\left\{\begin{array}{l}INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer\end{array}\right\}\)
(4) Restrictions
(a) $\mathrm{XI} \geq 0.0$
(b) $\mathrm{XI} \leq M$
where, $M=$ \{double precision: 702.293 , single precision: 83.364$\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
2000	$\begin{aligned} & \mathrm{XI} \leq 2.0 /(\text { Maximum value }) \\ & \text { or }\|n\|\left(\log _{e} \frac{\|n\|}{x}-M_{1}\right)>M_{2} \text { (See Note (c)) } \\ & (\mathrm{XI} \neq 0.0 \text { and } \mathrm{N} \neq 0) \text { (overflow) } \end{aligned}$	$\mathrm{XO}=($ Maximum value $)$ is performed.
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.

(6) Notes

(a) The computation time of $k_{n}(x)$ becomes longer as x and n increase. Generally it is desirable to set $|\mathrm{N}|<1000$ and XI <1000.0.
(b) To calculate $k_{n}(x), k_{n+1}(x), k_{n+2}(x) \cdots$ at a time, it is faster to successively use the recurrence relation given bellow than to call this subroutine repeatedly.
Recurrence relation:

$$
k_{n+1}(x)=\frac{2 n+1}{x} k_{n}(x)+k_{n-1}(x)
$$

(c) When IERR becomes 2000 in this subroutine, the values of M_{1} and M_{2} are as follows:
$M_{1}=0.3068$,
$M_{2}=\{$ double precision: 709.7827 , single precision: 88.72284$\}$
(d) Modified spherical Bessel function of the 2nd kind $k_{n}(z)$ is the particular solution of differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+2 z \frac{d w}{d z}-\left\{z^{2}+n(n+1)\right\} w=0 \quad(n=0, \pm 1, \pm 2, \cdots)
$$

and defined as

$$
k_{n}(z)=\sqrt{\frac{\pi}{2 z}} K_{n+\frac{1}{2}}(z)
$$

(7) Example
(a) Problem

Obtain the value of $k_{n}(x)$ at $x=1.5$ for $n=5$.
(b) Input data
$\mathrm{N}=5$ and $\mathrm{XI}=1.5$.
(c) Main program

PROGRAM BIBSKN
! *** EXAMPLE OF DIBSKN ***
IMPLICIT REAL (8) ($\mathrm{A}-\mathrm{H}, 0-\mathrm{Z}$)
READ $(5, *)$ N
READ $(5, *)$ XI
WRITE 6,1000) N,XI
CALL DIBSKN (N, XI , XO , IERR)
WRITE (6,2000) IERR, XO

2000 FORMAT (' , ,/,/,6X,'** OUTPUT**' //,/,8X,'IERR = , I5,\&

(d) Output results

```
*** DIBSKN ***
** INPUT **
    N = 5 XI = 1.50
```

** OUTPUT**
IERR $=0$
VALUE OF SPHERICAL KN(X)
$X 0=0.1152469739 \mathrm{D}+03$

2.6 FUNCTIONS RELATED TO BESSEL FUNCTIONS

2.6.1 ZIBH1N, CIBH1N

Hankel Function of the 1st Kind
(1) Function

Calculates the value of the Hankel function of the 1st kind

$$
H_{n}^{(1)}(z)=-\frac{2 \sqrt{-1}}{\pi} e^{-\sqrt{-1} n \pi / 2} \int_{0}^{\infty} e^{\sqrt{-1} z \cosh (t)} \cosh (n t) d t \quad(0<\arg z<\pi) .
$$

(2) Usage

Double precision:
CALL ZIBH1N (N, ZI, ZO, IERR)
Single precision:
CALL CIBH1N (N, ZI, ZO, IERR)
(3) Arguments

D:Double precision real | Z:Double precision complex |
| :--- |
| R:Single precision real |
| C:Single precision complex | I: \(\left\{\begin{array}{l}INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents 1\quad N
2	ZI	$\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}$	1	Input	Order n
3	ZO	$\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}$	1	Input	Value of variable z
4	IERR	I	1	Output	Value of $H_{n}^{(1)}(z)$

(4) Restrictions
(a) $|\mathrm{ZI}|>0.0$
(b) $|\Im(\mathrm{ZI})| \leq M_{1}$
where, $M_{1}=\{$ double precision: 709.7827 , single precision: 88.72284$\}$
(c) $|\mathrm{ZI}| \leq M_{2}$
where, $M_{2}=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(5) Error indicator

IERR value	Meaning	Processing	
0	Normal termination.		
3000	Restriction (a), (b) or (c) was not satisfied.	Processing is aborted.	
4000	$\|\mathrm{ZI}\| \leq 2.0 /($ Maximum value $)$ or $\|n\|\left(\log _{e} \frac{\|n\|}{\|z\|}-M_{3}\right)>M_{4}$ (See Note (a))		

(6) Notes
(a) When IERR becomes 4000 in this subroutine, the values of M_{3} and M_{4} are as follows:
$M_{3}=0.3068$,
$M_{4}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(b) Hankel function of the 1st kind $H_{\nu}^{(1)}(z)$ is the particular solution of Bessel's differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-\nu^{2}\right) w=0
$$

and defined as

$$
H_{\nu}^{(1)}(z)=-\frac{1}{\pi} \int_{L_{1}} e^{-\sqrt{-1} z \sin \tau+\sqrt{-1} \nu \tau} d \tau
$$

where the path of integration L_{1} is taken as $(0,-\infty) \rightarrow(0,0) \rightarrow(-\pi, 0) \rightarrow(-\pi, \infty)$.
(c) Hankel functions of the 1st kind and of the 2nd kind are also called Bessel function of the 3rd kind or cylindrical function of the 3rd kind.
(7) Example
(a) Problem

Obtain the value of $H_{n}^{(1)}(z)$ at $z=1+2 \sqrt{-1}$ for $n=3$.
(b) Input data
$\mathrm{N}=3$ and $\mathrm{ZI}=(1.0,2.0)$.
(c) Main program

PROGRAM AIBH1N

! *** EXAMPLE OF ZIBH1N ***
IMPLICIT COMPLEX (8) ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
READ $(5, *)$ N
READ (5,', (D6.1,D6.1)') ZI
WRITE (6,
WALL Z 6 ,
WRITE (6, 2000) IERR, ZO
1000 FORMAT (', ', , /,5X,'*** ZIBH1N ***', /, /, 6X,' $* *$ INPUT $* * ', \&$

/,/,8X, 'VALUE ÓF H1N(Z)', \&

END
(d) Output results

```
*** ZIBH1N ***
    ** INPUT **
        N = 3 ZI = ( 1.00 , 2.00 )
```

** OUTPUT**
IERR $=0$
VALUE OF H1N(Z)
$Z 0=(-0.6892089637 \mathrm{D}-01 \quad, 0.3073283562 \mathrm{D}+00)$

2.6.2 ZIBH2N, CIBH2N

Hankel Function of the 2nd Kind

(1) Function

Calculates the value of the Hankel function of the 2nd kind

$$
H_{n}^{(2)}(z)=\frac{2 \sqrt{-1}}{\pi} e^{\sqrt{-1} n \pi / 2} \int_{0}^{\infty} e^{-\sqrt{-1} z \cosh (t)} \cosh (n t) d t \quad(0<\arg z<\pi)
$$

(2) Usage

Double precision:
CALL ZIBH2N (N, ZI, ZO, IERR)
Single precision:
CALL CIBH2N (N, ZI, ZO, IERR)
(3) Arguments
D:Double precision real

Z:Double precision complex
R:Single precision real

INTEGER(8) as for 64bit Integer\end{array}\right\}\)
(4) Restrictions
(a) $|\mathrm{ZI}|>0.0$
(b) $|\Im(\mathrm{ZI})| \leq M_{1}$
where, $M_{1}=\{$ double precision: 709.7827 , single precision: 88.72284$\}$
(c) $|\mathrm{ZI}| \leq M_{2}$
where, $M_{2}=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a), (b) or (c) was not satisfied.	Processing is aborted.
4000	$\|\mathrm{ZI}\| \leq 2.0 /($ Maximum value $)$ or $\|n\|\left(\log _{e} \frac{\|n\|}{\|z\|}-M_{3}\right)>M_{4}$ (See Note (a))	

(6) Notes

(a) When IERR becomes 4000 in this subroutine, the values of M_{3} and M_{4} are as follows:
$M_{3}=0.3068$,
$M_{4}=\{$ double precision: 709.7827 , single precision: 88.72284$\}$
(b) Hankel function of the 2nd kind $H_{\nu}^{(2)}(z)$ is the particular solution of Bessel's differential equation:

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-\nu^{2}\right) w=0
$$

and defined as

$$
H_{\nu}^{(2)}(z)=-\frac{1}{\pi} \int_{L_{2}} e^{-\sqrt{-1} z \sin \tau+\sqrt{-1} \nu \tau} d \tau
$$

where the path of integration L_{2} is taken as $(\pi, \infty) \rightarrow(\pi, 0) \rightarrow(0,0) \rightarrow(0,-\infty)$.
(c) Hankel functions of the 1st kind and of the 2nd kind are also called Bessel function of the 3rd kind or cylindrical function of the 3rd kind.
(7) Example
(a) Problem

Obtain the value of $H_{n}^{(2)}(z)$ at $z=1+2 \sqrt{-1}$ for $n=3$.
(b) Input data
$\mathrm{N}=3$ and $\mathrm{ZI}=(1.0,2.0)$.
(c) Main program

```
PROGRAM AIBH2N
! *** EXAMPLE OF ZIBH2N ***
    IMPLICIT COMPLEX (8) (A-H,O-Z)
    READ \((5, *) \mathrm{N}\)
    READ (5,'(D6.1,D6.1)') ZI
    WRITE (6, 1000 ) N, ZI
    CALL ZIBH2N (N, ZI, ZO, IERR)
    WRITE \((6,2000)\) IERR, ZO
1000 FORMAT (' \({ }^{\prime}, /, /, 5 \mathrm{X}, ' * * *\) ZIBH2N \(* * *\) ', /,/,6X,'** INPUT **', \&
```



```
    \(/, /, 8 \mathrm{X}\), 'VALUE ÓF H2N(Z)', \&
    END
```

(d) Output results

```
*** ZIBH2N ***
** INPUT **
    N = 3 ZI = ( 1.00 , 2.00 )
** OUTPUT**
    IERR = 0
    VALUE OF H2N(Z)
        ZO = ( -0.4931584373D+00 , -0.2729782322D+00 )
```


2.6.3 DIBBER, RIBBER

Kelvin Function $\operatorname{ber}_{n}(x)$

(1) Function

Calculates the Kelvin function

$$
\operatorname{ber}_{n}(x)=\Re\left\{J_{n}\left(x e^{3 \sqrt{-1} \pi / 4}\right)\right\} .
$$

(2) Usage

Double precision:
CALL DIBBER (N, XI, XO, IERR)
Single precision:
CALL RIBBER (N, XI, XO, IERR)
(3) Arguments
D:Double precision real

R:Single precision real | Z:Double precision complex |
| :--- |
| C:Single precision complex |\quad I: \(\left\{\begin{array}{l}INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	N	I	1	Input	Order n
2	XI	$\left\{\begin{array}{l}\text { D } \\ \text { R }\end{array}\right\}$	1	Input	Value of variable x
3	XO	$\left\{\begin{array}{l}\text { D } \\ \text { R }\end{array}\right\}$	1	Output	Value of $\operatorname{ber}_{n}(x)$
4	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $|\mathrm{XI}| \leq M$ where, $M=\{$ double precision: 1003.784 , single precision: 125.473$\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	$\|\mathrm{N}\|\left(\log _{e} \frac{\|\mathrm{~N}\|}{\|\mathrm{XI}\|}-M_{1}\right)>M_{2}$ (See Note (a)) (underflow)	$\mathrm{XO}=0.0$ is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes
(a) When IERR becomes 1000 in this subroutine, the values of M_{1} and M_{2} are as follows:

$$
\begin{aligned}
& M_{1}=0.3068 \\
& M_{2}=709.7827
\end{aligned}
$$

(b) $w=\operatorname{ber}_{\nu}(x)+\sqrt{-1} \operatorname{bei}_{\nu}(x)$, $\operatorname{ber}_{-\nu}(x)+\sqrt{-1} \operatorname{bei}_{-\nu}(x), \operatorname{ker}_{\nu}(x)+\sqrt{-1} \operatorname{kei}_{\nu}(x)$, and $\operatorname{ker}_{-\nu}(x)+\sqrt{-1} \operatorname{kei}_{-\nu}(x)$ are the solutions of the differential equation:

$$
x^{2} \frac{d^{2} w}{d x^{2}}+x \frac{d w}{d x}-\left(\sqrt{-1} x^{2}+\nu^{2}\right) w=0
$$

(7) Example
(a) Problem

Obtain the value of $\operatorname{ber}_{n}(x)$ at $x=1.0$ for $n=3$.
(b) Input data

$$
\mathrm{N}=3 \text { and } \mathrm{XI}=1.0
$$

(c) Main program

```
! *** PROGRAM BIBBER
    EXAMPLE OF DIBBER ***
    IMPLICIT REAL (8) (A-H,O-Z)
    READ (5,*) N
    WRITE \((6,1000) \mathrm{N}, \mathrm{XI}\)
    CALL DIBBER (N, XI, XO, IERR)
    WRITE \((6,2000)\) IERR, XO
```


(d) Output results

```
*** DIBBER ***
** INPUT **
    N = 3 XI = 1.00
```

** OUTPUT**
IERR = 0
VALUE OF BERNX
$\mathrm{XO}=0.1378798405 \mathrm{D}-01$

2.6.4 DIBBEI, RIBBEI

Kelvin Function $\operatorname{bei}_{n}(x)$

(1) Function

Calculates the Kelvin function

$$
\operatorname{bei}_{n}(x)=\Im\left\{J_{n}\left(x e^{3 \sqrt{-1} \pi / 4}\right)\right\}
$$

(2) Usage

Double precision:
CALL DIBBEI (N, XI, XO, IERR)
Single precision:
CALL RIBBEI (N, XI, XO, IERR)
(3) Arguments

D:Double precision real R:Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	N	I	1	Input	Order n
2	XI	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
3	XO	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Output	Value of $\mathrm{bei}_{n}(x)$
4	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $|\mathrm{XI}| \leq M$
where, $M=\{$ double precision: 1003.784, single precision: 125.473$\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	$\|\mathrm{N}\|\left(\log _{e} \frac{\mathrm{~N} \mid}{\|A G X\|}-M_{1}\right)>M_{2}$ (See Note (a)) (underflow)	$\mathrm{XO}=0.0$ is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes
(a) When IERR becomes 1000 in this subroutine, the values of M_{1} and M_{2} are as follows:
$M_{1}=0.3068$,
$M_{2}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(b) $w=\operatorname{ber}_{\nu}(x)+\sqrt{-1} \operatorname{bei}_{\nu}(x)$, $\operatorname{ber}_{-\nu}(x)+\sqrt{-1} \operatorname{bei}_{-\nu}(x), \operatorname{ker}_{\nu}(x)+\sqrt{-1} \operatorname{kei}_{\nu}(x)$, and $\operatorname{ker}_{-\nu}(x)+\sqrt{-1} \operatorname{kei}_{-\nu}(x)$ are the solutions of the differential equation:

$$
x^{2} \frac{d^{2} w}{d x^{2}}+x \frac{d w}{d x}-\left(\sqrt{-1} x^{2}+\nu^{2}\right) w=0
$$

(7) Example

(a) Problem

Obtain the value of $\operatorname{bei}_{n}(x)$ at $x=1.0$ for $n=3$.
(b) Input data
$\mathrm{N}=3$ and $\mathrm{XI}=1.0$.
(c) Main program

PROGRAM BIBBEI
! *** EXAMPLE OF DIBBEI $* * *$
IMPLICIT REAL (8) ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
READ $(5, *) \mathrm{N}$
READ $(5, *)$ XI
WRITE $(6,1000) \mathrm{N}, \mathrm{XI}$
CALL DIBBEI ($\mathrm{N}, \mathrm{XI}, \mathrm{XO}, \mathrm{IERR}$)
WRITE $(6,2000)$ IERR, XO
1000 FORMAT(' ',/,/,5X,'*** DIBBEI ***',/,/,6X,'** INPUT $* *$ ', \&

/,/,8X,'VALUE OF BEINX',/,/,10X,'XO = ',D18.10)
END
(d) Output results

```
*** DIBBEI ***
** INPUT **
    N = 3 XI = 1.00
```

** OUTPUT**
IERR $=0$
VALUE OF BEINX
$X 0=0.1562876861 D-01$

2.6.5 DIBKER, RIBKER

Kelvin Function $\operatorname{ker}_{n}(x)$

(1) Function

Calculates the Kelvin function

$$
\operatorname{ker}_{n}(x)=\Re\left\{e^{-\sqrt{-1} n \pi / 2} K_{n}\left(x e^{\sqrt{-1} \pi / 4}\right)\right\} .
$$

(2) Usage

Double precision:
CALL DIBKER (N, XI, XO, IERR)
Single precision:
CALL RIBKER (N, XI, XO, IERR)
(3) Arguments
D:Double precision real

R:Single precision real | Z:Double precision complex |
| :--- |
| C:Single precision complex |\quad I: \(\left\{\begin{array}{l}INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	N	I	1	Input	Order n
2	XI	$\left\{\begin{array}{l}\text { D } \\ \text { R }\end{array}\right\}$	1	Input	Value of variable x
3	XO	$\left\{\begin{array}{l}\text { D } \\ \text { R }\end{array}\right\}$	1	Output	Value of $\operatorname{ker}_{n}(x)$
4	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0.0<\mathrm{XI} \leq M$
where, $M=\left\{\begin{array}{c}\text { double precision : } 1003.784 \\ \text { single precision : } 125.473\end{array}\right\}$
(5) Error indicator

IERR value	Meaning	Processing	
0	Normal termination.		
3000	Restriction (a) was not satisfied.	Processing is aborted.	
4000	$\mathrm{XI} \leq 2.0 /($ Maximum value $)$ or $\|n\|\left(\log _{e} \frac{\|n\|}{x}-M_{1}\right)>M_{2}$ (See Note (a))		

(6) Notes

(a) When IERR becomes 4000 in this subroutine, the values of M_{1} and M_{2} are as follows:
$M_{1}=0.3068$,
$M_{2}=\left\{\begin{array}{c}\text { double precision : 709.7827 } \\ \text { single precision : 88.72284 }\end{array}\right\}$
(b) $w=\operatorname{ber}_{\nu}(x)+\sqrt{-1} \operatorname{bei}_{\nu}(x)$, $\operatorname{ber}_{-\nu}(x)+\sqrt{-1} \operatorname{bei}_{-\nu}(x), \operatorname{ker}_{\nu}(x)+\sqrt{-1} \operatorname{kei}_{\nu}(x)$, and $\operatorname{ker}_{-\nu}(x)+\sqrt{-1} \operatorname{kei}_{-\nu}(x)$ are solutions of the differential equation:

$$
x^{2} \frac{d^{2} w}{d x^{2}}+x \frac{d w}{d x}-\left(\sqrt{-1} x^{2}+\nu^{2}\right) w=0
$$

(7) Example
(a) Problem

Obtain the value of $\operatorname{ker}_{n}(x)$ at $x=1.0$ for $n=3$.
(b) Input data
$\mathrm{N}=3$ and $\mathrm{XI}=1.0$.
(c) Main program

PROGRAM BIBKER
! *** EXAMPLE OF DIBKER ***
IMPLICIT REAL (8) ($\mathrm{A}-\mathrm{H}, 0-\mathrm{Z}$)
READ $(5, *) N$
READ $(5, *)$ XI
WRITE $(6,1000)$ N,XI
CALL DIBKER (N, XI, XO , IERR)
WRITE $(6,2000)$ IERR, XO

/,/, 8X, 'VALUE OF KERNX',/,/,10X,'XO = ', D18.10)
(d) Output results
*** DIBKER ***
** INPUT **
$\mathrm{N}=3 \quad \mathrm{XI}=1.00$
** OUTPUT**
IERR $=0$
VALUE OF KERNX

$$
x 0=0.4887273882 D+01
$$

2.6.6 DIBKEI, RIBKEI

Kelvin Function $\operatorname{kei}_{n}(x)$
(1) Function

Calculates the Kelvin function

$$
\operatorname{kei}_{n}(x)=\Im\left\{e^{-\sqrt{-1} n \pi / 2} K_{n}\left(x e^{\sqrt{-1} \pi / 4}\right)\right\} .
$$

(2) Usage

Double precision:
CALL DIBKEI (N, XI, XO, IERR)
Single precision:
CALL RIBKEI (N, XI, XO, IERR)
(3) Arguments

D:Double precision real R:Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	N	I	1	Input	Order n
2	XI	$\left\{\begin{array}{l}\text { D } \\ \text { R }\end{array}\right\}$	1	Input	Value of variable x
3	XO	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Output	Value of $\operatorname{kei}_{n}(x)$
4	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0.0<\mathrm{XI} \leq M$
where, $M=$ \{double precision: 1003.784 , single precision: 125.473$\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.
4000	$\mathrm{XI} \leq 2.0 /($ Maximum value) or $\|n\|\left(\log _{e} \frac{\|n\|}{x}-M_{1}\right)>M_{2}$ (See Note (a))	

(6) Notes

(a) When IERR becomes 4000 in this subroutine, the values of M_{1} and M_{2} are as follows: $M_{1}=0.3068$,
$M_{2}=\{$ double precision: 709.7827, single precision: 88.72284$\}$
(b) $w=\operatorname{ber}_{\nu}(x)+\sqrt{-1} \operatorname{bei}_{\nu}(x), \operatorname{ber}_{-\nu}(x)+\sqrt{-1} \operatorname{bei}_{-\nu}(x), \operatorname{ker}_{\nu}(x)+\sqrt{-1} \operatorname{kei}_{\nu}(x)$, and $\operatorname{ker}_{-\nu}(x)+\sqrt{-1} \operatorname{kei}_{-\nu}(x)$ are solutions of the differential equation:

$$
x^{2} \frac{d^{2} w}{d x^{2}}+x \frac{d w}{d x}-\left(\sqrt{-1} x^{2}+\nu^{2}\right) w=0
$$

(7) Example
(a) Problem

Obtain the value of $\operatorname{kei}_{n}(x)$ at $x=1.0$ for $n=3$.
(b) Input data
$\mathrm{N}=3$ and $\mathrm{XI}=1.0$.
(c) Main program
*** PROGRAM BIBKEI
EXAMPLE OF DIBKEI ***
IMPLICIT REAL (8) ($\mathrm{A}-\mathrm{H}, 0-\mathrm{Z}$)
$\operatorname{READ}(5, *) \mathrm{N}$
$\operatorname{READ}(5, *) \mathrm{XI}$
READ $(5, * 1000) \mathrm{N}, \mathrm{XI}$
CALL DIBKEI (N, XI, XO, IERR)
WRITE $(6,2000)$ IERR, XO
1000 FORMAT (', $, /, /, 5 \mathrm{X}, ' * * *$ DIBKEI $* * *, /, /, 6 \mathrm{X},{ }^{\prime} * * \operatorname{INPUT} * * ', \&$

END $/, 8 \mathrm{X}$, 'VALUE OF KEINX',/,/,10X,' $\mathrm{XO}=$, , $\mathrm{D} 18.1 \overline{0})$
(d) Output results

```
*** DIBKEI ***
    ** INPUT **
    N=3 XI = 1.00
```

** OUTPUT**
IERR $=0$
VALUE OF KEINX
$\mathrm{XO}=-0.6269710887 \mathrm{D}+01$

2.6.7 WIBH0X, VIBH0X

Struve Function (Order 0)

(1) Function

For $x=X_{i}$, calculates the Struve function (order 0)

$$
\mathbf{H}_{0}(x)=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \sin (x \cos (t)) d t
$$

(2) Usage

Double precision:

> CALL WIBH0X (NV, XI, XO, IERR)

Single precision:
CALL VIBH0X (NV, XI, XO, IERR)
(3) Arguments

D:Double precision real R :Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \operatorname{INTEGER}(4) \text { as for } 32 \mathrm{bit} \text { Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \mathrm{bit} \text { Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	NV	I	1	Input	number of input data
2	XI	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	NV	Input	Value of variable X_{i}
3	XO	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	NV	Output	$\mathbf{H}_{0}\left(X_{i}\right)$
4	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(b) XI (i) $\leq M$
where, $M=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(5) Error indicator

IERR value	Meaning	
0	Normal termination.	Processing
3000	Restriction (a) was not satisfied.	Processing is aborted.
$3000+i$	Restriction (b) was not satisfied by XI(i).	

(6) Notes
(a) For struve Function of order $\nu \mathbf{H}_{\nu}(z)$, the following recurrence relation holds:

$$
\mathbf{H}_{\nu-1}(z)+\mathbf{H}_{\nu+1}(z)=\frac{2 \nu}{z} \mathbf{H}_{\nu}(z)+\frac{\left(\frac{z}{2}\right)^{\nu}}{\sqrt{\pi} \Gamma\left(\nu+\frac{3}{2}\right)} .
$$

(b) The general solution of differential equation

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-\nu^{2}\right) w=\frac{4\left(\frac{z}{2}\right)^{\nu+1}}{\sqrt{\pi} \Gamma\left(\nu+\frac{1}{2}\right)}
$$

is

$$
w=a J_{\nu}(z)+b Y_{\nu}(z)+\mathbf{H}_{\nu}(z),
$$

where $J_{\nu}(z)$ and $Y_{\nu}(z)$ are Bessel function of the 1st kind and of the 2nd kind respectively, and a and b are constants.

(7) Example

(a) Problem

Obtain $\mathbf{H}_{0}(x)$ for $x=0.0,0.1,0.2, \cdots, 0.9$.
(b) Main program

PROGRAM EIBHOX
IMPLICIT REAL (8) ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
PARAMETER ($\mathrm{NV}=10$)
REAL (8) XI (NV) , XO (NV)
CHARACTER*6 CNAME , CFNC
PARAMETER (CNAME='WIBHOX', CFNC=' HO')
DNV=NV
DO $1000 \mathrm{I}=1$,NV
$X I(I)=(I-1) / D N V$
1000 CONTINUE
CALL WIBHOX (NV, XI, XO, IERR)
WRITE $(6,6000)$ CNAME
WRITE $(6,6100)$
DO 2000 I=1,NV
WRITE $(6,6200)$ I ,XI (I)
2000 CONTINUE
$\operatorname{WRITE}(6,6300)$
WRITE $(6,6400)$ IERR
DO $3000 \mathrm{I}=1$, NV
WRITE $(6,6500)$ CFNC, XI (I), XO(I)
3000 CONTINUE
STOP
!
6000 FORMAT (1X,'*** ', A6,' *'
6100 FORMAT (1X,'*** INPUT *'
6200 FORMAT (1X,'XI (', I2,') $=$ ', F10.6)
6300 FORMAT(1X,'*** OUTPUT *')
6400 FORMAT (1X,' IERR=', I5)
6500 FORMAT (1X, A6,'(',F10.6,') $=$ ', F10.6)
END
(c) Output results

*** WIBHOX *		
*** INPUT *		
XI(1) =	0.000000	
$X I(2)=$	0.100000	
XI(3) =	0.200000	
XI(4) =	0.300000	
XI(5) =	0.400000	
XI(6) =	0.500000	
XI(7) =	0.600000	
$\mathrm{XI}(8)=$	0.700000	
XI (9) =	0.800000	
$\mathrm{XI}(10)=$	0.900000	
*** OUT	T *	
IERR=	0	
H0	$0.000000)=$	0.000000
HO	$0.100000)=$	0.063591
HO	$0.200000)=$	0.126759
HO	$0.300000)=$	0.189083
H0	$0.400000)=$	0.250150
H0	$0.500000)=$	0.309556
H0	$0.600000)=$	0.366911
H0	$0.700000)=$	0.421842
HO	$0.800000)=$	0.473994
HO	$0.900000)=$	0.523035

2.6.8 WIBH1X, VIBH1X

Struve Function (Order 1)

(1) Function

For $x=X_{i}$, calculates the Struve function (order 1)

$$
\mathbf{H}_{1}(x)=\frac{2 x}{\pi} \int_{0}^{\frac{\pi}{2}} \sin (x \cos (t)) \sin ^{2}(t) d t
$$

(2) Usage

Double precision:

> CALL WIBH1X (NV, XI, XO, IERR)

Single precision:
CALL VIBH1X (NV, XI, XO, IERR)
(3) Arguments

D:Double precision real R :Single precision real		Z:Double precision complex C:Single precision complex			$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	NV	I	1	Input	Number of input data
2	XI	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	NV	Input	X_{i}
3	XO	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	NV	Output	$\mathbf{H}_{1}\left(X_{i}\right)$
4	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(b) $\mathrm{XI}(\mathrm{i}) \leq M$
where, $M=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(5) Error indicator

IERR value	Meaning	
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.
$3000+i$	Restriction (b) was not satisfied by XI(i).	

(6) Notes
(a) For struve Function of order $\nu \mathbf{H}_{\nu}(z)$, the following recurrence relation holds

$$
\mathbf{H}_{\nu-1}(z)+\mathbf{H}_{\nu+1}(z)=\frac{2 \nu}{z} \mathbf{H}_{\nu}(z)+\frac{\left(\frac{z}{2}\right)^{\nu}}{\sqrt{\pi} \Gamma\left(\nu+\frac{3}{2}\right)} .
$$

(b) The general solution of differential equation

$$
z^{2} \frac{d^{2} w}{d z^{2}}+z \frac{d w}{d z}+\left(z^{2}-\nu^{2}\right) w=\frac{4\left(\frac{z}{2}\right)^{\nu+1}}{\sqrt{\pi} \Gamma\left(\nu+\frac{1}{2}\right)}
$$

is

$$
w=a J_{\nu}(z)+b Y_{\nu}(z)+\mathbf{H}_{\nu}(z),
$$

where $J_{\nu}(z)$ and $Y_{\nu}(z)$ are Bessel functions of the 1st kind and of the 2nd kind respectively, and a and b are constants.

(7) Example

(a) Problem

Obtain $\mathbf{H}_{1}(x)$ for $x=0.0,0.1,0.2, \cdots, 0.9$.
(b) Main program

PROGRAM EIBH1X
IMPLICIT REAL (8) ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
PARAMETER ($\mathrm{NV}=10$)
REAL (8) XI (NV), XO (NV)
CHARACTER*6 CNAME , CFNC
PARAMETER (CNAME='WIBH1X', CFNC=' H1')
$!$
DNV=NV
DO $1000 \mathrm{I}=1$, NV
$X I(I)=(I-1) / D N V$
1000 CONTINUE
CALL WIBH1X (NV, XI, XO, IERR)
WRITE $(6,6000)$ CNAME
WRITE $(6,6100)$
DO 2000 I=1,NV
WRITE $(6,6200)$ I ,XI (I)
2000 CONTINUE
$\operatorname{WRITE}(6,6300)$
WRITE $(6,6400)$ IERR
DO $3000 \mathrm{I}=1$, NV
WRITE $(6,6500)$ CFNC, XI (I), XO(I)
3000 CONTINUE
STOP
$!$
6000 FORMAT (1X,'*** , ,A6,' *'
6100 FORMAT (1X,'*** INPUT *'
6200 FORMAT (1X,'XI (', I2,') $=$ ', F10.6)
6300 FORMAT (1X,'*** OUTPUT *')
6400 FORMAT (1X,'IERR=', I5)
6500 FORMAT (1X, A6,' (', F10.6,') $=$ ', F10.6)
END
(c) Output results

```
*** WIBH1X *
*** INPUT *
XI( 1)= 0.000000
XI( 2) = 0.100000
XI( 3)=0.200000
XI( 4)=0.200000
XI( 4)= 0.300000
XI( 5)=0.400000
XI( 6)= 0.500000
XI( 7) = 0.600000
XI( 8) = 0.700000
XI( 9) = 0.800000
XI (10)=0.900000
*** OUTPUT *
\begin{tabular}{ll} 
H1 \((\quad 0.000000)=\) & 0.000000 \\
H1 \((0.100000)=\) & 0.002121 \\
H1 \((0.200000)=\) & 0.008466 \\
H1 \((0.300000)=\) & 0.018984 \\
H1 \((0.400000)=\) & 0.033593 \\
H1 \((0.500000)=\) & 0.052174 \\
H1 \((0.600000)=\) & 0.074580 \\
H1 \((0.700000)=\) & 0.100632 \\
H1 \((0.800000)=\) & 0.130122 \\
H1 \((0.900000)=\) & 0.162817
\end{tabular}
```


2.6.9 WIBHY0, VIBHY0

Difference of Struve Function (Order 0) and Bessel Function of the 2nd Kind (Order 0)

(1) Function

For $x=X_{i}$, calculates the difference of the Struve function (order 0) and Bessel function of the 2nd kind (order 0)

$$
\mathbf{H}_{0}(x)-Y_{0}(x)=\frac{2}{\pi} \int_{0}^{\infty} e^{-x t}\left(1+t^{2}\right)^{-\frac{1}{2}} d t
$$

(2) Usage

Double precision:
CALL WIBHY0 (NV, XI, XO, IERR)
Single precision:
CALL VIBHY0 (NV, XI, XO, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	NV	I	1	Input	number of input data
2	XI	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	NV	Input	X_{i}
3	XO	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	NV	Output	$\mathrm{H}_{0}\left(X_{i}\right)-Y_{0}\left(X_{i}\right)$
4	IERR	I	1		

(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(b) $\mathrm{XI}(\mathrm{i}) \geq 0.0$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
2000	$\mathrm{XI}(\mathrm{i})=0.0$ (overflow)	$\mathrm{XO}(\mathrm{i})=$ (Maximum value) is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.
$3000+i$	Restriction (b) was not satisfied by XI(i).	

(6) Notes
(a) The following relation holds:

$$
\mathbf{H}_{\nu}(z)-Y_{\nu}(z)=\frac{2\left(\frac{z}{2}\right)^{\nu}}{\sqrt{\pi} \Gamma\left(\nu+\frac{1}{2}\right)} \int_{0}^{\infty} e^{-z t}\left(1+t^{2}\right)^{\nu-\frac{1}{2}} d t \quad\left(|\arg z|<\frac{\pi}{2}\right) .
$$

(7) Example
(a) Problem

Obtain $\mathbf{H}_{0}(x)-Y_{0}(x)$ for $x=0.1,0.2, \cdots, 1.0$.
(b) Main program

PROGRAM EIBHYO
IMPLICIT REAL (8) ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
PARAMETER (NV=10)
REAL (8) XI (NV) , XO (NV)
CHARACTER $* 6$ CNAME
CHARACTER*6 CNAME , CFNC
PARAMETER (CNAME='WIBHYO', CFNC=' HO-YO')
$!$

> DNV=NV DO $1000 \quad I=1, N V$ $\quad X I(I)=I / D N V$

1000 CONTINUE
CALL WIBHYO (NV, XI, XO, IERR)
WRITE $(6,6000)$ CNAME
WRITE $(6,6100)$
DO 2000 I=1,NV
2000 CONTINUE
WRITE $(6,6300)$
WRITE $(6,6400)$ IERR
DO $3000 \mathrm{I}=1$, NV
(6 , 6500) CFNC,XI (I)
3000 CONTINUE
STOP
6000 FORMAT (1X, '*** ', A6,' *')
6100 FORMAT (1X,' $* * *$ INPUT *')
6200 FORMAT (1X,'XI (', I2,' $)=,, F 10.6$)
6300 FORMAT (1X,' $* * *$ OUTPUT *')
6400 FORMAT (1X,' IERR=',I5)
6500 FORMAT (1X, A6, ' (', 'F10.6,') =', F10.6)
END
(c) Output results

*** WIBHYO *		
*** INPUT *		
$X I(1)=0.100000$		
$X I(2)=0.200000$		
$X I(3)=0.300000$		
XI(4) = 0.400000		
$X I(5)=0.500000$		
$\mathrm{XI}(6)=0.600000$		
$\mathrm{XI}(7)=0.700000$		
$X I(8)=0.800000$		
$\mathrm{XI}(9)=0.900000$		
XI (10) $=1.000000$		
*** OUTPUT *		
IERR=	0	
HO-YO	$0.100000)=$	1.597830
HO-YO	$0.200000)=$	1.207864
HO-YO	$0.300000)=$	0.996357
HO-YO	$0.400000)=$	0.856174
HO-YO	$0.500000)=$	0.754075
HO-YO	$0.600000)=$	0.675421
HO-YO	$0.700000)=$	0.612507
HO-YO	$0.800000)=$	0.560797
HO-YO	$0.900000)=$	0.517407
$\mathrm{HO}-\mathrm{YO}($	$1.000000)=$	0.480400

2.6.10 WIBHY1, VIBHY1

Difference of Struve Function (Order 1) and Bessel Function of the 2nd Kind (Order 1)
(1) Function

For $x=X_{i}$, calculates the difference of the Struve function (order 1) and Bessel function of the 2nd kind (order 1)

$$
\mathbf{H}_{1}(x)-Y_{1}(x)=\frac{2 x}{\pi} \int_{0}^{\infty} e^{-x t}\left(1+t^{2}\right)^{\frac{1}{2}} d t
$$

(2) Usage

Double precision:
CALL WIBHY1 (NV, XI, XO, IERR)
Single precision:
CALL VIBHY1 (NV, XI, XO, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	NV	I	1	Input	number of input data
2	XI	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	NV	Input	X_{i}
3	XO	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	NV	Output	$\mathrm{H}_{1}\left(X_{i}\right)-Y_{1}\left(X_{i}\right)$
4	IERR	I	1		

(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(b) $\mathrm{XI}(\mathrm{i}) \geq 0.0$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
2000	$\mathrm{XI}(\mathrm{i}) \leq 1.0 /$ (Maximum value) (overflow)	$\mathrm{XO}(\mathrm{i})=$ (Maximum value) is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.
$3000+i$	Restriction (b) was not satisfied by XI(i).	

(6) Notes
(a) The following relation holds:

$$
\mathbf{H}_{\nu}(z)-Y_{\nu}(z)=\frac{2\left(\frac{z}{2}\right)^{\nu}}{\sqrt{\pi} \Gamma\left(\nu+\frac{1}{2}\right)} \int_{0}^{\infty} e^{-z t}\left(1+t^{2}\right)^{\nu-\frac{1}{2}} d t \quad\left(|\arg z|<\frac{\pi}{2}\right) .
$$

(7) Example
(a) Problem

Obtain $\mathbf{H}_{1}(x)-Y_{1}(x)$ for $x=0.1,0.2, \cdots, 1.0$.
(b) Main program

PROGRAM EIBHY1
IMPLICIT REAL (8) (A-H, O-Z)
PARAMETER ($\mathrm{NV}=10$)
REAL (8) XI (NV), XO (NV)
CHARACTER*6 CNAME , CFNC
PARAMETER (CNAME='WIBHY1,
PARAMETER(CNAME='WIBHY1', CFNC=' H1-Y1')
$!$
DNV=NV
DO $1000 \quad \mathrm{I}=1$,NV
1000 continue
CALL WIBHY1 (NV, XI, XO, IERR)
WRITE $(6,6000)$ CNAME
WRITE $(6,6100)$
DO 2000 I=1, NV
2000 CONTINUE
WRITE $(6,6300)$
WRITE (6, 6400) IERR
DO 300
(I) XO(I)

3000 CONTINUE
STOP
6000 FORMAT ($1 \mathrm{X},{ }^{\prime} * * *$, ,A6,' *')
6100 FORMAT (1X,' *** INPUT *')
6200 FORMAT (1X', XI (', I2,'')=', F10.6)
6300 FORMAT (1X,'*** OUTPUT *')
6400 FORMAT (1X,' IERR=', I5)
6500 FORMAT (1X, A6, '(', F10.6,') $=$ ', F10.6)
END
(c) Output results

```
*** WIBHY1 *
*** INPUT *
XI( 1)= 0.100000
XI( 2)=0.200000
XI( 3)=0.300000
XI( 4)= 0.400000
XI( 5)= 0.500000
XI( 6)=0.600000
XI (7)= 0.700000
XI( 7)=0.700000
XI( 8)= 0.800000
XI(10)= 1.000000
*** OUTPUT *
H1-Y1( 0.100000)=6.461072
    H1-Y1( 0.200000)= 3.461072
    H1-Y1( 0.300000)= 2.312089
    H1-Y1( 0.400000)= 1.814465
H1-Y1( 0.600000)= 1.334971
H1-Y1( 0.700000)= 1.203882
H1-Y1( }0.800000)=1.10826
H1-Y1( 0.900000)=1.035944
H1-Y1( 1.000000)=0.979670
```


2.6.11 DIBAIX, RIBAIX

Airy Function $\operatorname{Ai}(x)$

(1) Function

Calculates the Airy function

$$
\operatorname{Ai}(x)=\left\{\begin{array}{ll}
\pi^{-1} \sqrt{\frac{x}{3}} K_{\frac{1}{3}}\left(\frac{2}{3}|x|^{\frac{3}{2}}\right) & (x \geq 0.0) \\
\frac{1}{3} \sqrt{|x|\left[J_{\frac{1}{3}}\left(\frac{2}{3}|x|^{\frac{3}{2}}\right)+J_{-\frac{1}{3}}\left(\frac{2}{3}|x|^{\frac{3}{2}}\right)\right]} & (x<0.0)
\end{array} .\right.
$$

(2) Usage

Double precision:
CALL DIBAIX (XI, XO, IERR)
Single precision:
CALL RIBAIX (XI, XO, IERR)
(3) Arguments
D:Double precision real

R:Single precision real | Z:Double precision complex |
| :--- |
| C:Single precision complex | I: \(\left\{\begin{array}{l}INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	XI	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Input	Value of variable x
2	XO	$\left\{\begin{array}{l}\text { D } \\ \text { R }\end{array}\right\}$	1	Output	Value of Ai (x)
3	IERR	I	1		

(4) Restrictions
(a) $\mathrm{XI} \geq-M$
where,
$M=\left\{\right.$ double precision: $\left(3 \times 2^{49} \pi\right)^{2 / 3}$, single precision: $\left.\left(3 \times 2^{17} \pi\right)^{2 / 3}\right\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	XI $>M_{1}$ (See Note (a))	$\mathrm{XO}=0.0$ is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes
(a) When IERR becomes 1000 in this subroutine, the value of M_{1} is as follows:
$M_{1}=\{$ double precision: 103.8 , single precision: 25.3$\}$
(b) Pairs of linearly independent solution of differential equation:

$$
\frac{d^{2} w}{d z^{2}}-z w=0
$$

are $\{\operatorname{Ai}(z), \operatorname{Bi}(z)\},\left\{\operatorname{Ai}(z), \operatorname{Ai}\left(z e^{\frac{2 \sqrt{-1} \pi}{3}}\right)\right\}$, and $\left\{\operatorname{Ai}(z), \operatorname{Ai}\left(z e^{\frac{-2 \sqrt{-1} \pi}{3}}\right)\right\}$.

(7) Example

(a) Problem

Obtain the value of $\operatorname{Ai}(x)$ at $x=-5.3$.
(b) Input data

$$
\mathrm{XI}=-5.3
$$

(c) Main program

```
|** PROGRaM BIBAIX
! *** EXAMPLE OF DIBAIX ***
    IMPLICIT REAL (8) (A-H,0-Z)
    INTEGER IERR
    ! READ (5,*) XI
    WRITE (6,1000)
    WRITE (6,2000) XI
    CALL DIBAIX(XI,XO,IERR)
    WRITE(6,3000)
    WRITE(6,4000) IERR
    WRITE (6,5000) XO
    STOP
    1000 FORMAT(' ,,/,5X,'*** DIBAIX ***',/,&
    2000 FORMAT(9X,'VALUE OF VARIABLE X = ,,F4.1)
    2000 FORMAT(9X,'VALUE OF VARIABLE X = ',F4.1)
    3000 FORMAT (',',/,/,6X,'** OUTPUT **')
    4000 FORMAT (9X,'IERR = ',I4)
    5000 FORMAT(9X,'VALUE OF'AIRY FUNCTION AI(X) = ,,D17.10)
    END
```

(d) Output results

```
*** DIBAIX ***
** INPUT **
```

INPUT ** ${ }^{* *}$ VARIABLE $\mathrm{X}=-5.3$
** OUTPUT **
IERR $=$
VALUE
OF AIRY FUNCTION AI $(X)=0.1825679311 D+00 ~$

2.6.12 DIBBIX, RIBBIX

Airy Function $\operatorname{Bi}(x)$

(1) Function

Calculates the Airy function

$$
\operatorname{Bi}(x)=\left\{\begin{array}{ll}
\sqrt{\frac{x}{3}}\left[I_{-\frac{1}{3}}\left(\frac{2}{3}|x|^{\frac{3}{2}}\right)+I_{\frac{1}{3}}\left(\frac{2}{3}|x|^{\frac{3}{2}}\right)\right] & (x \geq 0.0) \\
\sqrt{\frac{|x|}{3}}\left[J_{-\frac{1}{3}}\left(\frac{2}{3}|x|^{\frac{3}{2}}\right)-J_{\frac{1}{3}}\left(\frac{2}{3}|x|^{\frac{3}{2}}\right)\right] & (x<0.0)
\end{array} .\right.
$$

(2) Usage

Double precision:
CALL DIBBIX (XI, XO, IERR)
Single precision:
CALL RIBBIX (XI, XO, IERR)
(3) Arguments

D:Double precision real R:Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	XI	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
2	XO	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Output	Value of $\operatorname{Bi}(x)$
3	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{XI} \geq-M$
where, $M=\left\{\right.$ double precision: $\left(3 \times 2^{49} \pi\right)^{2 / 3}$, single precision: $\left.\left(3 \times 2^{17} \pi\right)^{2 / 3}\right\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
2000	XI $>M_{1}$ (See Note (a)) (overflow)	XO $=$ (Maximum value) is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes

(a) When IERR becomes 2000 in this subroutine, the value of M_{1} is as follows: $M_{1}=\{$ double precision: 104.266, single precision: 20.066$\}$
(b) Pairs of linearly independent solution of differential equation:

$$
\begin{aligned}
& \quad \frac{d^{2} w}{d z^{2}}-z w=0 \\
& \text { are }\{\operatorname{Ai}(z), \operatorname{Bi}(z)\},\left\{\operatorname{Ai}(z), \operatorname{Ai}\left(z e^{\frac{2 \sqrt{-1} \pi}{3}}\right)\right\} \text {, and }\left\{\operatorname{Ai}(z), \operatorname{Ai}\left(z e^{\frac{-2 \sqrt{-1} \pi}{3}}\right)\right\} .
\end{aligned}
$$

(7) Example
(a) Problem

Obtain the value of $\operatorname{Bi}(x)$ at $x=-5.3$.
(b) Input data
$\mathrm{XI}=-5.3$.
(c) Main program

```
PROGRAM BIBBIX
! *** EXAMPLE OF DIBBIX ***
    IMPLICIT REAL(8) (A-H,0-Z)
!
    READ (5,*) XI
    WRITE (6,1000)
    WRITE (6,2000) XI
    CALL DIBBIX (XI, XO, IERR)
    WRITE (6,3000)
    WRITE (6,4000) IERR
    WRITE (6,5000) XO
    STOP
I
1000 FORMAT(, ',/,5X,'*** DIBBIX ***',/,&
2000 FORMAT(9X,'VALUE OF VARIABLE X = ,,F4.1)
3000 FORMAT (',',/,/,6X,'** OUTPUT **')
4000 FORMAT (9X,'IERR =,',I4)
5000 FORMAT(9X,'VALUE OF AIRY FUNCTION BI (X) = ',D17.10)
    FORM
```

(d) Output results

```
*** DIBBIX
    ** INPUT **
    VALUE OF VARIABLE X = -5.3
    ** OUTPUT **
        VALUE OF AIRY FUNCTION BI (X) = -0.3237160767D+00
```


2.6.13 DIBAID, RIBAID

Derived Airy Function $\operatorname{Ai}^{\prime}(x)$

(1) Function

Calculates the derived Airy function

$$
\operatorname{Ai}^{\prime}(x)=\left\{\begin{array}{ll}
-\frac{x}{\sqrt{3} \pi} K_{\frac{2}{3}}\left(\frac{2}{3}|x|^{\frac{3}{2}}\right) & (x \geq 0.0) \\
\frac{x}{3}\left[J_{-\frac{2}{3}}\left(\frac{2}{3}|x|^{\frac{3}{2}}\right)-J_{\frac{2}{3}}\left(\frac{2}{3}|x|^{\frac{3}{2}}\right)\right] & (x<0.0)
\end{array} .\right.
$$

(2) Usage

Double precision:
CALL DIBAID (XI, XO, IERR)
Single precision:
CALL RIBAID (XI, XO, IERR)
(3) Arguments
D:Double precision real

R:Single precision real | Z:Double precision complex |
| :--- |
| C:Single precision complex | I: \(\left\{\begin{array}{l}INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	XI	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Input	Value of variable x
2	XO	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Output	Value of $A^{\prime}(x)$
3	IERR	I	1		

(4) Restrictions
(a) $\mathrm{XI} \geq-M$
where, $M=\left\{\right.$ double precision: $\left(3 \times 2^{49} \pi\right)^{2 / 3}$, single precision: $\left.\left(3 \times 2^{17} \pi\right)^{2 / 3}\right\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	XI $>M_{1}$ (See Note (a)) (underflow)	XO $=0.0$ is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes
(a) When IERR becomes 1000 in this subroutine, the value of M_{1} is as follows:
$M_{1}=\{$ double precision: 104.1 , single precision: 25.7$\}$

(7) Example

(a) Problem

Obtain the value of the derived function $\operatorname{Ai}^{\prime}(x)$ of the Airy function $\operatorname{Ai}(x)$ at $x=-5.3$.
(b) Input data
$\mathrm{XI}=-5.3$.
(c) Main program

```
    ! PROGRaM BIBaID
    ! *** EXAMPLE OF DIBAID ***
        IMPLICIT REAL(8) (A-H,0-Z)
        INTEGER IERR
    ! READ (5,*) XI
            WRITE (6,1000)
            WRITE(6,2000) XI
            CALL DIBAID(XI, XO,IERR)
            WRITE(6,3000) IERR
            WRIT(6,5000) IER
            STOP
1000 FORMAT(', ',/,5X,'*** DIBAID ***',/,&
2000 6XORMAT(9XP,'VALUE OF varIABLE X = ',F4.1)
    2000 FORMAT (SX,' 'VALUE OF VARIABLE X =','F4.1)
    3000 FORMAT(',',',/,6X,',** OUTPUT **')
    4000 FORMAT (9X,'IERR =','I4)
    5000 FORMAT(9X','VALUE OF'DERIVED AIRY FUNCTION AI''(X) = ',D17.10)
            END
```

(d) Output results

```
*** DIBAID ***
    ** INPUT **
        VALUE OF varIABLE x = -5.3
    ** OUTPUT **
    IERR = = O OERIVED AIRY FUNCTION AI'(X)=0.7545754199D+00
```


2.6.14 DIBBID, RIBBID

Derived Airy Function $\operatorname{Bi}^{\prime}(x)$

(1) Function

Calculates the derived Airy function

$$
\operatorname{Bi}^{\prime}(x)= \begin{cases}\frac{x}{\sqrt{3}}\left[I_{-\frac{2}{3}}\left(\frac{2}{3}|x|^{\frac{3}{2}}\right)+I_{\frac{2}{3}}\left(\frac{2}{3}|x|^{\frac{3}{2}}\right)\right] & (x \geq 0.0) \\ -\frac{x}{\sqrt{3}}\left[J_{-\frac{2}{3}}\left(\frac{2}{3}|x|^{\frac{3}{2}}\right)+J_{\frac{2}{3}}\left(\frac{2}{3}|x|^{\frac{3}{2}}\right)\right] & (x<0.0)\end{cases}
$$

(2) Usage

Double precision:
CALL DIBBID (XI, XO, IERR)
Single precision:
CALL RIBBID (XI, XO, IERR)
(3) Arguments
D:Double precision real

R:Single precision real | Z:Double precision complex |
| :--- |
| C:Single precision complex |\quad I: \(\left\{\begin{array}{l}INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	XI	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Input	Value of variable x
2	XO	$\left\{\begin{array}{l}\mathrm{D} \\ \text { R }\end{array}\right\}$	1	Output	Value of $\operatorname{Bi}^{\prime}(x)$
3	IERR	I	1		

(4) Restrictions
(a) $\mathrm{XI} \geq-M$ where, $M=\left\{\right.$ double precision: $\left(3 \times 2^{49} \pi\right)^{2 / 3}$, single precision: $\left.\left(3 \times 2^{17} \pi\right)^{2 / 3}\right\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
2000	XI $>M_{1}$ (See Note (a)) (overflow)	XO $=$ (Maximum value) is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes

(a) When IERR becomes 2000 in this subroutine, the value of M_{1} is as follows: $M_{1}=\{$ double precision: 104.266, single precision: 20.066$\}$
(7) Example
(a) Problem

Obtain the value of the derived function $\operatorname{Bi}^{\prime}(x)$ of the Airy function $\operatorname{Bi}(x)$ at $x=-5.3$.
(b) Input data
$\mathrm{XI}=-5.3$.
(c) Main program

```
            PROGRAM BIBBID
    ! *** EXAMPLE OF DIBBID ***
    IMPLICIT REAL(8) (A-H,O-Z)
    INTEGER IERR
! READ (5,*) XI
    WRITE(6,1000)
    WRITE (6,2000) XI
    CALL DIBBID(XI, XO, IERR)
    WRITE (6,3000)
    WRITE (6,4000) IERR
    WRITE (6,5000) XO
    STOP
1000 FORMAT(' ',/,5X,'*** DIBBID ***',/,&
2000 FORMAT(9X,'VALUE OF VARIABLE X = ,,F4.1)
    2000 FORMAT (9X,'VALUE OF VARIABLE X ='',
    3000 FORMAT(',',/,/,6X,'** OUTPUT **')
    5000 FORMAT(9X','VALUE OF'DERIVED AIRY FUNCTION BI''(X) = ',D17.10)
        END
```

(d) Output results

```
*** DIBBID ***
    ** INPUT **
        INPUT ** OF VARIABLE X = -5.3
    ** OUTPUT **
    IERR = 0
    IERR = OF DERIVED AIRY FUNCTION BI'(X) = 0.4055569409D+00
```


2.7 GAMMA FUNCTIONS

2.7.1 WIGAMX, VIGAMX

Gamma Function with Real Variable

(1) Function

For $x=X_{i}$, calculates the value of the Gamma function with real variable

$$
\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t
$$

(2) Usage

Double precision:
CALL WIGAMX (NV, XI, XO, IERR)
Single precision:
CALL VIGAMX (NV, XI, XO, IERR)
(3) Arguments
D:Double precision real

| Z:Double precision complex |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R:Single precision real | C:Single precision complex I: \(\left\{\begin{array}{l}INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer\end{array}\right\}\)
(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(b) $\mathrm{XI}(\mathrm{i})$ is not any negative integer or 0.0 .
(c) $\mathrm{XI}(\mathrm{i}) \geq-\mathrm{M}$
where $M=\{$ double precision: 170.4 , single precision: 34.0$\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
2000	$\|\mathrm{XI}(\mathrm{i})\| \leq 1.0 /($ Maximum value $)$ or XI(i) $>\mathrm{M}_{1}$ (See Note (c)) (overflow)	$\mathrm{XO}(\mathrm{i})=$ (Maximum value) is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.
$3000+i$	Restriction (b) or (c) was not satisfied by $\mathrm{XI}(\mathrm{i})$.	

(6) Notes
(a) If $\operatorname{IERR}=3000+i$ and restriction (b) is not satisfied, furthermore $\mathrm{XI}(\mathrm{i})$ is not a value close to a negative integer, $\Gamma\left(X_{i}\right)$ is a value close to 0.0 .
(b) $x=-n(n=0,1,2, \cdots)$ are simple poles of the Gamma function $\Gamma(x)$, i.e.

$$
\lim _{x \rightarrow-n} \frac{1}{\Gamma(x)}=0 \quad(n=0,1,2, \cdots)
$$

Therefore, high precision result cannot be expected for a calculated value of gamma function at a point close to zero or at a negative integer.
(c) The value to return $\operatorname{IERR}=2000$ of M_{1} is as follows:
$M_{1}=\{$ double precision: 171.4, single precision: 35.0$\}$
(d) Gamma Function $\Gamma(z)$ is called Euler's integral of the 2nd kind. This function is also called factorial function because $\Gamma(z+1)=z \Gamma(z)=z!$ holds.
(7) Example
(a) Problem

Obtain $\Gamma(x)$ for $x=0.1,0.2, \cdots, 0.9,1.0$.
(b) Main program

```
PROGRAM EIGAMX
    IMPLICIT REAL(8)(A-H,O-Z)
    PARAMETER (NV=10)
    REAL (8) XI (NV)
    CHARACTER*6 CNAME CFNC
    PARAMETER( CNAME='WIGAMX', CFNC=' GAMMA' )
    DNV=NV
    DO 1000 I=1,NV
1000 CONTINUE
! CALL WIGAMX( NV, XI, XO, IERR )
    WRITE (6,6000) CNAME
    WRITE (6,6100)
    DO 2000 I=1,NV
        WRITE (6,6200) I,XI(I)
    2000 CONTINUE
        WRITE (6,6300)
        WRITE(6,6400) IERR
        DO 3000 I=1,NV
        WRITE (6,6500) CFNC,XI(I), XO(I)
    3 0 0 0 ~ C O N T I N U E ~
    STOP
6000 FORMAT(1X,'*** ',A6,' *'
6100 FORMAT(1X,'*** INPUT *'')
6200 FORMAT(1X,'XI(,',I2,')=',F10.6 )
6200 FORMAT(1X,'XI(',I2,')=',F10
6400 FORMAT (1X,', IERR=, I5 )
6400 FORMAT(1X,'IERR=',I5 )
    END
```

(c) Output results
*** WIGAMX *
$* * *$ INPUT *
XI $(1)=0.100000$
XI $(2)=0.100000$
$X I(2)=0.200000$
$X I(3)=0.300000$
XI $(3)=0.300000$
$X I(4)=0.400000$
$X I(4)=0.400000$
$X I(5)=0.500000$
$X I(5)=0.500000$
$X I(6)=0.600000$
$\operatorname{XI}(6)=0.600000$
$\operatorname{XI}(7)=0.700000$
$\mathrm{XI}(8)=0.800000$
$\mathrm{XI}(9)=0.900000$
$\mathrm{XI}(10)=1.000000$
XI $(10)=1.00$
$* * *$ OUTPUT
*** OUTPUT *
$\left.\begin{array}{ll}\text { IERR }= \\ \text { GAMMA }\end{array} \quad 0.100000\right)=$
GAMMA $(0.100000)=$
GAMMA $(\quad 0.200000)=4.59084$
GAMMA $(0.300000)=4.590844$
GAMMA $(\quad 0.400000)=2.218160$
GAMMA $(\quad 0.500000)=1.772454$
GAMMA $(\quad 0.600000)=1.489192$
GAMMA $(\quad 0.700000)=1.298055$
GAMMA $(\quad 0.700000)=1.298055$
GAMMA $(\quad 0.900000)=1.068629$

2.7.2 WIGLGX, VIGLGX

Logarithmic Gamma Function with Real Variable

(1) Function

For $x=X_{i}$, calculates the value of the logarithmic Gamma function with real variable $\log _{e}(\Gamma(x))$.
(2) Usage

Double precision:
CALL WIGLGX (NV, XI, XO, IERR)
Single precision:
CALL VIGLGX (NV, XI, XO, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	NV	I	1	Input	number of input data
2	XI	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	NV	Input	X_{i}
3	XO	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	NV	Output	$\log _{e}\left(\Gamma\left(X_{i}\right)\right)$
4	IERR	I	1		

(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(b) $\mathrm{XI}(\mathrm{i})$ must not be any non-positive integer.
(c) $\mathrm{XI}(\mathrm{i})>-M$
where $M=\left\{\right.$ double precision: 2^{50}, single precision: $\left.2^{18}\right\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	$\Gamma(\mathrm{XI}(\mathrm{i}))$ is negative.	The natural logarithm of $\|\Gamma(\mathrm{XI}(\mathrm{i}))\|$ is performed.
2000	$\mathrm{XI}(\mathrm{i})>\mathrm{M}_{1}$ (See Note (b)) (overflow)	$\mathrm{XO}(\mathrm{i})=$ (Maximum value) is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.
$3000+i$	Restriction (b) or (c) was not satisfied by $\mathrm{XI}(\mathrm{i})$.	

(6) Notes
(a) When $\operatorname{IERR}=1000$, the Gamma function value is obtained as $-\exp (\mathrm{XO}(\mathrm{i}))$ for a certain i , while it is obtained as $\exp (\mathrm{XO}(\mathrm{i}))$ in other cases.
(b) When IERR becomes 2000 in this subroutine, the value of M_{1} is as follows:
$M_{1}=\left\{\right.$ double precision: 2.545×10^{305}, single precision: $\left.4.08 \times 10^{36}\right\}$
(7) Example
(a) Problem

Obtain $\log _{e}(\Gamma(x))$ for $x=0.1,0.2, \cdots, 0.9,1.0$.
(b) Main program

PROGRAM EIGLGX
IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER ($\mathrm{NV}=10$)
REAL (8) XI (NV)
CHARACTER*6 CNAME
PARAMETER (CNAME='WIGLGX', CFNC='LGAMMA')
DNV $=$ NV
DO 1000 I=1,NV
XI (I) =I/DNV
$!^{100}$
1 CALL WIGLGX (NV, XI, XO, IERR)
WRITE $(6,6000)$ CNAME
WRITE $(6,6100)$
DO $2000(I=1$, NV
WRITE $(6,6200) \mathrm{I}, \mathrm{XI}(\mathrm{I})$
! 2000 CONTINUE
$\operatorname{WRITE}(6,6300)$
WRITE $(6,6400)$ IERR
DO $3000 \mathrm{I}=1$, NV
WRITE $(6,6500)$ CFNC,XI(I), XO(I)
3000 CONTINUE
STOP
6000 FORMAT ($1 \mathrm{X},{ }^{\prime} * * *$ ', A6,' *')
6100 FORMAT (1X,' $* * *$ INPUT *' ${ }^{*}$ '

6400 FORMAT (1X,' IERR = ' I5)
6500 FORMAT (1X,A6,'(',F10.6,')=',F10.6)
END
(c) Output results

*** WIGLGX * *** INPUT *		
XI (1) =	0.100000	
XI(2) =	0.200000	
XI(3) =	0.300000	
XI(4) =	0.400000	
XI(5) =	0.500000	
XI(6) =	0.600000	
XI(7) =	0.700000	
XI(8) $=$	0.800000	
XI(9) =	0.900000	
$\mathrm{XI}(10)=$	1.000000	
*** OUTPUT *		
IERR=	0	
LGAMMA	$0.100000)=$	2.252713
LGAMMA ($0.200000)=$	1.524064
LGAMMA ($0.300000)=$	1.095798
LGAMMA	$0.400000)=$	0.796678
LGAMMA	$0.500000)=$	0.572365
LGAMMA	$0.600000)=$	0.398234
LGAMMA ($0.700000)=$	0.260867
LGAMMA	$0.800000)=$	0.152060
LGAMMA	$0.900000)=$	0.066376
LGAMMA ($1.000000)=$	-0.000000

2.7.3 DIGIG1, RIGIG1

Incomplete Gamma Function of the 1st Kind

(1) Function

Calculates the value of the incomplete Gamma function of the 1st kind

$$
\gamma(\nu, x)=\int_{0}^{x} e^{-t} t^{\nu-1} d t
$$

(2) Usage

Double precision:
CALL DIGIG1 (V, XI, XO, IERR)
Single precision:
CALL RIGIG1 (V, XI, XO, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \mathrm{bit} \text { Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	V	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable ν
2	XI	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
3	XO	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Output	Value of $\gamma(\nu, x)$
4	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{XI} \geq 0.0$
(b) $\mathrm{V} \geq 0.0$

(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	$\nu \log _{e}(x)<-M_{1}$ (See Note (b)) (underflow)	$\mathrm{XO}=0.0$ is performed.
2000	$\mathrm{~V} \leq 1.0 /$ (Maximum value) (overflow)	$\mathrm{XO}=$ (Maximum value) is performed.
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.
4000	For XI >1.0, $\bullet \nu>\left(M_{2}+x\right) / \log _{e}(x)$ or • $x>x_{m}$ and $\nu>\nu_{m}$	Processing is aborted. (See Note (a))

(6) Notes
(a) If IERR $=4000$, the value of $\gamma(\nu, x)$ is practically the (maximum value).
(b) When IERR becomes 1000 in this subroutine, the value of M_{1} is as follows:
$M_{1}=\{$ double precision: 708.396, single precision: 87.336$\}$
(c) When IERR becomes 4000 in this subroutine, the values of x_{m}, ν_{m}, and M_{2} are as follows:
$x_{m}=\{$ double precision: 171.0 , single precision: 35.0$\}$,
$\nu_{m}=\{$ double precision: 171.4 , single precision: 35.0$\}$,
$M_{2}=\{$ double precision: 709.782, single precision: 88.722$\}$

(7) Example

(a) Problem

Obtain the value of $\gamma(\nu, x)$ at $x=3.0$ for $\nu=4.0$.
(b) Input data
$\mathrm{V}=4.0$ and $\mathrm{XI}=3.0$.
(c) Main program

PROGRAM BIGIG1

! *** EXAMPLE OF DIGIG1 ***
IMPLICIT REAL (8) ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
READ $(5, *) \mathrm{V}$
READ $(5, *)$
$\operatorname{WRITE}(6,1000)$
V, XI
CALL DIGIG1 (V,XI, XO, IERR)
WRITE $(6,2000)$ IERR, XO
1000 FORMAT (', $, /, /, 5 \mathrm{X},{ }^{\prime} * * *$ DIGIG1 $* * *, /, /, 6 \mathrm{X},{ }^{\prime} * *$ INPUT $* * ', \&$
2000 FORMAT' ' , /, 6X,'** OUTPUT**', /, /, 8 X, ' IERR $=,, \mathrm{I} 5, \&$
/,/,8X, 'VALUE OF INCOMPLETE GAMMA FUNCTION OF THE FIRST KIND' , \&
END
(d) Output results

```
*** DIGIG1 ***
    ** INPUT **
        V = 4.00 XI = 3.00
    ** OUTPUT**
```

 IERR \(=0\)
 VALUE OF INCOMPLETE GAMMA FUNCTION OF THE FIRST KIND
 \(x 0=0.2116608667 \mathrm{D}+01\)

2.7.4 DIGIG2, RIGIG2

Incomplete Gamma Function of the 2nd Kind

(1) Function

Calculates the value of the incomplete Gamma function of the 2nd kind

$$
\Gamma(\nu, x)=\int_{x}^{\infty} e^{-t} t^{\nu-1} d t=e^{-x} \int_{0}^{\infty} e^{-t}(x+t)^{\nu-1} d t
$$

(2) Usage

Double precision:
CALL DIGIG2 (V, XI, XO, IERR)
Single precision:
CALL RIGIG2 (V, XI, XO, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \mathrm{bit} \text { Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	V	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable ν
2	XI	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
3	XO	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Output	Value of $\Gamma(\nu, x)$
4	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{XI} \geq 0.0$
(b) $0.0 \leq \mathrm{V} \leq M$
where, $M=\{$ double precision: 171.4, single precision: 35.0$\}$

(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	For XI $>\mathrm{V}$, $(\nu-1) \log _{e}(x)-x<-M_{1}$ $($ See Note (b)) (underflow)	$\mathrm{XO}=0.0$ is performed.
2000	$\mathrm{~V}=0.0$ and XI $=0.0$ (overflow)	$\mathrm{XO}=$ (Maximum value) is performed.
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted. (See Note (a))
4000	For XI $\leq \mathrm{V}-0.5$, $\nu \log _{e}(x)>\left(M_{2}+x\right)$ or $x>x_{m}$ was satisfied (See Note (c)).	Processing is aborted.

(6) Notes
(a) If ν is a large value when $\operatorname{IERR}=3000$, the value of $\Gamma(\nu, x)$ is practically the (maximum value).
(b) When IERR becomes 1000 in this subroutine, the value of M_{1} is as follows:
$M_{1}=\{$ double precision: 708.396, single precision: 87.336$\}$
(c) When IERR becomes 4000 in this subroutine, the values of x_{m} and M_{2} are as follows:
$x_{m}=\{$ double precision: 171.0 , single precision: 35.0$\}$,
$M_{2}=\{$ double precision: 709.7827 , single precision: 88.72284$\}$

(7) Example

(a) Problem

Obtain the value of $\Gamma(\nu, x)$ at $x=3.0$ for $\nu=4.0$.
(b) Input data
$\mathrm{V}=4.0$ and $\mathrm{XI}=3.0$.
(c) Main program

PROGRAM BIGIG2
! *** EXAMPLE OF DIGIG2 ***
EXMMPLE OF DIGIG2
IMPLITTT REAL
(READ (5,*) V READ ($5, *$) XI
WRITE (6,1000) V , XI
CALL DIGIIG2 (V, XI, XO, IERR)
$\operatorname{WRITE}(6,2000)$ I IERR, XO

$/, /, 8 \mathrm{X}$, , VALUE OF

END
(d) Output results

```
*** DIGIG2 ***
    ** INPUT **
    V = 4.00 XI = 3.00
```

 ** OUTPUT**
 IERR \(=0\)
 VALUE OF INCOMPLETE GAMMA FUNCTION OF THE SECOND KIND
 \(X 0=0.3883391333 D+01\)

2.7.5 ZIGAMZ, CIGAMZ

Gamma Function with Complex Variable

(1) Function

Calculates the value of the Gamma function with complex variable

$$
\Gamma(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t \quad(\Re\{z\}>0)
$$

(2) Usage

Double precision:
CALL ZIGAMZ (ZI, ZO, IERR)
Single precision:
CALL CIGAMZ (ZI, ZO, IERR)
(3) Arguments
D:Double precision real $\begin{array}{l}\text { Z:Double precision complex } \\
\text { R:Single precision real }\end{array} \quad$ I: $\left.\begin{array}{l}\text { C:Single precision complex }\end{array} \quad \begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\
\text { INTEGER(8) as for 64bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents 1 ZI
2	$\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}$	1	Input	Value of variable z	
2	ZO	$\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}$	1	Output	Value of $\Gamma(z)$
3	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) ZI must not be a negative integer and 0.0 , and $|\mathrm{ZI}|>1.0 /$ (Maximum value).
(b) $-M_{1} \leq \Re(\mathrm{ZI}) \leq M_{2}$
where, $M_{1}=\{$ double precision: 170.4, single precision: 34.0\}, $M_{2}=\{$ double precision: 171.4 , single precision: 35.0$\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted. (See Note (a))

(6) Notes
(a) When $\Re(\mathrm{ZI})<-M_{1}$ (aborted with IERR $=3000$; see Restriction (b)), the value of $\Gamma(z)$ will be almost 0.0 except the case ZI is close to a negative integer.
(b) $z=-n(n=0,1,2, \cdots)$ is a singular point for gamma function $\Gamma(z)$ such that

$$
\lim _{z \rightarrow-n} \frac{1}{\Gamma(z)}=0 \quad(n=0,1,2, \cdots)
$$

So, high precision result cannot be expected for a calculated value of gamma function at a point close to zero or at a negative integer.
(c) Gamma Function $\Gamma(z)$ is called Euler's integral of the 2nd kind. This function is also called a factorial function because $\Gamma(z+1)=z \Gamma(z)=z!$ holds.

(7) Example

(a) Problem

Obtain the value of $\Gamma(z)$ at $z=1+2 \sqrt{-1}$.
(b) Input data
$\mathrm{ZI}=(1.0,2.0)$.
(c) Main program

PROGRAM AIGAMZ
$!$ *** EXAMPLE OF ZIGAMZ ***
IMPLICIT COMPLEX (8) (A-H,0-Z)
READ (5,' (D6.1,D6.1) ') ZI
WRITE (6, 1000) ZI
CALL ZIGAMZ (ZI, ZO, IERR)
$\operatorname{WRITE}(6,2000)$ IERR, ZO

$/, /, 8 \mathrm{X}$, 'VALUE OF GAMMA FUNCTION' OF COMPLEX VARIABLE ', \&
END
(d) Output results

```
*** ZIGAMZ ***
** INPUT **
```

ZI = (1.00 , 2.00)
** OUTPUT**
IERR $=0$
value of gamma function of complex variable
$\mathrm{zO}=(0.1519040027 \mathrm{D}+00$, $0.1980488016 \mathrm{D}-01$)

2.7.6 ZIGLGZ, CIGLGZ

Logarithmic Gamma Function with Complex Variable

(1) Function

Calculates the value of the logarithmic Gamma function with complex variable $\log _{e}(\Gamma(z))$.
(2) Usage

Double precision:
CALL ZIGLGZ (ZI, ZO, IERR)
Single precision:
CALL CIGLGZ (ZI, ZO, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	ZI	$\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}$	1	Input	Value of variable z
2	ZO	$\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}$	1	Output	Value of $\log _{e}(\Gamma(z))$
3	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) ZI must not be a negative integer or 0.0.
(b) $\Re(\mathrm{ZI})>-M_{1}$
where $M_{1}=\left\{\right.$ double precision: 2^{50}, single precision: $\left.2^{18}\right\}$
(c) $|\Im(\mathrm{ZI})|, \Re(\mathrm{ZI}) \leq M_{2}$ where $M_{2}=\left\{\right.$ double precision: 2.545×10^{305}, single precision: $\left.4.08 \times 10^{36}\right\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	$\Gamma(z)<0$	$\mathrm{ZO}=\log _{e}(\|\Gamma(z)\|)+\pi \sqrt{-1}$ is performed.
3000	Restriction (a), (b) or (c) was not satisfied.	Processing is aborted.

(6) Notes
(a) When $\operatorname{IERR}=1000$, the Gamma function value is obtained as $\exp (\Re(\mathrm{ZO}))$, while it is obtained as $\exp (\mathrm{ZO})$ in general.
(b) Logarithmic gamma function with complex variable $\log _{e}(\Gamma(z))$ is many-valued function (with infinite number of values) and the difference between their values is integer times of $2 \pi \sqrt{-1}$. This subroutine calculates the principal value determined so that $-\pi<\Im\left\{\log _{e}(\Gamma(z))\right\} \leq \pi$ hold.

(7) Example

(a) Problem

Obtain the value of $\log _{e}(\Gamma(z))$ at $z=1+2 \sqrt{-1}$.
(b) Input data
$\mathrm{ZI}=(1.0,2.0)$.
(c) Main program

PROGRAM AIGLGZ

EXAMPLE OF ZIGLGZ ***
IMPLICIT COMPLEX (8) ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
READ (5,'(D6.1,D6.1)') ZI
WRITE (6,1000) ZI
WRITE $(6,2000)$ IERR, ZO
1000 FORMAT (', $, /, /, 5 \mathrm{X}, ' * * *$ ZIGLGZ $* * *, /, /,, 6 \mathrm{X},{ }^{\prime} * * \operatorname{INPUT} * * ', \&$

$/, /, 8 \mathrm{X}$, 'VALUE OF LOGARITHMIC GAMMA FUNCTION OF COMPLEX VARIABLE', \&
END
(d) Output results

```
*** ZIGLGZ ***
** INPUT **
ZI =(1.00 , 2.00 )
** OUTPUT**
IERR = 0
VALUE OF LOGARITHMIC GAMMA FUNCTION OF COMPLEX VARIABLE
ZO}=(-0.1876078786D+01 , 0.1296463163D+00 )
```


2.8 FUNCTIONS RELATED TO THE GAMMA FUNCTION

2.8.1 WIGDIG, VIGDIG

Digamma Function
(1) Function

For $x=X_{i}$, calculates the value of the digamma function (psi function)

$$
\psi(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}=\frac{d}{d x} \log _{e}(\Gamma(x))
$$

(2) Usage

Double precision:
CALL WIGDIG (NV, XI, XO, IERR)
Single precision:
CALL VIGDIG (NV, XI, XO, IERR)
(3) Arguments

D:Double precision real R :Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	NV	I	1	Input	number of input data
2	XI	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	NV	Input	X_{i}
3	XO	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	NV	Output	$\psi\left(X_{i}\right)$
4	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(b) $\mathrm{XI}(\mathrm{i})$ is not negative integer or 0.0
(c) $\mathrm{XI}(\mathrm{i})>-M$
where $M=\left\{\right.$ double precision: 2^{50}, single precision: $\left.2^{18}\right\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.
$3000+i$	Restriction (b) or (c) was not satisfied by XI(i).	

(6) Notes
(a) Digamma function $\psi(x)$ is a solution of the following equations

$$
\psi(x+1)-\psi(x)=\frac{1}{x}, \quad \psi(1)=-\gamma, \quad \lim _{n \rightarrow \infty}\{\psi(x+n)-\psi(1+n)\}=0
$$

where, γ is Euler's constant:

$$
\gamma=\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}-\log _{e} n\right)
$$

(b) Derived functions of digamma function $\psi(x): \psi^{\prime}(x), \psi^{\prime \prime}(x)$, and $\psi^{\prime \prime \prime}(x)$, are called as trigamma function, tetragamma function, pentagamma function, respectively. In general, derived functions of digamma function are called polygamma function.

(7) Example

(a) Problem

Obtain $\psi(x)$ for $x=0.1,0.2, \cdots, 0.9,1.0$.
(b) Main program

PROGRAM EIGDIG
IMPLICIT REAL (8) (A-H, O-Z)
PARAMETER ($\mathrm{NV}=10$
REAL (8) XI (NV) , XO (NV)
CHARACTER*6 CNAME CFNC
CHARACTER*6 CNAME , CFNC PARAMETER (CNAME='WIGDIG', CFNC='DGAMMA')
$!$

DNV=NV

DO $1000 \mathrm{I}=1$,NV
1000 CONTINUE
CALL WIGDIG(NV, XI, XO, IERR)
WRITE $(6,6000)$ CNAME
WRITE $(6,6100)$
DO $2000 \mathrm{I}=1$, NV
WRITE $(6,6200) \mathrm{I}, \mathrm{XI}(\mathrm{I})$
$!^{200}$
CONTINUE
WRITE $(6,6300)$
WRITE $(6,6400)$ IERR
DO $3000 \quad I=1$, NV
WRITE $(6,6500)$ CFNC,XI(I), XO(I)
3000 CONTINUE
!
6000 FORMAT (1X, '*** ', A6,' *')
6100 FORMAT (1X,' $* * *$ INPUT *')
6200 FORMAT (1X,',XI (', I2,' $)=,, F 10.6$)
6300 FORMAT (1X,',*** OUTPUT *',)
6400 FORMAT (1X,'IERR=', I5 $)$
6500 FORMAT (1X,A6,'(',F10.6,')=',F10.6) END
(c) Output results

*** WIGDIG *	
*** INPUT *	
XI (1) =	0.100000
XI(2) =	0.200000
XI(3) =	0.300000
XI(4) =	0.400000
$\mathrm{XI}(5)=$	0.500000
XI (6) =	0.600000
$\mathrm{XI}(7)=$	0.700000
XI (8) =	0.800000
XI (9) =	0.900000
$\mathrm{XI}(10)=$	1.000000
*** OUTPUT *	
IERR=	0
DGAMMA	$0.100000)=-10.423755$
DGAMMA	$0.200000)=-5.289040$
DGAMMA	$0.300000)=-3.502524$
DGAMMA	$0.400000)=-2.561385$
DGAMMA	$0.500000)=-1.963510$
DGAMMA	$0.600000)=-1.540619$
DGAMMA	$0.700000)=-1.220024$
DGAMMA	$0.800000)=-0.965009$
DGAMMA	$0.900000)=-0.754927$
DGAMMA ($1.000000)=-0.577216$

2.8.2 WIGBET, VIGBET

Beta Function

(1) Function

For $p=X_{i}$ and $q=Y_{i}$, calculates the value of the beta function

$$
B(p, q)=\int_{0}^{1} t^{p-1}(1-t)^{q-1} d t .
$$

(2) Usage

Double precision:
CALL WIGBET (NV, P, Q, XO, IERR)
Single precision:
CALL VIGBET (NV, P, Q, XO, IERR)
(3) Arguments

D:Double precision real | Z:Double precision complex |
| :--- |
| R:Single precision real |\quad C:Single precision complex \(\quad\left\{\begin{array}{l}INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer\end{array}\right\}\)

(4) Restrictions

(a) $\mathrm{NV} \geq 1$
(b) $2.0 /($ maximum $)<\mathrm{P}($ i $) \leq M$
(c) $2.0 /($ maximum $)<\mathrm{Q}(\mathrm{i}) \leq M$
where $M=\left\{\right.$ double precision: 1.2×10^{305}, single precision: $\left.2.0 \times 10^{36}\right\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
2000	$\mathrm{P}(\mathrm{i})>1000.0$ and $\mathrm{Q}(\mathrm{i})>1000.0$	The solution is obtained but the precision could not be guaranteed.
3000	Restriction (a) was not satisfied.	Processing is aborted.
$3000+i$	Restriction (b) or (c) was not satisfied by $\mathrm{P}(\mathrm{i})$ and $\mathrm{Q}(\mathrm{i})$.	

(6) Notes
(a) Beta Function $B(p, q)$ is called Euler's integral of the 1st kind.
(b) Beta Function $B(p, q)$ is represented using gamma function $\Gamma(z)$ as

$$
B(p, q)=\frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)}
$$

(7) Example
(a) Problem

Obtain $B(p, q)$ for $p=0.1,0.2, \cdots, 0.9,1.0$ and $q=0.5$.
(b) Main program

PROGRAM EIGBET
IMPLICIT REAL (8) (A-H,0-Z)
PARAMETER ($\mathrm{NV}=10$
REAL (8) XI (NV) , YI (NV)
CHARACTER*6 CNAME CFNC, XO(NV)
PARAMETER (CNAME='WIGBET', CFNC=' BETA')
$!$
DNV=NV
DO $1000 \mathrm{I}=1, \mathrm{NV}$
$\mathrm{XI}(\mathrm{I})=\mathrm{I} / \mathrm{DNV}$
YI (I) $=0.5 \mathrm{DO}$
1000 CONTINUE
! CALL WIGBET(NV, XI, YI, XO, IERR)
WRITE $(6,6000)$ CNAME
$\operatorname{WRITE}(6,6100)$
DO $2000 I=1$, NV
WRITE $(6,6200)$ I,XI(I)
2000 CONTINUE
$\operatorname{WRITE}(6,6300)$
$\operatorname{WRITE}(6,6400)$ IERR
DO $3000 \mathrm{I}=1$, NV
WRITE (6,6500) CFNC,XI(I), XO(I)
3000 CONTINUE
STOP
6000 FORMAT ($1 \mathrm{X},{ }^{\prime}$ '*** ',A6,' *')
6100 FORMAT (1X,'*** INPUT *')
6200 FORMAT (1X,', XI (', I2,' ')=', F10.6)
6200 FORMAT (1X,', *** OUTPUT *,' ${ }^{2}$)
6400 FORMAT (1X,' IERR=, I5)
6500 FORMAT (1X,A6,'(',F10.6,') $=$ ', F10.6) END
(c) Output results

```
*** WIGBET *
*** INPUT *
XI( 1)= 0.100000
XI( 2) = 0.200000
XI( 3)=0.300000
XI( 4)=0.400000
XI( 5)= 0.500000
XI( 6)= 0.600000
XI (7)=0.600000
XI (8)=0.700000
XI( 8)= 0.800000
XI(10)=1.000000
*** OUTPUT *
```

IERR $=$	0
BETA $(\quad 0.100000)=$	11.323087
BETA $(0.200000)=$	6.268653
BETA $(0.300000)=$	4.554443
BETA $(0.400000)=$	3.679094
BETA $(0.500000)=$	3.141593
BETA $(0.600000)=$	2.774502
BETA $(0.700000)=$	2.505796
BETA $(0.800000)=$	2.299288
BETA $(0.900000)=$	2.134760
BETA $(1.000000)=$	2.000000

2.9 ELLIPTIC FUNCTIONS AND ELLIPTIC INTEGRALS

2.9.1 WIECI1, VIECI1

Complete Elliptic Integral of the 1st Kind

(1) Function

For $m=X_{i}$, calculates the value of the complete elliptic integral of the 1st kind

$$
K(m)=\int_{0}^{1} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-m t^{2}\right)}}=\int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{1-m \sin ^{2} \theta}} d \theta
$$

(2) Usage

Double precision:
CALL WIECI1 (NV, RM, XO, IERR)
Single precision:
CALL VIECI1 (NV, RM, XO, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	NV	I	1	Input	number of input data
2	RM	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	NV	Input	Modulus X_{i}
3	XO	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	NV	Output	$K\left(X_{i}\right)$
4	IERR	I	1		

(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(b) $0.0 \leq \mathrm{RM}(\mathrm{i}) \leq 1.0$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
2000	RM(i) $=1.0$ (overflow)	$\mathrm{XO}(\mathrm{i})=$ (Maximum value) is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.
$3000+i$	Restriction (b) was not satisfied by RM(i).	

(6) Notes
(a) If the complete elliptic integral of the 1st kind is given as $K(k)=\int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{1-k^{2} \sin ^{2} \theta}} d \theta$, then input k^{2} to $\operatorname{RM}(\mathrm{i})$.
(b) Evaluating both $E(m)$ and $K(m)$, it is more effective to use 2.9.8 $\left\{\begin{array}{l}\text { WIENMQ } \\ \text { VIENMQ }\end{array}\right\}$.
(7) Example
(a) Problem

Obtain $K(m)$ for $m=0.0,0.1,0.2, \cdots, 0.9$.
(b) Main program

PROGRAM EIECI1
IMPLICIT REAL (8) (A-H, O-Z)
PARAMETER (NV=10)
REAL (8) XI (NV) , XO (NV)
CHARACTER*6 CNAME , CFNC PARAMETER (CNAME='WIECI1', CFNC=' K')
$!$
DNV=NV
DO $1000 \quad \mathrm{I}=1$, NV
$X I(I)=(I-1) / D N V$
1000 continue
CALL WIECI1 (NV, XI, XO, IERR)
WRITE $(6,6000)$ CNAME
WRITE $(6,6100)$
DO 2000 I=1,NV
WRITE $(6,6200) \mathrm{I}, \mathrm{XI}(\mathrm{I})$
2000 CONTINUE
WRITE $(6,6300)$
WRITE $(6,6400)$ IERR
DO 3000 I $=1$, NV WRITE
3000 CONTINUE
!
6000 FORMAT (1X, '*** , ,A6,' *')
6100 FORMAT (1X,'*** INPUT *')
6200 FORMAT (1X,' XI (', I2,' $)=$, ,F10.6)
6300 FORMAT (1X,' $* * *$ OUTPUT *' $)$
6400 FORMAT (1X,' IERR=, , I5)
6500 FORMAT (1X,A6,' (', F10.6,') $=$, , F10.6)
END
(c) Output results

*** WIECI1 *		
*** INPUT *		
XI (1) =	. 000000	
XI(2) =	0.100000	
XI(3) =	0.200000	
XI(4) =	0.300000	
XI(5) =	0.400000	
XI(6) =	0.500000	
XI(7) =	0.600000	
XI(8) =	0.700000	
XI (9) =	0.800000	
$\mathrm{XI}(10)=$	0.900000	
*** OUTP	T *	
IERR=	0	
K	$0.000000)=$	1.570796
K ($0.100000)=$	1.612441
K	$0.200000)=$	1.659624
K ($0.300000)=$	1.713889
K ($0.400000)=$	1.777519
K	$0.500000)=$	1.854075
K ($0.600000)=$	1.949568
K ($0.700000)=$	2.075363
K	$0.800000)=$	2.257205
K ($0.900000)=$	2.578092

2.9.2 WIECI2, VIECI2

Complete Elliptic Integral of the 2nd Kind

(1) Function

For $m=X_{i}$, calculates the value of the complete elliptic integral of the 2 nd kind

$$
E(m)=\int_{0}^{1} \sqrt{\left(1-t^{2}\right)\left(1-m t^{2}\right)} d t=\int_{0}^{\frac{\pi}{2}} \sqrt{1-m \sin ^{2} \theta} d \theta
$$

(2) Usage

Double precision:
CALL WIECI2 (NV, RM, XO, IERR)
Single precision:
CALL VIECI2 (NV, RM, XO, IERR)
(3) Arguments
D:Double precision real

Z:Double precision complex
R:Single precision real

INTEGER(8) as for 64bit Integer\end{array}\right\}\)
(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(b) $0.0 \leq \mathrm{RM}($ i) ≤ 1.0
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.
$3000+i$	Restriction (b) was not satisfied by RM(i).	

(6) Notes
(a) If the complete elliptic integral of the 2nd kind is given as $E(k)=\int_{0}^{\frac{\pi}{2}} \sqrt{1-k^{2} \sin ^{2} \theta} d \theta$ then the value of k^{2} must be input for $\mathrm{RM}(\mathrm{i})$.
(b) Evaluating both $E(m)$ and $K(m)$, it is more effective to use 2.9.8 $\left\{\begin{array}{l}\text { WIENMQ } \\ \text { VIENMQ }\end{array}\right\}$.
(7) Example
(a) Problem

Obtain $E(m)$ for $m=0.0,0.1,0.2, \cdots, 0.9$.
(b) Main program

PROGRAM EIECI2
IMPLICIT REAL (8) (A-H,O-Z)
PARAMETER (NV=10)
REAL (8) XI (NV) , XO (NV)
CHARACTER*6 CNAME , CFNC, $\operatorname{PARAMETER(~CNAME='WIECI2',~CFNC=,~}$
$!$
DNV=NV
DO $1000 \mathrm{I}=1$, NV
XI $(I)=(I-1) / D N V$
1000 CONTINUE
! CALL WIECI2 (NV, XI, XO, IERR)
WRITE $(6,6000)$ CNAME
WRITE $(6,6100)$
DO 2000 I=1,NV
WRITE (6,6200) I,XI (I)
2000
WRITE $(6,6300)$
WRITE $(6,6400)$ IERR
DO $3000 \mathrm{I}=1$, NV WRITE $(6,6500)$ CFNC,XI(I), XO(I)
3000 CONTINUE
STOP
6000 FORMAT (1X
6100 FORMAT (1X,,$* * *$, ${ }^{26, \prime}{ }^{*}$ '
6200 FORMAT (1X,', XI $(,, I 2, ')=,, F 10.6)$
6200 FORMAT (1X,'XI (',I2,')=', F10
6400 FORMAT (1X, 'IERR=, 55)
6500 FORMAT (1X, A6,'(', 'F10.6,') = ', F10.6)
END
(c) Output results
*** WIECI2 *
*** INPUT *
$* * *$
XI $(1)=0.000000$
$\mathrm{XI}(2)=0.100000$
$X I(2)=0.100000$
$X I(3)=0.200000$
$X I(3)=0.200000$
$X I(4)=0.300000$
$X I(4)=0.300000$
$X I(5)=0.400000$
$\mathrm{XI}(5)=0.400000$
$\mathrm{XI}(6)=0.500000$
$\mathrm{XI}(7)=0.600000$
$\mathrm{XI}(8)=0.700000$
$\mathrm{XI}(9)=0.800000$
$\mathrm{XI}(10)=0.900000$
*** OUTPUT *
IERR $=$
$0.000000)=1.570796$
$0.100000)=1.530758$
$\mathrm{E}(\quad 0.200000)=1.489035$
$\mathrm{E}(\quad 0.300000)=1.445363$
$(0.400000)=1.399392$
E(0.500000$)$
E(0.600000$)$
$\mathrm{E}(0.700000)$
$0.800000=1.178490$

2.9.3 DIEII1, RIEII1

Incomplete Elliptic Integral of the 1st Kind

(1) Function

Calculates the value of the incomplete elliptic integral of the 1st kind

$$
F(x, m)=\int_{0}^{x} \frac{1}{\sqrt{\left(1-t^{2}\right)\left(1-m t^{2}\right)}} d t=\int_{0}^{\psi} \frac{1}{\sqrt{1-m \sin ^{2} \theta}} d \theta \quad(\text { here, } x=\sin \psi) \text {. }
$$

(2) Usage

Double precision:
CALL DIEII1 (XI, RM, XO, IERR)
Single precision:
CALL RIEII1 (XI, RM, XO, IERR)
(3) Arguments

	uble precisio gle precision	Z:Double precision complex C:Single precision complex			$\text { I: }\left\{\begin{array}{l} \operatorname{INTEGER}(4) \text { as for } 32 \mathrm{bit} \text { Integer } \\ \text { INTEGER }(8) \text { as for } 64 \mathrm{bit} \text { Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	XI	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
2	RM	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Modulus m
3	XO	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Output	Value of $F(x, m)$
4	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0.0 \leq \mathrm{XI} \leq 1.0$
(b) $0.0 \leq \mathrm{RM} \leq 1.0$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
2000	$\mathrm{XI}=1.0$ and $\mathrm{RM}=1.0$ (overflow)	$\mathrm{XO}=$ (Maximum value) is performed.
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.
4000	The Gaussian arithmetic-geometric mean method or Newton method did not converge.	

(6) Notes
(a) If the incomplete elliptic integral of the 1 st kind is given as $F(x, k)=\int_{0}^{\psi} \frac{1}{\sqrt{1-k^{2} \sin ^{2} \theta}} d \theta$, then the value of k^{2} must be input for RM .
(b) The incomplete elliptic integral of the 1st kind is also represented as

$$
F(\varphi \backslash \alpha)=F(\varphi \mid m)=\int_{0}^{\varphi} \frac{1}{\sqrt{1-\sin ^{2} \alpha \sin ^{2} \theta}} d \theta \quad\left(\text { here, } m=\sin ^{2} \alpha\right) .
$$

(c) If $m<0.0$, use 2.9.5 $\left\{\begin{array}{l}\text { DIEII3 } \\ \text { RIEII3 }\end{array}\right\}$.
(7) Example
(a) Problem

Obtain the value of $F(x, m)$ at $x=0.3$ and $m=0.5$.
(b) Input data
$\mathrm{XI}=0.3$ and $\mathrm{RM}=0.5$.
(c) Main program

```
PROGRAM BIEII1
EXAMPLE OF DIEII1 ***
IMPLICIT REAL(8) (A-H,O-Z)
    READ (5,*) XI
    READ (5,*) RM
    WRITE(6,1000) XI,RM
    CALL DIEII1(XI,RM,XO,IERR)
    WRITE (6,2000) IERR, XÓ
000 FORMAT (', ' / / 5X ,**** DIEI
FORMAT(', ',/,/,5X,'*** DIEII1 ***',/,/,6X,'** INPUT **',&
FORMAT'(, ,',6.2,5** OUTPUT**', /, /,8X,'IERR = ',I5,&
END (8X,'VALUE OF F(X,M)',/,/,10X,' XO = ','D18.10)
```

(d) Output results

```
*** DIEII1 ***
** INPUT **
    XI = 0.30 RM = 0.50
```

** OUTPUT**
IERR $=0$
VALUE OF $F(X, M)$
$X O=0.3070549305 \mathrm{D}+00$

2.9.4 DIEII2, RIEII2

Incomplete Elliptic Integral of the 2nd Kind

(1) Function

Calculates the value of the incomplete elliptic integral of the 2nd kind

$$
E(x, m)=\int_{0}^{x} \sqrt{\frac{1-m t^{2}}{1-t^{2}}} d t=\int_{0}^{\psi} \sqrt{1-m \sin ^{2} \theta} d \theta \quad(\text { here, } x=\sin \psi) \text {. }
$$

(2) Usage

Double precision:
CALL DIEII2 (XI, RM, XO, IERR)
Single precision:
CALL RIEII2 (XI, RM, XO, IERR)
(3) Arguments

D:Double precision real | Z:Double precision complex |
| :--- |
| R:Single precision real |
| C:Single precision complex | I: \(\left\{\begin{array}{l}INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	XI	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Input	Value of variable x
2	RM	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Input	Modulus m
3	XO	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Output	Value of $E(x, m)$
4	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0.0 \leq \mathrm{XI} \leq 1.0$
(b) $0.0 \leq \mathrm{RM} \leq 1.0$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.
4000	The Gaussian arithmetic-geometric mean method or Newton method did not converge.	

(6) Notes

(a) If the incomplete elliptic integral of the 2nd kind is given as $E(x, k)=\int_{0}^{\psi} \sqrt{1-k^{2} \sin ^{2} \theta} d \theta$, then the value of k^{2} must be input for RM.
(b) The incomplete elliptic integral of the 2nd kind is also represented as

$$
E(\varphi \backslash \alpha)=E(u \mid m)=\int_{0}^{\varphi} \sqrt{1-\sin ^{2} \alpha \sin ^{2} \theta} d \theta \quad\left(\text { here }, m=\sin ^{2} \alpha, \quad \sin \varphi=\operatorname{sn} u\right) .
$$

Calculating the value of $E(u \mid m)$ for parameter u, use 2.9.11 $\left\{\begin{array}{l}\text { WIEJEP } \\ \text { VIEJEP }\end{array}\right\}$.
(c) If $m<0.0$, use 2.9.5 $\left\{\begin{array}{l}\text { DIEII3 } \\ \text { RIEII3 }\end{array}\right\}$.

(7) Example

(a) Problem

Obtain the value of $E(x, m)$ at $x=0.3$ and $m=0.5$.
(b) Input data
$\mathrm{XI}=0.3$ and $\mathrm{RM}=0.5$.
(c) Main program

PROGRAM BIEII2
! *** EXAMPLE OF DIEII2 ***
IMPLICIT REAL (8) (A-H, O-Z)
READ (5,*) XI
READ (5,*) RM
WRITE (6,1000) XI, RM
CALL DIEII2 (XI, RM, XO, IERR)
WRITE $(6,2000)$ IERR, XO
1000 FORMAT (', $, /, /, 5 \mathrm{X}, ' * * *$, DIEII2 $* * *, /, /, 6 \mathrm{X},{ }^{\prime} * *$ INPUT $* * ', \&$
2000 FORMAT (' ', / 6X,'** OUTPUT**' / / 8 X, 'IERR $=,, \mathrm{I} 5, \&$
/,/, 8X, 'VALUE ÓF E(X,M)',/,/,10X,' XO $=$, , D18. 10)
END
(d) Output results

```
*** DIEII2 ***
    ** INPUT **
        XI = 0.30 RM = 0.50
```

 ** OUTPUT**
 IERR = 0
 VALUE OF \(\mathrm{E}(\mathrm{X}, \mathrm{M})\)
 \(X 0=0.3023628305 \mathrm{D}+00\)

2.9.5 DIEII3, RIEII3

Incomplete Modified Elliptic Integral

(1) Function

For real numbers $m \geq 0, a, b$ and $x \geq 0$, obtain the value of incomplete modified elliptic integral

$$
f(x, m, a, b) \equiv \int_{0}^{x} \frac{a+b t^{2}}{\sqrt{\left(1+t^{2}\right)^{3}\left(1+m t^{2}\right)}} d t .
$$

(2) Usage

Double precision:
CALL DIEII3 (X, DM, A, B, Y, IERR)
Single precision:
CALL RIEII3 (X, DM, A, B, Y, IERR)
(3) Arguments

D:Double precision real R:Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	X	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Input	Value of variable x
2	DM	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Input	Modulus m
3	A	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Input	Coefficient a of $a+b t^{2}$
4	B	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Input	Coefficient b of $a+b t^{2}$
5	Y	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Output	value of $f(x, m, a, b)$
6	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{X} \geq 0$
(b) $\mathrm{DM} \geq 0$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.

(6) Notes
(a) This function is valid for $m \geq 1$ and the factor $1+m t^{2}$ is difference from the incomplete elliptic integrals:

$$
F(r, m)=\int_{0}^{r} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-m t^{2}\right)}}, E(r, m)=\int_{0}^{r} \sqrt{\frac{1-m t^{2}}{1-t^{2}}} d t .
$$

(b) The first incomplete elliptic integral $\int_{0}^{\psi} \sqrt{\left(1-a \sin ^{2} \theta\right)^{-1}} d \theta$ is $f(\tan \psi, 1-a, 1,1)$, here $0 \leq a<1$ but this can be extended to $a<1$.
(c) The second incomplete elliptic integral $\int_{0}^{\psi} \sqrt{1-a \sin ^{2} \theta} d \theta$ is $f(\tan \psi, 1-a, 1,1-a)$, here $0 \leq a<1$ but this can be extended to $a<1$.
(7) Example
(a) Problem

For $x=1.0, m=3.0, a=4.0$ and $b=2.0$, obtain incomplete modified elliptic integral.
(b) Input data
$\mathrm{X}=1.0, \mathrm{DM}=3.0, \mathrm{~A}=4.0$ and $\mathrm{B}=2.0$.
(c) Main program

PROGRAM BIEII3
! *** EXAMPLE OF DIEII3 $* * *$ IMPLICIT NONE
!
INTEGER IERR
REAL (8) X, DM, A, B , Y
DATA X/1.DO/,DM/3.D0/, A/4.D0/,B/2.D0/
$!\quad \operatorname{WRITE}(6,6000) \mathrm{X}, \mathrm{DM}, \mathrm{A}, \mathrm{B}$
CALL DIEII3(X, DM, A, B, Y, IERR)
WRITE $(6,6010)$ IERR
WRITE $(6,6020)$ Y
STOP
6000 FORMAT (/,\&
1X,',***
DIEII3 ***',/,/,\&
$1 \mathrm{X}, ', * *$ INPUT $* *, /, /, ' \&$
$1 \mathrm{X}, '$,
$\mathrm{X}=, \mathrm{F} 10.7, \mathrm{DM}=, \mathrm{F} 10.7, \quad, \mathrm{~A}=, \mathrm{F} 10.7, \&$
6010 FORMAT (/,\& ,F10.7,
1X,', ** \quad IERR $=$, I5, //, $/, \&$
6020 FORMAT (1X, $\quad Y=,, F 10.7$)
END
(d) Output results

```
*** DIEII3 ***
** INPUT **
    X= 1.0000000 DM= 3.0000000 A= 4.0000000 B= 2.0000000
** OUTPUT **
    IERR = 0
    Y= 2.5140399
```


2.9.6 DIEII4, RIEII4

Incomplete Elliptic Integral of The Weierstrass Type

(1) Function

For positives x, y, z and real $p \geq 0$, obtain incomplete elliptic integral of the Weierstrass type

$$
f(x, y, z, p) \equiv \frac{1}{2} \int_{0}^{1 / p} \frac{d t}{\sqrt{(t+x)(t+y)(t+z)}}
$$

(2) Usage

Double precision:
CALL DIEII4 (X, Y, Z, P, DI, IERR)

Single precision:
CALL RIEII4 (X, Y, Z, P, DI, IERR)
(3) Arguments

D:Double precision real	Z:Double precision complex
R:Single precision real	C:Single precision complex

\operatorname{INTEGER}(8) as for 64 bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents		
1	X	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$				l Input	Variable x
:---							
2							
Y							
3							

(4) Restrictions
(a) $\mathrm{X}, \mathrm{Y}, \mathrm{Z}>0.0$
(b) $\mathrm{P} \geq 0.0$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.

(6) Notes

(a) If p is equal to zero, then the complete integral

$$
\frac{1}{2} \int_{0}^{\infty} \frac{d t}{\sqrt{(t+x)(t+y)(t+z)}}
$$

is output to DI.
(b) Note that the the integral defining $f(x, y, z, p)$ is taken from zero to $1 / p$ (See Note (a)).
(c) $f(x, y, z, p)$ is symmetric for x, y, z.
(d) If $h \geq 0$,

$$
f(x+h, y+h, z+h, p)=\frac{1}{2} \int_{h}^{1 / p+h} \frac{d t}{\sqrt{(t+x)(t+y)(t+z)}} .
$$

(7) Example
(a) Problem

For $x=1.0, y=3.0, z=4.0$ and $p=2.0$, obtain incomplete elliptic integral of the Weierstrass type.
(b) Input data

$$
\mathrm{X}=1.0, \mathrm{DM}=3.0, \mathrm{~A}=4.0 \text { and } \mathrm{B}=2.0 .
$$

(c) Main program

```
PROGRAM BIEII4
EXAMPLE OF DIEII4 ***
IMPLICIT NONE
    INTEGER IERR
    REAL (8) X,Y,Z,P,DI
    DATA X/1.DO/,Y/3.D0/, Z/4.D0/, P/2.D0/
    \(\operatorname{WRITE}(6,6000) \mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{P}\)
    CALL DIEII4 (X, Y, Z, P, DI, IERR)
    WRITE \((6,6010)\) IERR
    WRITE \((6,6020)\) DI
\(!\) STOP
    6000 FORMAT (/, \&
```



```
    6010 FORMAT ( \& \(, \mathrm{P}=,, \mathrm{F} 10.7, /\) )
```



```
        END
```

(d) Output results

```
*** DIEII4 ***
    ** INPUT **
        X=1.0000000 Y= 3.0000000 Z= 4.0000000 P= 2.0000000
    ** OUTPUT **
        IERR = 0
        DI= 0.0607049
```


2.9.7 WIEJAC, VIEJAC

Elliptic Functions of Jacobi

(1) Function

For $u=X_{i}$, calculates the values of the elliptic functions of $\operatorname{Jacobi} \operatorname{sn}(u, m), \operatorname{cn}(u, m), \operatorname{dn}(u, m)$.
Here these are defined as for u, setting $u=F(x, m)$, which is incomplete elliptic integral of the 1 st kind with modulus m,
$\operatorname{sn}(u, m)=\sin \psi=x, \operatorname{cn}(u, m)=\cos \psi, \operatorname{dn}(u, m)=\sqrt{1-m \sin ^{2} \psi}$.
(2) Usage

Double precision:
CALL WIEJAC (NV, UI, RM, SN, CN, DN, IERR)
Single precision:
CALL VIEJAC (NV, UI, RM, SN, CN, DN, IERR)
(3) Arguments
$\begin{array}{l}\text { D:Double precision real } \begin{array}{l}\text { Z:Double precision complex } \\ \text { R:Single precision real }\end{array} \text { C:Single precision complex }\end{array}$ I: $\left.\begin{array}{|l|c|c|c|l|}\text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}$
(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(b) $0.0 \leq \mathrm{RM} \leq 1.0$

(5) Error indicator

IERR value	Meaning	Processing	
0	Normal termination.		
3000	Restriction (a) was not satisfied.	Processing is aborted.	
3001	Restriction (b) was not satisfied.		

(6) Notes
(a) Denoting u by the incomplete elliptic integral of 1st kind given as

$$
u=\int_{0}^{\psi} \frac{d \theta}{\sqrt{1-m \sin ^{2} \theta}},
$$

which implies $\operatorname{sn}(u, m)=\sin \psi$, this subroutine evaluates $\operatorname{sn}(u, m), \operatorname{cn}(u, m)$ and $\operatorname{dn}(u, m)$. On the other hand, denoting u by

$$
u=\int_{0}^{\psi} \frac{d \theta}{\sqrt{1-k^{2} \sin ^{2} \theta}},
$$

which implies $\operatorname{sn}(u, k)=\sin \psi$, and evaluating $\operatorname{sn}(u, k), \operatorname{cn}(u, k)$ and $\operatorname{dn}(u, k)$, the value k^{2} should be input to RM. Generally, $\operatorname{sn}(u, m), \mathrm{cn}(u, m)$ and $\operatorname{dn}(u, m)$ are denoted by $\operatorname{sn}(u \mid m), \operatorname{cn}(u \mid m)$ and $\operatorname{dn}(u \mid m)$, respectively.
(7) Example
(a) Problem

Suppose that $m=0.5$. Obtain $\operatorname{sn}(u, m), \operatorname{cn}(u, m)$ and $\operatorname{dn}(u, m)$ for $u=0.0,0.1,0.2, \cdots, 0.9$.
(b) Main program

PROGRAM EIEJAC
IMPLICIT REAL (8) ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
PARAMETER ($\mathrm{NV}=10$)
REAL (8) XI (NV) , XO (NV,3)
CHARACTER*6 CNAME , CFNC
PARAMETER(CNAME='WIEJAC', CFNC='S C DN', ,RM=0.5DO)
$!$
DNV=NV
DO $1000 \quad \mathrm{I}=1$, NV
$X I(I)=(I-1) / D N V$
1000 CONTINUE
CALL WIEJAC(NV, XI, RM, XO $(1,1), \mathrm{XO}(1,2), \mathrm{XO}(1,3), \operatorname{IERR})$
WRITE $(6,6000)$ CNAME
WRITE $(6,6100)$
DO 2000 I=1, NV
2000 CONTINUE
WRITE $(6,6300)$
WRITE $(6,6400)$ IERR
DO 3000' $\mathrm{I}=1$, NV
$\operatorname{WRITE}(6,6500) \operatorname{CFNC}, \mathrm{XI}(\mathrm{I}), \mathrm{XO}(\mathrm{I}, 1), \mathrm{XO}(\mathrm{I}, 2), \mathrm{XO}(\mathrm{I}, 3)$
3000 CONTINUE
STOP
6000 FORMAT (1X,'*** ',A6,' *')
6100 FORMAT (1X,' $* * *$ INPUT *')
6200 FORMAT (1X,',XI (', I2,' $)=,$, F10. 6
6300 FORMAT (1X,' $* * *$ OUTPUT *' $)$
6400 FORMAT (1X,'IERR=', I5
6500 FORMAT (1X,A6,' (', F10.6,') $=$ ', 3F10.6 $)$ END
(c) Output results
*** WIEJAC *
*** INPUT *
XI (1$)=0.000000$
XI $(1)=0.000000$
$\operatorname{XI}(2)=0.100000$
$X I(2)=0.100000$
$X I(3)=0.200000$
XI 3$)=0.200000$
$X I(4)=0.300000$
$X I(4)=0.300000$
$X I(5)=0.400000$
$\mathrm{XI}(5)=0.400000$
$\mathrm{XI}(6)=0.500000$
$\mathrm{XI}(7)=0.600000$
$X I(8)=0.700000$
$X I(9)=0.800000$
$\mathrm{XI}(10)=0.900000$
*** OUTPUT
IERR=
S C DN $(0.000000)=-0.000000 \quad 1.0000001 .000000$
S C DN $(0.100000)=0.099751 \quad 0.995012 \quad 0.997509$
S C DN $(0.200000)=0.19802210 .980198 \quad 0.990148$
$\underset{S}{S} C \operatorname{DN}(\quad 0.300000)=0.29341310 .955986100 .978241$
$\stackrel{S}{S}$ C DN $(\quad 0.400000)=0.38467210 .92305300 .962296$

$\left.\begin{array}{lllll}S C D N(\quad 0.700000\end{array}\right)=0.624340 ~ 0.781153 ~ 0.897273$

2.9.8 WIENMQ, VIENMQ

Nome q and Complete Elliptic Integrals

(1) Function

For $m=X_{i}$, calculates the values of the nome $q=e^{-\pi K\left(m^{\prime}\right) / K(m)}$, and complementary nome $q^{\prime}=$ $e^{-\pi K(m) / K\left(m^{\prime}\right)}$ (here, $m^{\prime}=1-m$) and of the complete elliptic integrals of the 1st kinds $K(m), K\left(m^{\prime}\right)$ and 2nd kinds $E(m), E\left(m^{\prime}\right)$.
(2) Usage

Double precision:
CALL WIENMQ (NV, RM, Q, QD, K, KD, E, ED, IERR)
Single precision:
CALL VIENMQ (NV, RM, Q, QD, K, KD, E, ED, IERR)
(3) Arguments

D:Double precision real R:Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	NV	I	1	Input	number of input data
2	RM	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	NV	Input	Modulus $m=X_{i}$
3	Q	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	NV	Output	Nome q
4	QD	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	NV	Output	Complementary nome q^{\prime}
5	K	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	NV	Output	Value of the complete elliptic integral of the 1st kind $K(m)$
6	KD	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	NV	Output	Value of the complete elliptic integral of the 1st kind $K\left(m^{\prime}\right)$
7	E	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	NV	Output	Value of the complete elliptic integral of the 2nd kind $E(m)$
8	ED	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	NV	Output	Value of the complete elliptic integral of the 2nd kind $E\left(m^{\prime}\right)$
9	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(b) $0.0 \leq \mathrm{RM}($ i $) \leq 1.0$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
2000	$\mathrm{RM}(\mathrm{i})=0.0$ or 1.0 (overflow)	$\begin{aligned} & \text { If } \mathrm{RM}(\mathrm{i})=0.0, \\ & \mathrm{KD}(\mathrm{i})=(\text { Maximum value }) \text { is performed. } \\ & \text { If } \mathrm{RM}(\mathrm{i})=1.0, \\ & \mathrm{~K}(\mathrm{i})=(\text { Maximum value }) \text { is performed. } \end{aligned}$
3000	Restriction (a) was not satisfied.	Processing is aborted.
$3000+i$	Restriction (b) was not satisfied by RM(i).	

(6) Notes
(a) If it is sufficient to obtain only value $K(m)$ of the complete elliptic integral of the 1st kind or value $E(m)$ of the complete elliptic integral of the 2nd kind, it is more efficient to use 2.9.1 $\left\{\begin{array}{l}\text { WIECI1 } \\ \text { VIECI1 }\end{array}\right\}$ and 2.9.2 $\left\{\begin{array}{l}\text { WIECI2 } \\ \text { VIECI2 }\end{array}\right\}$.

(7) Example

(a) Problem

Obtain the value of the nome q, complementary nome q^{\prime}, complete elliptic integrals $K(m)$ and $E(m)$ and $K\left(m^{\prime}\right)$ and $E\left(m^{\prime}\right)$ for $m^{\prime}=1-m$ at modulus $m=0.1,0.2, \cdots, 0.9$
(b) Main program

```
        PROGRAM EIENMQ
        IMPLICIT REAL(8) (A-H,O-Z)
        PARAMETER (NV=9)
        PARAMETER (NV=9)
        REAL(8) XI (NV) , XO(NV,6)
        PARAMETER( CNAME='WIENMQ', CFNC=' PARAM' )
    !
    DNV=NV+1
    DO 1000 I=1,NV
    XI(I)=I/DNV
1000 CONTINUE
    CALL WIENMQ( NV, XI, XO(1,1),XO(1,2),XO(1,3),&
! WRITE (6,6000) CNAME
    WRITE (6,6100)
    DO 2000 I=1,
        WRITE(6,6200) I,XI(I)
    2000 CONTINUE
    WRITE (6,6300)
        WRITE (6,6400) IERR
    DO 3000 I=1,NV
        WRITE(6,6500) CFNC,XI(I), XO(I,1),XO(I, 2),XO(I, 3) ,&
    3 0 0 0 ~ C O N T I N U E ~
STOP
6000 FORMAT (1X,'*** ',A6,' *')
6100 FORMAT (1X,',*** INPUT *',)
6200 FORMAT (1X','XI (','I2,'')=',F10.6 )
6300 FORMAT(1X,'*** OUTPUT *'')
6400 FORMAT (1X,' IERR=',I5
6500 FORMAT(1X,A6,'(',F10.6,')=',6F10.6 )
END
```

(c) Output results

```
*** WIENMQ *
*** INPUT *
XI( 1)=0.100000
XI( 1 2)=0.200000
XI( 3)= 0.300000
XI( 4)=0.400000
XI( 5)=0.500000
XI( 6)=0.600000
XI( 7) = 0.700000
XI( 8) = 0.800000
XI( 9)=0.900000
*** OUTPUT *
IERR=
    PARAM( 0.100000)= 0.006585 0.140173 1.612441 
    PARAM}(0.200000)=0.01394
    PARAM( 0.200000)
    ARAM 0.300000)
    PARAM (0.400000)
    PARAM( 0.500000)
    PARAM( 0.600000)
    PARAM ( 0.700000)=}00.074690 0.022277 2.075363 1.713889 1. 1.241671 1.445363
```


2.9.9 WIETHE, VIETHE

Elliptic Theta Function

(1) Function

For $v=X_{j}$, calculates the values of the elliptic theta functions of Jacobi $\vartheta_{i}(v, q)$.

$$
\begin{aligned}
& \vartheta_{0}(v, q)=\vartheta_{4}(v, q)=1+2 \sum_{n=1}^{\infty}(-1)^{n} q^{n^{2}} \cos (2 n \pi v) \\
& \vartheta_{1}(v, q)=2 q^{1 / 4} \sum_{n=0}^{\infty}(-1)^{n} q^{n(n+1)} \sin ((2 n+1) \pi v) \\
& \vartheta_{2}(v, q)=2 q^{1 / 4} \sum_{n=0}^{\infty} q^{n(n+1)} \cos ((2 n+1) \pi v) \\
& \vartheta_{3}(v, q)=1+2 \sum_{n=1}^{\infty} q^{n^{2}} \cos (2 n \pi v)
\end{aligned}
$$

(2) Usage

Double precision:
CALL WIETHE (NV, I, V, Q, XO, IERR)
Single precision:
CALL VIETHE (NV, I, V, Q, XO, IERR)
(3) Arguments
$\begin{array}{l}\text { D:Double precision real } \\ \begin{array}{l}\text { R:Single precision real }\end{array} \text { C:Single precision complex }\end{array}$ I: $\left.\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}$
(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(b) $0 \leq$ I ≤ 4
(c) $0 \leq \mathrm{Q}<1.0$
(d) $|\mathrm{V}(\mathrm{j})|<M$ where $M=\left\{\right.$ double precision: 2^{31}, single precision: $\left.2^{18}\right\}$
(5) Error indicator

IERR value	Meaning	Processing	
0	Normal termination.		
3000	Restriction (a), (b) or (c) was not satisfied.	Processing is aborted.	
$4000+j$	Restriction (d) was not satisfied by V(j).		

(6) Notes

(a) $\vartheta_{0}(v, q)=\vartheta_{4}(v, q)$.
(b) To obtain the value $F(x, m)$ of the incomplete elliptic integral of the 1st kind corresponding to (x, m), calculate $u=F(x, m)$ from 2.9.3 $\left\{\begin{array}{l}\text { DIEII1 } \\ \text { RIEII1 }\end{array}\right\}$, calculate nome q and the value $K(m)$ of the complete elliptic integrals of the 1st kinds from 2.9.8 $\left\{\begin{array}{l}\text { WIENMQ } \\ \text { VIENMQ }\end{array}\right\}$, and then apply this subroutine for $v=$ $\frac{u}{2 K(m)}$.
(c) $\vartheta_{4}^{\prime}(v, q)$ can also be obtained from the following expression: $\vartheta_{4}^{\prime}(v, q)=2 Z(u) K(m) \vartheta_{4}(v, q)$.
(7) Example
(a) Problem

Obtain $\vartheta_{i}(v, q)$ for $i=3, v=0.0,0.1,0.2, \cdots, 0.9$ and $q=0.5$.
(b) Main program

PROGRAM EIETHE
IMPLICIT REAL (8) ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
PARAMETER (NV=10)
REAL (8) XI (NV)
CHARACTER*6 CNAME , CFNC
PARAMETER(CNAME='WIETHE', CFNC=' JTH3')
! DNV=NV
DO $1000 \quad \mathrm{I}=1$,NV
$X I(I)=(I-1) / D N V$
1000 Continue
$I I=3$
$Q=0.5 D 0$
CALL WIETHE (NV, II, XI, Q, XO, IERR)
WRITE $(6,6000)$ CNAME
WRITE $(6,6100)$
DO 2000 I=1, NV
2000 WRITE $(6,6200)$ I,XI (I)
2000 CONTINUE
WRITE $(6,6300)$
WRITE (6,6400) IERR
DO $3000 \mathrm{I}=1$, NV
3000 CONTITE 6,6500) CFNC,XI(I), XO(I)
3000 CONTINUE
STOP
6000 FORMAT (1X,'*** ', A6,' *')

6100 FORMAT ($1 \mathrm{X},{ }^{\prime} * * *$ INPUT *')
6200 FORMAT (1X','XI (', I2,') $=$ ', ,F10.6)
6300 FORMAT (1X,', *** OUTPUT *', $)$
6400 FORMAT (1 X ', ' IERR=' 'I5)
6500 FORMAT (1X,A6,'(', F10.6,') $=$ ', F10.6) END
(c) Output results

[^1]
2.9.10 WIEJZT, VIEJZT

Zeta Function of Jacobi

(1) Function

For $u=X_{i}$, calculates the value of the zeta function of Jacobi

$$
Z(u)=\frac{\Theta^{\prime}(u)}{\Theta(u)}\left(\text { where } \Theta(u)=\vartheta_{4}(v, q)=\vartheta_{4}(u / 2 K(m), q)\right)
$$

(2) Usage

Double precision:
CALL WIEJZT (NV, UI, RM, XO, IERR)
Single precision:
CALL VIEJZT (NV, UI, RM, XO, IERR)
(3) Arguments
$\left.\begin{array}{l}\text { D:Double precision real } \begin{array}{l}\text { Z:Double precision complex } \\ \text { R:Single precision real }\end{array} \quad \text { C:Single precision complex }\end{array} \quad \begin{array}{|l|c|c|c|l|}\hline \text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}$
(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(b) $0.0 \leq \mathrm{RM} \leq 1.0$
(5) Error indicator

IERR value	Meaning	
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.
3001	Restriction (b) was not satisfied.	

(6) Notes
(a) The value of u can be obtained from v and $K(m)$ by using the expression $u=2 K(m) v$.
(7) Example
(a) Problem

Obtain $Z(u)$ for $u=0.0,0.1,0.2, \cdots, 0.9$ with a modulus $m=0.5$.
(b) Main program

```
        PROGRAM EIEJZT
        IMPLICIT REAL (8) (A-H,O-Z)
        PARAMETER (NV=10)
        REAL (8) XI (NV) XO (NV)
        PARAMETER ( CNAME='WIIEJZT', CFNC=' Z' )
        DNV=NV
        DO \(1000 \mathrm{I}=1, \mathrm{NV}\)
        \(\mathrm{XI}(\mathrm{I})=(\mathrm{I}-1) / \mathrm{DNV}\)
    1000 CONTINUE
    \(\mathrm{RM}=0.5 \mathrm{DO}\)
    CALL WIEJZT( NV, XI, RM, XO, IERR )
    WRITE \((6,6000)\) CNAME
    WRITE \((6,6100)\)
    DO \(2000 \mathrm{I}=1\), NV
    2000 CONTINUE
        \(\operatorname{WRITE}(6,6300)\)
        \(\operatorname{WRITE}(6,6400)\) IERR
        DO 3000 I=1,NV
        WRITE \((6,6500)\) CFNC,XI(I), XO(I)
    3000 CONTINUE
    STOP
6000 FORMAT ( \(1 \mathrm{X},{ }^{\prime} * * *\) ',A6,' *')
6100 FORMAT (1X,' '*** INPUT *' \({ }^{*}\) )
6200 FORMAT (1X','XI (', I2,' \()=\) ', F10. 6 )
6300 FORMAT (1X,',*** ÓUTPUT *''
6400 FORMAT (1X,' 'IERR =, I5 )
6500 FORMAT (1X,A6,'(', F10.6,') \(=\) ', F10.6 )
    END
```

(c) Output results

INPUT *		
XI(1) $=$	0.000000	
XI(2) =	0.100000	
XI(3) =	0.200000	
XI(4) =	0.300000	
XI(5) =	0.400000	
XI(6) =	0.500000	
XI(7) =	0.600000	
XI(8) =	0.700000	
XI(9) =	0.800000	
$\mathrm{XI}(10)=$	0.900000	
*** OUTPUT *		
IERR $=$	0	
Z($0.000000)=$	-0.000000
Z	$0.100000)=$	0.026987
Z	$0.200000)=$	0.052988
Z	$0.300000)=$	0.077076
Z	$0.400000)=$	0.098434
Z	$0.500000)=$	0.116389
Z	$0.600000)=$	0.130442
Z	$0.700000)=$	0.140276
Z ${ }^{\text {(}}$	$0.800000)=$	$\begin{aligned} & 0.145748 \\ & 0.146870 \end{aligned}$

2.9.11 WIEJEP, VIEJEP

Epsilon Function of Jacobi

(1) Function

For $u=X_{i}$, calculates the value of the epsilon function of Jacobi

$$
E(u \mid m)=\int_{0}^{x} \sqrt{\frac{1-m t^{2}}{1-t^{2}}} d t=\int_{0}^{u} \operatorname{dn}^{2}(t) d t \quad\left(\text { here }, u=\int_{0}^{x} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-m t^{2}\right)}}\right)
$$

(2) Usage

Double precision:
CALL WIEJEP (NV, UI, RM, XO, IERR)
Single precision:
CALL VIEJEP (NV, UI, RM, XO, IERR)
(3) Arguments
D:Double precision real

R:Single precision real | Z:Double precision complex |
| :--- |
| C:Single precision complex |\quad I: \(\left\{\begin{array}{l}INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	NV	I	1	Input	number of input data
2	UI	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	NV	Input	X_{i} (value of the incomplete elliptic integral of the 1st kind $F(x, m)$)
3	RM	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Input	Modulus m
4	XO	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	NV	Output	$E\left(X_{i} \mid m\right)$
5	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(b) $0.0 \leq \mathrm{RM} \leq 1.0$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.
3001	Restriction (b) was not satisfied.	

(6) Notes

(a) Epsilon function of Jacobi $E(u \mid m)$ is the same as the incomplete elliptic integral of the 2nd kind $E(\varphi \backslash \alpha)$ and the following relation holds:

$$
E(\varphi \backslash \alpha)=E(u \mid m)=\int_{0}^{\varphi} \sqrt{1-\sin ^{2} \alpha \sin ^{2} \theta} d \theta \quad\left(\text { where } m=\sin ^{2} \alpha, \quad \sin \varphi=\operatorname{sn} u\right)
$$

(See 2.9.2 $\left\{\begin{array}{l}\text { WIECI2 } \\ \text { VIECI2 }\end{array}\right\}$).
(7) Example
(a) Problem

Obtain $E(u \mid m)$ for $u=0.0,0.1,0.2, \cdots, 0.9$, with modulus $m=0.5$.
(b) Main program

PROGRAM EIEJEP
IMPLICIT REAL (8) (A-H, O-Z)
PARAMETER (NV=10)
REAL (8) XI (NV)
CHARACTER*6 CNAME
CNO
PARAMETER (CNAME='WIEJEP', CFNC=, E')
$!$
DNV=NV
DO $1000 \quad I=1, N V$
1000 CONTINUE
$R M=0.5 D 0$
CALL WIEJEP (NV, XI, RM, XO, IERR)
! $\operatorname{WRITE}(6,6000)$ CNAME
WRITE $(6,6100)$
DO 2000 I=1,NV
WRITE $(6,6200) \mathrm{I}, \mathrm{XI}(\mathrm{I})$
2000 CONTINUE
WRITE $(6,6300)$
WRITE $(6,6400)$ IERR
DO 3000 I =1, NV
WRITE $(6,6500)$ CFNC,XI (I), XO (I)
3000 CONTINUE
STOP
$!$
6000 FORMAT (1X,'*** ,,A6,' *')
6100 FORMAT (1X,' $* * *$ INPUT *')
6200 FORMAT (1X', 'XI (', I2,'')=', F10.6)
6300 FORMAT (1X,' $* * *$ OUTPUT *',)
6400 FORMAT (1X,'IERR=', I5)
6500 FORMAT (1X,A6,'(',F10.6,') $=$ ', F10.6) END
(c) Output results

*** WIEJEP *		
INPUT *		
XI (1) =	0.000000	
$X I(2)=$	0.100000	
XI (3) =	0.200000	
XI (4) =	0.300000	
$\mathrm{XI}(5)=$	0.400000	
XI (6) =	0.500000	
XI (7) =	0.600000	
XI (8) =	0.700000	
XI (9) =	0.800000	
XI (10) =	0.900000	
*** OUTP	*	
IERR=	0	
E	$0.000000)=$	0.000000
E	$0.100000)=$	0.099834
E	$0.200000)=$	0.198682
E	$0.300000)=$	0.295618
E	$0.400000)=$	0.389823
E	$0.500000)=$	0.480625
E	$0.600000)=$	0.567526
E	$0.700000)=$	0.650208
E	$0.800000)=$	0.728526
E($0.900000)=$	0.802498

2.9.12 WIEJTE, VIEJTE

Theta Function of Jacobi

(1) Function

For $u=X_{i}$, calculates the value of the theta function of Jacobi

$$
\Theta(u)=\vartheta_{4}(v, q)=\vartheta_{4}(u / 2 K(m), q) .
$$

(2) Usage

Double precision:
CALL WIEJTE (NV, UI, RM, XO, IERR)
Single precision:
CALL VIEJTE (NV, UI, RM, XO, IERR)
(3) Arguments

D:Double precision real R :Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \mathrm{bit} \text { Integer } \\ \text { INTEGER }(8) \text { as for } 64 \mathrm{bit} \text { Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	NV	I	1	Input	number of input data
2	UI	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	NV	Input	X_{i} (value of the incomplete elliptic integral of the 1st kind $F(x, m)$)
3	RM	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Modulus m
4	XO	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	NV	Output	$\Theta\left(X_{i}\right)$
5	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(b) $0.0 \leq \mathrm{RM} \leq 1.0$
(c) $\frac{|\mathrm{UI}(\mathrm{i})|}{2 K(m)}<M$
where, $M=\left\{\right.$ double precision: 2^{31}, single precision: $\left.2^{18}\right\}$, and $K(m)$ denotes the complete elliptic integral of the 1 st kind with $m=\mathrm{RM}$.
(5) Error indicator

IERR value	Meaning	Processing	
0	Normal termination.		
3000	Restriction (a) was not satisfied.	Processing is aborted.	
3001	Restriction (b) was not satisfied.		
$4000+\mathrm{i}$	Restriction (c) was not satisfied by UI(i).		

(6) Notes
(a) $\Theta^{\prime}(u)$ can be obtained from this subroutine with $Z(u)$ obtained from 2.9.10 $\left\{\begin{array}{l}\text { WIEJZT } \\ \text { VIEJZT }\end{array}\right\}$ using the relation

$$
\Theta^{\prime}(u)=Z(u) \Theta(u)
$$

(7) Example
(a) Problem

Obtain $\Theta(u)$ for $u=0.0,0.1,0.2, \cdots, 0.9$, with modulus $m=0.5$.
(b) Main program

```
PROGRAM EIEJTE
IMPLICIT REAL (8) (A-H,O-Z)
```

PARAMETER ($\mathrm{NV}=10$)
REAL (8) XI (NV)
CHARACTER*6 CNAME XO(NV)
PARAMETER (CNAME='WIEJTE', CFNC='JTHETA')
$!$
DNV=NV
DO $1000 \mathrm{I}=1$,NV
-1) /DNV
$!^{100}$
$R M=0.5 D 0$
CALL WIEJTE (NV, XI, RM, XO, IERR)
!
WRITE $(6,6000)$ CNAME
WRITE $(6,6100)$
DO 2000 I =1, NV
WRITE $(6,6200) \mathrm{I}, \mathrm{XI}(\mathrm{I})$
2000 CONTINUE
WRITE $(6,6400)$ IERR
DO 3000 I=1,NV
WRITE $(6,6500)$ CFNC,XI(I), XO(I)
3000 CONTINUE
STOP
6000 FORMAT (1X,'*** ', A6,' *')
6100 FORMAT (1X,'*** INPUT *'
6200 FORMAT (1X,', XI $(,, I 2, ')=,, F 10.6$)
6200 FORMAT (1X,'XI ($, 12, ')='$, F10
6400 FORMAT (1X,' IERR=, I5)
6500 FORMAT (1X,A6,'(',F10.6,') =', F10.6)
END
(c) Output results

*** WIEJTE *		
*** INPUT *		
XI(1) =	0.000000	
$X I(2)=$	0.100000	
XI(3) =	0.200000	
XI(4) =	0.300000	
XI(5) =	0.400000	
XI(6) =	0.500000	
XI(7) =	0.600000	
XI(8) =	0.700000	
XI (9) =	0.800000	
XI (10) =	0.900000	
*** OUT	UT *	
IERR=	0	
JTHETA	$0.000000)=$	0.913579
JTHETA	$0.100000)=$	0.914816
JTHETA	$0.200000)=$	0.918493
JTHETA	$0.300000)=$	0.924504
JTHETA	$0.400000)=$	0.932677
JTHETA	$0.500000)=$	0.942777
JTHETA	$0.600000)=$	0.954517
JTHETA	$0.700000)=$	0.967560
JTHETA	$0.800000)=$	0.981533
JTHETA	$0.900000)=$	0.996035

2.9.13 WIEPAI, VIEPAI

Pi Function

(1) Function

For $u=X_{i}$, calculates the value of the pi function

$$
\Pi(u, \alpha)=m \operatorname{sn} \alpha \operatorname{cn} \alpha \operatorname{dn} \alpha \int_{0}^{u} \frac{\operatorname{sn}^{2} t d t}{1-m \operatorname{sn}^{2} \alpha \operatorname{sn}^{2} t}
$$

(2) Usage

Double precision:
CALL WIEPAI (NV, UI, ALF, RM, XO, IERR)
Single precision:
CALL VIEPAI (NV, UI, ALF, RM, XO, IERR)

(3) Arguments

D:Double precision real R:Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	NV	I	1	Input	number of input data
2	UI	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	NV	Input	X_{i} (value of the incomplete elliptic integral of the 1st kind $F(x, m)$)
3	ALF	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	α
4	RM	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Modulus m
5	XO	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	NV	Output	$\Pi\left(X_{i}, \alpha\right)$
6	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(b) $0.0 \leq \mathrm{RM}<1.0$
(c) $\left|\frac{|\mathrm{UI}(\mathrm{i})|-\mathrm{ALF}}{2 K(m)}\right|<M$
where, $M=\left\{\right.$ double precision: 2^{31}, single precision: $\left.2^{18}\right\}$, and $K(m)$ denotes the complete elliptic integral of the 1st kind with $m=$ RM.
(d) $\left|\frac{\mathrm{ALF}}{2 K(m)}\right|<M$
where, M and $K(m)$ are the same as Restriction (c).
(5) Error indicator

IERR value	Meaning	Processing	
0	Normal termination.		
3000	Restriction (a) was not satisfied.	Processing is aborted.	
3001	Restriction (b) was not satisfied.		
4000	Restriction (d) was not satisfied.		
$4000+\mathrm{i}$	Restriction (c) was not satisfied by UI(i).		

(6) Notes
(a) Pi Function $\Pi(u, \alpha)$ is represented as:

$$
\Pi(u, \alpha)=u \frac{\Theta^{\prime}(\alpha)}{\Theta(\alpha)}+\frac{1}{2} \log _{e} \frac{\Theta(u-\alpha)}{\Theta(u+\alpha)} .
$$

(b) The incomplete elliptic integral of the $3 \operatorname{rd}$ kind $F(z)$ is represented as

$$
F(z)=\int_{0}^{z} \frac{d z}{\left(1-a^{2} z^{2}\right) \sqrt{\left(1-z^{2}\right)\left(1-k^{2} z^{2}\right)}}=\frac{\operatorname{sn} \alpha}{\operatorname{cn} \alpha \operatorname{dn} \alpha} \Pi(u, \alpha)+u
$$

with $z=\operatorname{sn} u, a^{2}=k^{2} \operatorname{sn}^{2} \alpha$.

(7) Example

(a) Problem

Obtain $\Pi(u, \alpha)$ for $u=0.0,0.1,0.2, \cdots, 0.9, \alpha=1.7$ and $m=0.5$.
(b) Main program

PROGRAM EIEPAI
IMPLICIT REAL (8) ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
PARAMETER (NV=10)
REAL (8) XI (NV) XO (NV)
PARAMETER (CNAME='WIEPAI', CFNC='JACPAI')
$!$
DNV=NV
DO $1000 \mathrm{I}=1$,NV
XI (I) $=(I-1) / D N V$
1000 CONTINUE
$\mathrm{RM}=0.5 \mathrm{DO}$
ALF $=1.7 \mathrm{DO}$
CALL WIEPAI (NV, XI, ALF, RM, XO, IERR)
$!$
WRITE $(6,6000)$ CNAME
WRITE $(6,6100)$
DO 2000 I=1,NV
$\operatorname{WRITE}(6,6200) \mathrm{I}, \mathrm{XI}(\mathrm{I})$
2000 CONTINUE
WRITE $(6,6300)$
WRITE $(6,6400)$ IERR
DO $3000^{\prime} \mathrm{I}=1$, NV
WRITE $(6,6500)$ CFNC,XI(I), XO(I)
3000 CONTINUE
!
6000 FORMAT (1X,'*** , ,A6,' *')
6100 FORMAT (1X,' $* * *$ INPUT *')
6200 FORMAT (1X,'XI (', I2,' $)=$, , F10. 6
6300 FORMAT (1X,', *** OUTPUT *'
6400 FORMAT 1 ' IERR, ' 5)
6400 FORMAT (1X,' IERR=', I5
6500 FORMAT (1X, A6, '(', $\mathrm{F} 10.6, ')=,, \mathrm{F} 10.6$)
END
(c) Output results

$* * *$	WIEPAI $*$
$* * * ~ I N P U T ~ * ~$	

$X I(6)=0.500000$
$\mathrm{XI}(7)=0.600000$
$\mathrm{XI}(8)=0.700000$
$\begin{array}{ll}\mathrm{XI}(9) & =0.800000 \\ \mathrm{XI}(10) & =0.900000\end{array}$ $\mathrm{XI}(10)=0.900000$
*** OUTPUT *
IERR=
JACPAI $(\quad 0.000000)=0.000000$
JACPAI $(0.100000)=0.000013$
JACPAI $\quad 0.200000)=0.000103$
JACPAI 0.300000$)=0.000346$
JACPAI $(0.400000)=0.000821$
JACPAI $(\quad 0.500000)=0.001601$
JACPAI $(\quad 0.600000)=0.002762$
JACPAI $(\quad 0.700000)=0.004373$
JACPAI $(0.800000)=0.006501$
JACPAI $(0.900000)=0.009204$

2.10 INDEFINITE INTEGRALS OF ELEMENTARY FUNCTIONS

2.10.1 WIIEXP, VIIEXP

Exponential Integral

(1) Function

For $x=X_{i}$, calculates the value of the exponential integral

$$
\begin{aligned}
& \overline{\operatorname{Ei}}(x)=P \int_{-\infty}^{x} \frac{e^{t}}{t} d t \quad(x>0.0) \\
& \operatorname{Ei}(x)=-\int_{-x}^{\infty} \frac{e^{-t}}{t} d t=\int_{-\infty}^{x} \frac{e^{t}}{t} d t \quad(x<0.0)
\end{aligned}
$$

where P denotes Cauchy's principal value.
(2) Usage

Double precision:
CALL WIIEXP (NV, XI, XO, IERR)
Single precision:
CALL VIIEXP (NV, XI, XO, IERR)
(3) Arguments

D:Double precision real | Z:Double precision complex |
| :--- |
| R:Single precision real | C:Single precision complex I: \(\left\{\begin{array}{l}INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer\end{array}\right\}\)
(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	$\mathrm{XI}(\mathrm{i})<-\mathrm{M}_{1}$ (See Note (b)) (underflow)	$\mathrm{XO}(\mathrm{i})=0.0$ is performed.
2000	$\mathrm{XI}(\mathrm{i})=0.0$ (overflow)	$\mathrm{XO}(\mathrm{i})=$ (Minimum value) is performed.
2100	$\mathrm{XI}(\mathrm{i})>\mathrm{M}_{2}$ (See Note (c)) (overflow)	$\mathrm{XO}(\mathrm{i})=$ (Maximum value) is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes
(a) In the case where $x=\mathrm{XI}(\mathrm{i})>0.0, \overline{\operatorname{Ei}}(x)=P \int_{-\infty}^{x} \frac{e^{t}}{t} d t$ is evaluated, and in another case $x=\mathrm{XI}(\mathrm{i})<0.0$ $\operatorname{Ei}(x)=-\int_{-x}^{\infty} \frac{e^{-t}}{t} d t=\int_{-\infty}^{x} \frac{e^{t}}{t} d t$ is also evaluated.
(b) When IERR becomes 1000 in this subroutine, the value of M_{1} is as follows: $M_{1}=\{$ double precision: 702.0, single precision: 83.0$\}$
(c) When IERR becomes 2100 in this subroutine, the value of M_{2} is as follows: $M_{2}=\{$ double precision: 709.782 , single precision: 88.722$\}$
(d) The value of the exponential integral may defined as follows:

$$
E_{1}(z)=\int_{z}^{\infty} \frac{e^{t}}{t} d t \quad(|\arg z|<\pi)
$$

In this case, $E_{1}(x)=-\operatorname{Ei}(-x) \quad(x>0)$ holds.
(7) Example
(a) Problem

Obtain $\overline{\operatorname{Ei}}(x)$ for $x=0.1,0.2, \cdots, 1.0$.
(b) Main program

```
PROGRAM EIIEXP
IMPLICIT REAL(8)(A-H,O-Z)
PARAMETER (NV=10)
REAL (8) XI(NV)
CHARACTER*6 CNAME CFNC
PARAMETER( CNAME='WIIEXP', CFNC=' Ei' )
DNV=NV
DO 1000 I=1,NV
1000 CONTINUE
CALL WIIEXP( NV, XI, XO, IERR )
    WRITE (6,6000) CNAME
    WRITE(6,6100)
    DO 2000 I=1,NV
        WRITE (6,6200) I,XI (I)
2000 CONTINUE
    WRITE (6,6300)
    WRITE(6,6400) IERR
    DO 3000 I=1,NV
        WRITE(6,6500) CFNC,XI(I), XO(I)
    3000 CONTINUE
    STOP
6000 FORMAT (1X, '*** ',A6,' *')
6100 FORMAT (1X,'*** INPUT *' )
6200 FORMAT (1X,'XI (',,I2,')=',F10.6 )
6300 FORMAT (1X,'*** OUTPUT *', )
6400 FORMAT (1X,'IERR=,'I5
6500 FORMAT(1X,A6,'(','F10.6,')=',F10.6 )
    END
```

(c) Output results
*** WIIEXP *
*** INPUT *
$\mathrm{XI}(1)=0.100000$
$\mathrm{XI}(2)=0.200000$
$\mathrm{XI}(3)=0.300000$
$\mathrm{XI}(4)=0.400000$
$X I(5)=0.500000$
XI $(6)=0.600000$
XI (7) $=0.700000$
$\mathrm{XI}(8)=0.800000$
$\mathrm{XI}(9)=0.900000$
$X I(9)=0.900000$
$\operatorname{XI}(10)=1.000000$
XI (10) $=1.00$
$* * *$ OUTPUT
*** OUTPUT *
IERR= 0
$\operatorname{Ei}(0.100000)=-1.622813$
$\operatorname{Ei}(\quad 0.200000)=-0.821761$
$\operatorname{Ei}(0.300000)=-0.302669$
$\operatorname{Ei}(0.400000)=0.104765$
$\begin{array}{ll}\mathrm{Ei}(0.500000)= & 0.454220 \\ \mathrm{Ei}(0.600000)=0.769881\end{array}$
$\operatorname{Ei}(0.600000)=0.769881$
$\operatorname{Ei}(0.700000)=1.064907$
$\left.\begin{array}{ll}\operatorname{Ei}(0.700000\end{array}\right)=1.064907$
Ei $(0.900000)=1.622812$

2.10.2 WIILOG, VIILOG

Logarithmic Integral

(1) Function

For $x=X_{i}$, calculates the value of the logarithmic integral

$$
\operatorname{Li}(x)=\int_{0}^{x} \frac{1}{\log _{e}(t)} d t
$$

(2) Usage

Double precision:
CALL WIILOG (NV, XI, XO, IERR)
Single precision:
CALL VIILOG (NV, XI, XO, IERR)
(3) Arguments

D:Double precision real R:Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	NV	I	1	Input	number of input data
2	XI	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	NV	Input	X_{i}
3	XO	$\left\{\begin{array}{l}\text { D } \\ \text { R }\end{array}\right\}$	NV	Output	$\operatorname{Li}\left(X_{i}\right)$
4	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(b) $\mathrm{XI}(\mathrm{i}) \geq 1.0$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
2000	$\mathrm{XI}(\mathrm{i})=1.0$ (overflow)	$\mathrm{XO}(\mathrm{i})=$ (Minimum value) is performed.
2100	$\log (\mathrm{XI}(\mathrm{i}))>\mathrm{M}_{2}$ (See Note (a).)	$\mathrm{XO}(\mathrm{i})=$ (Maximum value) is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.
$3000+i$	Restriction (b) was not satisfied by XI(i).	

(6) Notes
(a) When IERR becomes 2100 in this subroutine, the value of M_{2} is as follows:
$M_{2}=\{$ double precision: 709.782, single precision: 88.722$\}$
(7) Example
(a) Problem

Obtain $\operatorname{Li}(x)$ for $x=1.1,1.2, \cdots, 2.0$.
(b) Main program

PROGRAM EIILOG
IMPLICIT REAL (8) (A-H, O-Z)
PARAMETER ($\mathrm{NV}=10$)
REAL (8) XI (NV) , XO (NV)
CHARACTER*6 CNAME , CFNC PARAMETER (CNAME='WIILOG', CFNC=, Li')
$!$
DNV=NV
DO 1000 I=1,NV
DO $10(I)=1 \cdot D O+I / D N V$
$!^{100}$
, CALL WIILOG (NV, XI, XO, IERR)
WRITE $(6,6000)$ CNAME
WRITE $(6,6100)$
DO 2000 I=1,NV
WRITE $(6,6200) \mathrm{I}, \mathrm{XI}(\mathrm{I})$
2000 CONTINUE
WRITE $(6,6300)$
WRITE $(6,6400)$ IERR
DO $3000 \mathrm{I}=1$, NV
WRITE $(6,6500)$ CFNC,XI(I), XO(I)
3000 CONTINUE
STOP
6000 FORMAT ($1 \mathrm{X},{ }^{\prime}, * * *$, , A6,' *',
6100 FORMAT (1X,'*** INPUT *'
6200 FORMAT (1X', XI (', I2,') $=$ ', F10.6)
6300 FORMAT (1X,' '*** OUTPUT *, ')
6400 FORMAT (1X,', IERR=, ,I5)
6400 FORMAT (1X,'IERR=', I5 $)$
6500 FORMAT (1X,A6,' (',F10.6,') $=,, F 10.6$)
END
(c) Output results

*** WIILOG *	
*** INPUT	*
XI $(1)=1$	1.100000
$X I(2)=1$	1.200000
$X I(3)=1$	1.300000
$X I(4)=1$	1.400000
XI $(5)=1$	1.500000
$X I(6)=1$	1.600000
XI $(7)=1$	1.700000
$X I(8)=1$	1.800000
$X I(9)=1$	1.900000
XI (10) = 2	2.000000
*** OUTPUT *	
IERR= 0	0
Li (1	$1.100000)=-1.675773$
Li (1	$1.200000)=-0.933787$
Li (1	$1.300000)=-0.480178$
Li (1	$1.400000)=-0.144991$
Li (1	$1.500000)=0.125065$
Li (1	$1.600000)=0.353748$
Li (1	$1.700000)=0.553744$
Li (1	$1.800000)=0.732637$
Li (1	$1.900000)=0.895327$
Li (2	$2.000000)=1.045164$

2.10.3 DIISIN, RIISIN

 Sine Integral(1) Function

Calculates the value of the sine integral

$$
\operatorname{Si}(x)=\int_{0}^{x} \frac{\sin t}{t} d t
$$

(2) Usage

Double precision:
CALL DIISIN (XI, XO, IERR)
Single precision:
CALL RIISIN (XI, XO, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	XI	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
2	XO	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Output	Value of $\operatorname{Si}(x)$
3	IERR	I	1	Output	Error indicator

(4) Restrictions

None
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	

(6) Notes

None

(7) Example

(a) Problem

Obtain the value of $\mathrm{Si}(x)$ at $x=1.0$.
(b) Input data
$\mathrm{XI}=1.0$.
(c) Main program

PROGRAM BIISIN
! *** EXAMPLE OF DIISIN ***
IMPLICIT REAL (8) ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
READ $(5, *)$ XI
$\operatorname{WRITE}(6,1000)$
WRITE (6,1000) XI
CALL DIISIN (XI, XO, IERR)
WRITE $(6,2000)$ IERR, XO

(d) Output results
*** DIISIN ***
** INPUT **
$X I=1.00$
** OUTPUT**
IERR $=0$
VALUE OF SI (X)
$X 0=0.9460830704 \mathrm{D}+00$

2.10.4 DIICOS, RIICOS

Cosine Integral

(1) Function

Calculates the value of the cosine integral

$$
\operatorname{Ci}(x)=-\int_{x}^{\infty} \frac{\cos t}{t} d t
$$

(2) Usage

Double precision:
CALL DIICOS (XI, XO, IERR)
Single precision:
CALL RIICOS (XI, XO, IERR)
(3) Arguments
$\begin{array}{ll}\begin{array}{l}\text { D:Double precision real } \\ \text { R:Single precision real }\end{array} & \begin{array}{l}\text { Z:Double precision complex } \\ \text { C:Single precision complex }\end{array}\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER(4)} \text { as for } 32 \mathrm{bit} \text { Integer } \\ \text { INTEGER(8) as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	XI	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
2	XO	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Output	Value of $\mathrm{Ci}(x)$
3	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0.0 \leq \mathrm{XI} \leq M$
where, $M=\left\{\right.$ double precision: $2^{50} \pi$, single precision: $\left.2^{18} \pi\right\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
2000	XI $=0.0$ (overflow)	$\mathrm{XO}=$ (Minimum value) is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted. (See Note (a))

(6) Notes
(a) For $\operatorname{IERR}=3000$, if XI is sufficiently large, then the value of $\mathrm{Ci}(x)$ will be a value extremely close to 0.0.
(7) Example
(a) Problem

Obtain the value of $\mathrm{Ci}(x)$ at $x=1.0$.
(b) Input data
$\mathrm{XI}=1.0$.
(c) Main program

PROGRAM BIICOS
! *** EXAMPLE OF DIICOS ***
IMPLICIT REAL (8) ($\mathrm{A}-\mathrm{H}, 0-\mathrm{Z}$)
READ $(5, *)$ XI
$\operatorname{WRITE}(6,1000) ~ X I$
CALL DIICOS (XI , XO, IERR)
WRITE $(6,2000)$ IERR XO
WRITE $(6,2000)$ IERR, XO
1000 FORMAT (' ',',/,/,5X,'*** DIICOS ***',/,/,6X,'** INPUT **',\&

(d) Output results
*** DIICOS ***
** INPUT **
$X I=1.00$
** OUTPUT**
IERR $=0$
Value of CI (X)
$\mathrm{xO}=0.3374039229 \mathrm{D}+00$

2.10.5 WIIFSI, VIIFSI

Fresnel Sine Integral

(1) Function

For $x=X_{i}$, calculates the value of the Fresnel sine integral

$$
S(x)=\int_{0}^{x} \sin \left(\frac{\pi}{2} t^{2}\right) d t
$$

(2) Usage

Double precision:
CALL WIIFSI (NV, XI, XO, IERR)
Single precision:
CALL VIIFSI (NV, XI, XO, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	NV	I	1	Input	number of input data
2	XI	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	NV	Input	X_{i}
3	XO	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	NV	Output	$S\left(X_{i}\right)$
4	IERR	I	1		

(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(b) $|\mathrm{XI}(\mathrm{i})| \leq M$
where $M=\{$ double precision: 47453132.0 , single precision: 724.07734$\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.
$3000+i$	Restriction (b) was not satisfied by XI(i).	Processing is aborted. (See Note (b))

(6) Notes
(a) If the Fresnel sine integral is given as $S(x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} \frac{\sin t}{\sqrt{t}} d t$, then $\mathrm{XI}(\mathrm{i})$ must be $\sqrt{\frac{2 x}{\pi}}$.
(b) For IERR $=3000+i$, if $|x|$ is sufficiently large $(x=\mathrm{XI}(\mathrm{i})), S(x)$ will be a value extremely close to 0.5 $(\mathrm{XI}(\mathrm{i})>0.0)$, and to $-0.5(\mathrm{XI}(\mathrm{i})<0.0)$.

(7) Example

(a) Problem

Obtain $S(x)$ for $x=0.0,0.1, \cdots, 0.9$.
(b) Main program

PROGRAM EIIFSI
IMPLICIT REAL (8) (A-H,O-Z)
PARAMETER (NV=10)
REAL (8) XI (NV) XO (NV)
CHARACTER*6 CNAME , CFNC , CFNC=, S')
$!$
DNV=NV
DO $1000 \mathrm{I}=1$, NV
(I) $=(\mathrm{I}$)/DNV
$!^{100}$
CALL WIIFSI (NV, XI, XO, IERR)
WRITE $(6,6000)$ CNAME
WRITE $(6,6100)$
DO 2000 I=1,NV
WRITE $(6,6200) \mathrm{I}, \mathrm{XI}(\mathrm{I})$
2000 CONTINUE
WRITE $(6,6400)$ IERR
DO $3000 \mathrm{I}=1, \mathrm{NV}$ WRITE $(6,6500)$ CFNC,XI(I), XO(I)
3000 CONTINUE
STOP
6000 FORMAT (1X,'*** ',A6,' *')
6100 FORMAT (1X,'*** INPUT *')
6200 FORMAT (1X,'XI (', I2,') =', F10.6)
6300 FORMAT (1X,' '*** OUTPUT *, ')
6400 FORMAT (1X,' IERR=, I5)
6500 FORMAT (1X,A6,'(', F10.6,') $=$, , F10.6) END
(c) Output results

*** WIIFSI *		
*** INPUT *		
$\mathrm{XI}(1)=$	0.000000	
XI(2) =	0.100000	
XI(3) =	0.200000	
XI(4) =	0.300000	
XI(5) =	0.400000	
XI(6) =	0.500000	
XI (7) =	0.600000	
$\mathrm{XI}(8)=$	0.700000	
XI (9) =	0.800000	
$\mathrm{XI}(10)=$	0.900000	
*** OUTPUT *		
IERR=	0	
S	$0.000000)=$	0.000000
S	$0.100000)=$	0.000524
S	$0.200000)=$	0.004188
S	$0.300000)=$	0.014117
S	$0.400000)=$	0.033359
S	$0.500000)=$	0.064732
S	$0.600000)=$	0.110540
S	$0.700000)=$	0.172136
S	$0.800000)=$	0.249341
S	$0.900000)=$	0.339776

2.10.6 WIIFCO, VIIFCO

Fresnel Cosine Integral

(1) Function

For $x=X_{i}$, calculates the value of the Fresnel cosine integral

$$
C(x)=\int_{0}^{x} \cos \left(\frac{\pi}{2} t^{2}\right) d t
$$

(2) Usage

Double precision:
CALL WIIFCO (NV, XI, XO, IERR)
Single precision:
CALL VIIFCO (NV, XI, XO, IERR)
(3) Arguments
D:Double precision real

R:Single precision real | Z:Double precision complex |
| :--- |
| C:Single precision complex |\quad I: \(\left\{\begin{array}{l}INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer\end{array}\right\}\)
(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(b) $|\mathrm{XI}(\mathrm{i})| \leq M$
where $M=\{$ double precision: 47453132.0 , single precision: 724.07734$\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.
$3000+i$	Restriction (b) was not satisfied by XI(i).	Processing is aborted. (See Note (b))

(6) Notes
(a) If the Fresnel cosine integral is given as $C(x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} \frac{\cos t}{\sqrt{t}} d t$, then the value of $\mathrm{XI}(\mathrm{i})$ must be $\sqrt{\frac{2 x}{\pi}}$.
(b) For IERR $=3000+i$, if $|x|$ is sufficiently large $(x=\mathrm{XI}(\mathrm{i})), C(x)$ will be a value extremely close to 0.5 $(\mathrm{XI}(\mathrm{i})>0.0)$ and to $-0.5(\mathrm{XI}(\mathrm{i})<0.0)$.

(7) Example

(a) Problem

Obtain $C(x)$ for $x=0.0,0.1, \cdots, 0.9$.
(b) Main program

PROGRAM EIIFCO
IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER (NV=10)
REAL (8) XI (NV)
CHARACTER*6 CNAME XO(NV)
PARAMETER (CNAME= 'WIIFCO', CFNC=, C')
$!$
DNV=NV
DO $1000 \mathrm{I}=1$, NV
$=(I-1) / D N V$
$!^{100}$
CALL WIIFCO (NV, XI, XO, IERR)
WRITE $(6,6000)$ CNAME
WRITE $(6,6100)$
DO 2000 I=1,N
WRITE $(6,6200) \mathrm{I}, \mathrm{XI}(\mathrm{I})$
2000 CONTINUE
WRITE $(6,6400)$ IERR
DO 3000 I=1,NV WRITE $(6,6500)$ CFNC,XI (I), XO(I)
3000 CONTINUE
STOP
6000 FORMAT (1X,'*** ', A6,' *')
6100 FORMAT (1X,'*** INPUT *')
6200 FORMAT (1X,'XI (', I2,') =', F10.6)
6300 FORMAT (1X,' $* * *$ OUTPUT *,')
6400 FORMAT (1X,' IERR=, I5)
6500 FORMAT (1X,A6,' (', F10.6,') $=$, , F10.6)
END
(c) Output results

$\begin{aligned} & \text { *** WIIFCO * } \\ & \text { *** INPUT * } \end{aligned}$		
$X I(1)=$	0.000000	
$X I(2)=$	0.100000	
XI (3) =	0.200000	
XI (4) =	0.300000	
XI (5) =	0.400000	
XI (6) =	0.500000	
$\mathrm{XI}(7)=$	0.600000	
XI (8) =	0.700000	
XI (9) =	0.800000	
XI (10) =	0.900000	
*** OUTPUT	T *	
IERR=	0	
C	$0.000000)=$	0.000000
C	$0.100000)=$	0.099998
C	$0.200000)=$	0.199921
C	$0.300000)=$	0.299401
C	$0.400000)=$	0.397481
C($0.500000)=$	0.492344
C	$0.600000)=$	0.581095
C	$0.700000)=$	0.659652
C	$0.800000)=$	0.722844
C	$0.900000)=$	0.764823

2.10.7 WIIDAW, VIIDAW

Dawson Integral

(1) Function

For $x=X_{i}$, calculates the value of the Dawson integral

$$
e^{-x^{2}} \int_{0}^{x} e^{t^{2}} d t
$$

(2) Usage

Double precision:
CALL WIIDAW (NV, XI, XO, IERR)
Single precision:
CALL VIIDAW (NV, XI, XO, IERR)
(3) Arguments
D:Double precision real

R:Single precision real | Z:Double precision complex |
| :--- |
| C:Single precision complex |\quad I: \(\left\{\begin{array}{l}INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	
1	NV	I	1	Contents	
2	XI	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	NV	Input	number of input data
3	XO	$\left\{\begin{array}{l}\text { D } \\ \text { R }\end{array}\right\}$	NV	Output	$e^{-X_{i}^{2}} \int_{0}^{X_{i}} e^{t^{2}} d t$
4	IERR	I	1		

(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes

None
(7) Example
(a) Problem

$$
\text { Obtain } e^{-x^{2}} \int_{0}^{x} e^{t^{2}} d t \text { for } x=0.0,0.1, \cdots, 0.9
$$

(b) Main program

PROGRAM EIIDAW
IMPLICIT REAL (8) (A-H, O-Z)
PARAMETER (NV=10)
REAL (8) XI (NV) XO (NV)
PARAMETER (CNAME='WIIIDAW', CFNC='DAWSON')
$!$
DNV=NV
DO $1000 \mathrm{I}=1$, NV
1000 XI
1000 CONTINUE
! CALL WIIDAW (NV, XI, XO, IERR)
WRITE $(6,6000)$ CNAME
WRITE $(6,6100)$
DO 2000 I=1,NV
WRITE $(6,6200)$ I,XI (I)
2000 CONTINUE
WRITE $(6,6300)$
WRITE $(6,6400)$ IERR
DO 3000 I=1,NV
WRITE (6,6500) CFNC,XI(I), XO(I)
3000 CONTINUE
STOP
6000 FORMAT (1 X, ' $* * *$ ', A6,' *')

6200 FORMAT $1 X$, XI, ,I2, $)=$, ,F10. 6
6300 FORMAT (1X,',*** OUTPUT *'
6400 FORMAT (1X,'IERR=', I5 $)$
6500 FORMAT (1X,'A6,' (', F10.6,')=, ,F10.6)
END
(c) Output results

*** WIIDAW *		
XI (1) =	*** INPUT * 00000	
XI(2) =	0.100000	
XI (3) =	0.200000	
XI(4) =	0.300000	
$\mathrm{XI}(5)=$	0.400000	
XI(6) =	0.500000	
XI(7) =	0.600000	
$\mathrm{XI}(8)=$	0.700000	
XI (9) =	0.800000	
XI (10) =	0.900000	
*** OUT	-	
IERR=	0	
DAWSON	$0.000000)=$	0.000000
DAWSON	$0.100000)=$	0.099336
DAWSON	$0.200000)=$	0.194751
DAWSON	$0.300000)=$	0.282632
DAWSON	$0.400000)=$	0.359943
DAWSON	$0.500000)=$	0.424436
DAWSON	$0.600000)=$	0.474763
DAWSON	$0.700000)=$	0.510504
DAWSON	$0.800000)=$	0.532102
DAWSON	$0.900000)=$	0.540724

2.10.8 WIICND, VIICND

Normal Distribution Function

(1) Function

For $x=X_{i}$, calculates the value of the normal distribution function

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} e^{-\frac{t^{2}}{2}} d t .
$$

(2) Usage

Double precision:
CALL WIICND (NV, XI, XO, IERR)
Single precision:
CALL VIICND (NV, XI, XO, IERR)
(3) Arguments

D:Double precision real R :Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	NV	I	1	Input	number of input data
2	XI	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	NV	Input	X_{i}
3	XO	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	NV	Output	$\Phi\left(X_{i}\right)$
4	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes

None

(7) Example

(a) Problem

Obtain $\Phi(x)$ for $x=0.0,0.1, \cdots, 0.9$.
(b) Main program

PROGRAM EIICND
IMPLICIT REAL (8) (A-H,O-Z)
PARAMETER ($\mathrm{NV}=10$)
REAL (8) XI (NV) XO (NV)
CHARACTER*6 CNAME , CFNC PARAMETER(CNAME='WIICND', CFNC=, PHI')
!
DNV=NV
DO $1000 \mathrm{I}=1$,NV
DO $1000 \quad \mathrm{I}=1, \mathrm{NV}$
$!^{100}$
CALL WIICND (NV, XI, XO, IERR)
WRITE $(6,6000)$ CNAME
WRITE $(6,6100)$
DO $2000 \mathrm{I}=1$, NV
$\operatorname{WRITE}(6,6200) \mathrm{I}, \mathrm{XI}(\mathrm{I})$
2000 CONTINUE
WRITE $(6,6400)$ IERR
DO $3000 \mathrm{I}=1$,NV
WRITE $(6,6500)$ CFNC,XI (I), XO(I)
3000 CONTINUE
STOP
6000 FORMAT (1X,'*** ', A6,' *')
6100 FORMAT (1X,'*** INPUT *'
6200 FORMAT (1X,'XI (', I2,') $=$, , F10.6)
6200 FORMAT (1X,'XI (,I2,')=', F10
6400 FORMAT (1X,' IERR=, I5)
6500 FORMAT (1X, A6, '(', F10.6,') $=$, , F10.6)
END
(c) Output results

*** WIICND *		
INPUT *		
XI (1) =	0.000000	
XI (2) =	0.100000	
XI (3) =	0.200000	
XI (4) =	0.300000	
$X I(5)=$	0.400000	
$\operatorname{XI}(6)=$	0.500000	
XI (7) =	0.600000	
XI (8) =	0.700000	
XI (9) =	0.800000	
$\mathrm{XI}(10)=$	0.900000	
*** OUTPUT	T *	
IERR=	0	
PHI ($0.000000)=$	0.000000
PHI ($0.100000)=$	0.039828
PHI	$0.200000)=$	0.079260
PHI ($0.300000)=$	0.117911
PHI ($0.400000)=$	0.155422
PHI	$0.500000)=$	0.191462
PHI ($0.600000)=$	0.225747
PHI	$0.700000)=$	0.258036
PHI ($0.800000)=$	0.288145
PHI ($0.900000)=$	0.315940

2.10.9 WIICNC, VIICNC

Complementary Normal Distribution Function
(1) Function

For $x=X_{i}$, calculates the value of the normal distribution function

$$
\Psi(x)=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{-\frac{t^{2}}{2}} d t
$$

(2) Usage

Double precision:
CALL WIICNC (NV, XI, XO, IERR)
Single precision:
CALL VIICNC (NV, XI, XO, IERR)
(3) Arguments

D:Double precision real R:Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	NV	I	1	Input	number of input data
2	XI	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	NV	Input	X_{i}
3	XO	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	NV	Output	$\Psi\left(X_{i}\right)$
4	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	$\mathrm{XI}(\mathrm{i})>\mathrm{M}$ (See Note (a)) (underflow)	$\mathrm{XO}(\mathrm{i})=0.0$ is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes
(a) When IERR becomes 1000 in this subroutine, the value of M is as follows: $M=\{$ double precision: 38.485 , single precision: 13.0$\}$
(7) Example
(a) Problem

Obtain $\Phi(x)$ for $x=0.0,0.1,0.2, \cdots, 0.9$.
(b) Main program

PROGRAM EIICNC
IMPLICIT REAL (8) (A-H,0-Z)
PARAMETER (NV=10)
REAL (8) XI (NV)
CHARACTER*6 CNAME
PARAMETER (CNAME='WIIICNC', CFNC=, PSI')
$!$
DNV=NV
DO $1000 \mathrm{I}=1, \mathrm{NV}$
DO $101(I)=(I-1) / D N V$
$!^{100}$
CALL WIICNC (NV, XI, XO, IERR)
!
WRITE $(6,6000)$ CNAME
WRITE $(6,6100)$
DO $2000 \mathrm{I}=1$, NV
WRITE $(6,6200) \mathrm{I}, \mathrm{XI}(\mathrm{I})$
2000 CONTINUE
$\operatorname{WRITE}(6,6300)$
WRITE (6,6400) IERR
DO $3000 \mathrm{I}=1$, NV
WRITE $(6,6500)$ CFNC,XI(I), XO(I)
3000 CONTINUE
STOP
6000 FORMAT ($1 \mathrm{X},{ }^{\prime}, * * *$ ', A6, ' ${ }^{*}$ ')
6100 FORMAT (1X,' $* * *$ INPUT *')
6200 FORMAT (1X', 'XI (', I2,' $)=\prime$ ', F10.6)

6400 FORMAT (1X,', 'IERR $=$ ', I5)
6400 FORMAT (1X,'IERR=', I5)
6500 FORMAT (1X, A6,' (', F10.6,') $=,, F 10.6$)
END
(c) Output results

*** WIICNC *		
*** INPUT *		
XI (1) =	0.000000	
XI (2) =	0.100000	
$X I(3)=$	0.200000	
XI (4) =	0.300000	
$\mathrm{XI}(5)=$	0.400000	
XI (6) =	0.500000	
XI (7) =	0.600000	
$\mathrm{XI}(8)=$	0.700000	
XI (9) =	0.800000	
XI (10) =	0.900000	
*** OUTP	UT *	
IERR=	0	
PSI ${ }^{\text {(}}$	$0.000000)=$	0.500000
PSI	$0.100000)=$	0.460172
PSI	$0.200000)=$	0.420740
PSI	$0.300000)=$	0.382089
PSI	$0.400000)=$	0.344578
PSI	$0.500000)=$	0.308538
PSI	$0.600000)=$	0.274253
PSI	$0.700000)=$	0.241964
PSI($0.800000)=$	0.211855
PSI	$0.900000)=$	0.184060

2.11 THE FUNCTIONS RELATED TO THE ERROR FUNCTIONS

2.11.1 WIERRF, VIERRF

Error Function

(1) Function

For $x=X_{i}$, evaluate error function $\operatorname{Erf}(x)$.
(2) Usage

Double precision:
CALL WIERRF (NV, XV, YV, IERR)
Single precision: CALL VIERRF (NV, XV, YV, IERR)
(3) Arguments
$\begin{array}{l}\text { D:Double precision real } \begin{array}{l}\text { Z:Double precision complex } \\ \text { R:Single precision real }\end{array} \quad \text { C:Single precision complex }\end{array}$ I: $\left.\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}$
(4) Restrictions
(a) $\mathrm{NV}>0$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes

None

(7) Example

(a) Problem

Evaluate values of $\operatorname{Erf}\left(x_{i}\right)$ with $i=1,2, \cdots, 10$ where each x_{i} is given as the functional value is 0.1^{i}.
(b) Main program

PROGRAM EIERRF
IMPLICIT REAL (8) ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
INTEGER
PARAMETER ($\mathrm{NV}=10$)
REAL (8) $\mathrm{XV}(\mathrm{NV}), \mathrm{YV}(\mathrm{NV})$
ITER=0
DO 1000 I=1,NV
CALL DIIERF(1.D-1**I, XV(I), ITER, IERR)
IF (IERR.GT.0) STOP
1000 CONTINUE
WRITE $(6,10)$
WRITE 6,20
CALL WIERRF (NV, XV, YV, IERR)
DO $2000 \mathrm{I}=1$, NV
WRITE (6,6000) I, XV (I)
2000
$\operatorname{WRITE}(6,30)$
WRITE $(6,40)$ IERR
DO $3000^{\prime} I=1$, NV
WRITE (6,6500) I, 1.D0 - YV (I)
3000 CONTINUE STOP
FORMAT (1X,', *** WIERRF $* * *$, ,/,/)
20 FORMAT (1X,' *** INPUT $* * *$, ,/,/)
30 FORMAT (1X, /, /,,$\quad * * *$ OUTPUT $* * *, /, /$)
40 FORMAT (1X,' IERR $=$, ,I4,/,/)
6000 FORMAT (1X,I2,' TH INPUT' VALUES $=$, E 15.7)
6500 FORMAT(1X,I2,' TH OUTPUT VALUES $=$, ', E15.7)
END
(c) Output results

*** INPUT ***

1	TH	INPUT	VALUES	$0.1163087 \mathrm{E}+01$
2	TH	INPUT	VALUES	$0.1821386 \mathrm{E}+01$
3	TH	INPUT	VALUES	$0.2326754 \mathrm{E}+01$
4	TH	INPUT	VALUES	$0.2751064 \mathrm{E}+01$
5	TH	INPUT	VALUES	$0.3123413 \mathrm{E}+01$
6	TH	INPUT	VALUES	$0.3458911 \mathrm{E}+01$
7	TH	INPUT	VALUES	$0.3766563 \mathrm{E}+01$
8	TH	INPUT	VALUES	$0.4052237 \mathrm{E}+01$
9	TH	INPUT	VALUES	$0.4320005 \mathrm{E}+01$
10	TH	INPUT	VALUES	$0.4572825 \mathrm{E}+01$

```
*** OUTPUT ***
```

IERR $=0$

2.11.2 WIERFC, VIERFC

Co-Error Function

(1) Function

For $x=X_{i}$, evaluate co-error function $\operatorname{Erfc}(x)$.
(2) Usage

Double precision:
CALL WIERFC (NV, XV, YV, IERR)
Single precision:
CALL VIERFC (NV, XV, YV, IERR)
(3) Arguments

D:Double precision real	Z:Double precision complex
R:Single precision real	C:Single precision complex

\operatorname{INTEGER}(8) as for 64 \mathrm{bit} Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	NV	I	1	Input	Number of inputs
2	XV	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	NV	Input	x_{i}
3	YV	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	NV	Output	Erfc $\left(x_{i}\right)$
4	IERR	I	1		

(4) Restrictions
(a) $\mathrm{NV}>0$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes

None

(7) Example

(a) Problem

Evaluate values of $\operatorname{Erfc}\left(x_{i}\right)$ for x_{i} with $i=1,2, \cdots, 10$ given as the functional value equals to 0.1^{i}.
(b) Main program

PROGRAM EIERFC
IMPLICIT REAL (8) (A-H,O-Z)
INTEGER
PARAMETER ($\mathrm{NV}=10$)
REAL (8) XV (NV), YV (NV)
DO 1000 I=1,NV
CALL DIIERF(1.D-1**I, XV(I), 0, IERR)
IF (IERR.GT.0) STOP
1000 CONTINUE
WRITE $(6,10)$
CALL WIERFC (NV, XV, YV, IERR)
DO $2000 \quad \mathrm{I}=1$, NV
WRITE (6,6000) I, XV(I)
2000
$\operatorname{WRITE}(6,30)$
WRITE $(6,40)$ IERR
DO $3000 \mathrm{I}=1$, NV
WRITE (6,6500) I, YV (I)
3000 CONTINUE
STOP
10 FORMAT (1X,', $* * *$ WIERFC $* * *, ', /, /)$

6000 FORMAT (1X,I2,' TH INPUT VALUES $=$, , E15.7)
6500 FORMAT(1X,I2,' TH OUTPUT VALUES $=$ ', E15.7) END
(c) Output results
*** WIERFC ***
*** INPUT ***

1	TH INPUT	VALUES $=$
2	TH INPUT	VALUES $=$
3	TH INPUT	VALUES $=$
4	TH INPUT	VALUES $=$
5	TH INPUT	VALUES $=$
6	TH INPUT	VALUES $=$
8	TH INPUT	VALUES $=$
9	TH INPUT	VALUES $=$
10	TH INPUT	VALUES $=$
	VALUES $=$	

$0.1163087 \mathrm{E}+01$
$0.1821386 \mathrm{E}+01$
$0.1821386 \mathrm{E}+01$
$0.2326754 \mathrm{E}+01$
$0.2751064 \mathrm{E}+01$
. 3123413E+01
. $3458911 \mathrm{E}+01$
$0.3766563 \mathrm{E}+01$
. $4052237 \mathrm{E}+01$
$0.4320005 \mathrm{E}+0$
$0.4572825 \mathrm{E}+01$
*** OUTPUT ***

IERR $=0$

	TH	OUTPUT	VALUES	0.1000000E+00
	TH	OUTPUT	VALUES	
3	TH	OUTPUT	VALUES	$0.1000000 \mathrm{E}-02$
4	TH	OUTPUT	VALUES	$0.1000000 \mathrm{E}-03$
5	TH	OUTPUT	VALUES	$0.1000000 \mathrm{E}-04$
6	TH	OUTPUT	VALUES	$0.1000000 \mathrm{E}-05$
7	TH	OUTPUT	VALUES	$0.1000000 \mathrm{E}-06$
8	TH	OUTPUT	VALUES	$0.1000000 \mathrm{E}-07$
9	TH	OUTPUT	VALUES	$0.1000000 \mathrm{E}-08$
0	TH	OUTPUT	VALUES	$0.1000000 \mathrm{E}-09$

2.11.3 DIIERF, RIIERF

Inverse of Co-Error Function

(1) Function

Evaluate Erfc^{-1} i.e, for $0<x \leq 1$, evaluate y satisfying $\operatorname{Erfc}(y)=x$.
(2) Usage

Double precision:
CALL DIIERF (X, Y, ITER, IERR)
Single precision:
CALL RIIERF (X, Y, ITER, IERR)
(3) Arguments

D:Double precision real R:Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	X	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Input	x
2	Y	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Output	y
3	ITER	I	1	Input	Maximum number of iterations (Normal:10) (See Note (d))
4	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{X} \leq 1$
(b) ITER ≥ 1 (Excluding the case where 0 or an negative value is input to be reset to the default value)
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	$\mathrm{X}=1$	$\mathrm{Y}=0$ is performed.
3000	$\mathrm{X}>1$	Processing is aborted.
3500	$\mathrm{X} \leq 0$	
4000	The solution did not converge within the maximum number of iterations	

(6) Notes
(a) For $2>x>1, y$ can be obtained by $y=-\operatorname{Erfc}^{-1}(2-x)$ according to the following relation:

$$
\frac{2}{\sqrt{\pi}} \int_{-y}^{\infty} e^{-t^{2}} d t=2-x
$$

(b) $\operatorname{Erfc}^{-1}(0)=\infty, \operatorname{Erfc}^{-1}(2)=-\infty$.
(c) Inverse of $\operatorname{Erf}(x)$ is $\operatorname{Erfc}^{-1}(1-x)$.
(d) The maximum count of iteration is set to 10 when ITER is less than 1 .
(7) Example
(a) Problem

Evaluate y satisfying $\operatorname{ERF}(y)=0.9999$ and check this result.
(b) Main program

```
PROGRAM BIIERF
IMPLICIT REAL(8) (A-H,O-Z)
PARAMETER(ONE=1.DO)
X=ONE-0.9999DO
XRITE (6,90)
WRITE(6,90)
WRITE (6,91)
CALL DIIERF(X, Y, 0, IERR)
CALL DIIERF
VRITE (6,92) IERR
WRITE WIERRF (1, Y , Z, IERR)
IF(IERR.NE.0) STÓP
NRITE (6,6000) ONE-X, Y, Z
STOP
90 FORMAT(1X,', *** DIIERF ***,',/,/)
90,
92 FORMAT (1X,', *** OUTPUT *****','/,l)
93 FORMAT(1X,', IERR=,',I4,/,/)
6000 FORMAT(1X,', 1-X=','E15.7,','OUTPUT Y=',&
        , TEST VALUE E15.7,& (, & % % 
    END
```

(c) Output results

```
*** DIIERF ***
*** INPUT ***
```

$X=0.1000000 \mathrm{E}-03$
*** OUTPUT ***
IERR $=0$
$1-\mathrm{X}=0.9999000 \mathrm{E}+00$ OUTPUT $\mathrm{Y}=0.2751064 \mathrm{E}+01 \mathrm{TEST}$ VALUE $=0.9999000 \mathrm{E}+00$

2.11.4 JIIERF, IIIERF

Error Function for Complex Arguments

(1) Function

For $z=Z_{i}$, evaluate error function with complex argument $e^{-z^{2}} \operatorname{Erfc}(-i z)$.
(2) Usage

Double precision:
CALL JIIERF (NV, Z, W, IERR)
Single precision:
CALL IIIERF (NV, Z, W, IERR)
(3) Arguments
$\begin{array}{ll}\begin{array}{l}\text { D:Double precision real } \\ \text { R:Single precision real }\end{array} & \begin{array}{l}\text { Z:Double precision complex } \\ \text { C:Single precision complex }\end{array}\end{array} \quad$ I: $\left\{\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	NV	I	1	Input	Number of input values
2	Z	$\left\{\begin{array}{l}\mathrm{z} \\ \mathrm{C}\end{array}\right\}$	NV	Input	z
3	W	$\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}$	NV	Output	$e^{-z^{2}} \operatorname{Erfc}(-i z)$
4	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{NV}>0$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.
4000	Overflow occurred. (See Note (b))	

(6) Notes
(a) If the imaginary part of z is close to 0.0 , the precision becomes rather low (within an error of order 10^{-10} in the double precision case, though).
(b) If $\Im(z)$ is negative and $-\Re\left(z^{2}\right)$ is almost \log (Maximum positive), overflow occurs.

(7) Example

(a) Problem

Evaluate values in the integration pass $|z-3 i|=1$.
(b) Main program

```
PROGRAM KIIERF
IMPLICIT COMPLEX (8) (A-H,O-Z)
PARAMETER( N=100, Z3=(0.DO,3.D0) )
PARAMETER( Z1=(0.DO,1.D0) )
REAL (8) R1, RI1, R3, RI3
COMPLEX (8) ZV (N+1), WV (N+1)
HEAD1='CAUCHY : ,
HEAD2='TRUE
PAI=ACOS (-1.DO)
S=(0.DO,0.DO)
WRITE (6,10)
WRITE (6,20) N+
WRITE (6,30) N+1
DO 1000 I=1,100
1 0 0 0 \text { CONTINUE EXP(2*PAI*Z1*I/100.D0)}
    CONTINUE
    ZV(N+1)=Z3
    WRITE (6,40)
    CALL JIIERF(N+1, ZV, WV, IERR)
    DO 2000 I=1,100
        S=S+WV (I)/100.DO
2000 CONTINUE
    W3=WV (N+1)
    R1=S
    RI1=S/Z1
    R3=W3
    RI3=W3/Z1
        WRITE(6,6000) HEAD1,R1,RI1
        WRITE (6,6000) HEAD2,R3,RI3
        STOP
    10 FORMAT(1X,', *** JIIERF *** ,',/,/)
    30 FORMAT (1X,'NV = , ,I3,/,//)
40 FORMAT (1X,', *** OUUTPUT *** , / )
6000 FORMMT(1X, , *** OUTPUT *** ',/,//)
    END
```

(c) Output results

```
*** JIIERF ***
*** INPUT ***
NV = 101
*** OUTPUT ***
\begin{tabular}{lll} 
CAUCHY : & \(0.1790012 \mathrm{E}+00\) & \(-0.7589415 \mathrm{E}-18\) \\
TRUE \(:\) & \(0.1790012 \mathrm{E}+00\) & \(0.6251103 \mathrm{E}-19\)
\end{tabular}
```


2.12 ASSOCIATED LEGENDRE FUNCTIONS

2.12.1 DILEG1, RILEG1

Associated Legendre Function of the 1st Kind

(1) Function

Calculates the value of the associated Legendre function of the 1st kind

$$
P_{n}^{m}(x)=\left(\left|1-x^{2}\right|\right)^{\frac{m}{2}} \frac{d^{m} P_{n}(x)}{d x^{m}}
$$

(2) Usage

Double precision:
CALL DILEG1 ($\mathrm{N}, \mathrm{M}, \mathrm{XI}, \mathrm{XO}, \mathrm{IERR}$)
Single precision:
CALL RILEG1 (N, M, XI, XO, IERR)
(3) Arguments
D:Double precision real

R:Single precision real | Z:Double precision complex |
| :--- |
| C:Single precision complex |\quad I: \(\left\{\begin{array}{l}INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	N	I	1	Input	Order n
2	M	I	1	Input	Multiple m
3	XI	$\left\{\begin{array}{l}\text { D } \\ \text { R }\end{array}\right\}$	1	Input	Value of variable x
4	XO	$\left\{\begin{array}{l}\text { D } \\ \text { R }\end{array}\right\}$	1	Output	Value of $P_{n}^{m}(x)$
5	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) When $\mathrm{M}<0$, then $|\mathrm{M}| \leq \mathrm{N}$ (if $\mathrm{N}<0$, then $|\mathrm{M}| \leq-\mathrm{N}-1$)
(b) When $|\mathrm{M}| \leq \mathrm{N}($ if $\mathrm{N}<0$, then $r m|\mathrm{M}| \leq-\mathrm{N}-1)$, then $|\mathrm{M}|<M_{1}$ where, $M_{1}=\{$ double precision: 150 , single precision: 27$\}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
2000	$\|\mathrm{XI}\|>(\text { Maximum value })^{1 / \mathrm{N}} / 2$ and $\mathrm{N} \geq 2$	
(overflow)	If XI ≥ 0.0, $\mathrm{XO}=($ Maximum value) is performed. If XI <0.0, $\mathrm{XO}=\left(\right.$ Maximum value) $\times(-1)^{\mathrm{N}}$ is performed.	
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.
4000	Overflow occurred during the calculation.	

(6) Notes

(a) If $|x|>1.0$, then the Hobson associated Legendre function

$$
P_{n}^{m}(x)=\left(x^{2}-1.0\right)^{\frac{m}{2}} \frac{d^{m} P_{n}(x)}{d x^{m}}
$$

is calculated, and if $|x| \leq 1.0$, then the Ferrers associated Legendre function

$$
P_{n}^{m}(x)=\left(1.0-x^{2}\right)^{\frac{m}{2}} \frac{d^{m} P_{n}(x)}{d x^{m}}
$$

is calculated.
(b) This subroutine uses double length arithmetic internally to guarantee precision.
(c) Note that the associated Legendre function of the 1st kind may be defined as

$$
P_{n}^{m}(x)=(-1)^{m}\left(1.0-x^{2}\right)^{\frac{m}{2}} \frac{d^{m} P_{n}(x)}{d x^{m}}
$$

when $|x| \leq 1.0$ or it may be defined as the associated function multiplied by $(n-m)$!.
(d) To obtain these values for many XI and for a large order n, it is better to use 2.15.3 $\left\{\begin{array}{l}\text { WINPLG } \\ \text { VINPLG }\end{array}\right\}$.

The relationship between the associated Legendre function of the 1st kind $P_{n}^{m}(x)$ and the normalized spherical harmonic function $P_{n}^{* m}(x)$ can be expressed as below.

$$
\begin{aligned}
& P_{n}^{* 0}(x)=\sqrt{\frac{2 n+1}{4 \pi}} P_{n}^{0}(x)(-1 \leq x \leq 1) \\
& P_{n}^{* m}(x)=\sqrt{\frac{2 n+1}{4 \pi}} \sqrt{2 \frac{(n-m)!}{(n+m)!}} P_{n}^{m}(x)(-1 \leq x \leq 1 ; m=1,2, \cdots, n)
\end{aligned}
$$

Note that the absolute value of normalized Legendre function of the 1st kind increases steeply with the factorial order when m is large.

(7) Example

(a) Problem

Obtain the value of $P_{n}^{m}(x)$ at $n=4, m=2$ and $x=0.8$.
(b) Input data
$\mathrm{N}=4, \mathrm{M}=2$ and $\mathrm{XI}=0.8$.
(c) Main program

PROGRAM BILEG1
! $* * *$ EXAMPLE OF DILEG1 $* * *$
IMPLICIT REAL(8) (A-H, $0-\mathrm{Z}$)
IMPLICIT REAL
READ $(5, *) \mathrm{N}$
READ $(5, *)$
READ $(5, *)$
M
READ (5,*) XI
WRITE $(6,1000)$ N,M,XI
CALL DILEG1 (N,M,XI, XO, IERR)
WRITE $(6,2000)$ IERR, XO

(d) Output results

```
*** DILEG1 ***
** INPUT **
    N = 4 M = 2 XI = 0.80
```

** OUTPUT**

IERR = 0

VALUE OF PNM (X)
$x 0=0.9396000000 \mathrm{D}+01$

2.12.2 DILEG2, RILEG2

Associated Legendre Function of the 2nd Kind

(1) Function

Calculates the value of the associated Legendre function of the 2nd kind

$$
Q_{n}^{m}(x)=\left(\left|1-x^{2}\right|\right)^{\frac{m}{2}} \frac{d^{m} Q_{n}(x)}{d x^{m}}
$$

(2) Usage

Double precision:
CALL DILEG2 (N, M, XI, XO, IERR)
Single precision:

> CALL RILEG2 (N, M, XI, XO, IERR)
(3) Arguments

D:Double precision real	Z:Double precision complex
R:Single precision real	C:Single precision complex

\operatorname{INTEGER}(8) as for 64 bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	N	I	1	Input	Order n
2	M	I	1	Input	Multiple m
3	XI	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
4	XO	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Output	Value of $Q_{n}^{m}(x)$
5	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{N} \geq 0$
(b) When $\mathrm{M}<0$, then $|\mathrm{M}| \leq \mathrm{N}$
(c) $|\mathrm{XI}| \neq 1.0$
(5) Error indicator

IERR value	Meaning	Processing	
0	Normal termination.		
3000	Restriction (a), (b) or (c) was not satisfied.	Processing is aborted.	
4000	Overflow occurred during the calculation.		
4100	Series expansion calculations did not converge.		

(6) Notes

(a) If $|x|>1.0$, then the Hobson associated Legendre function

$$
Q_{n}^{m}(x)=\left(x^{2}-1.0\right)^{\frac{m}{2}} \frac{d^{m} Q_{n}(x)}{d x^{m}}
$$

is calculated, and if $|x| \leq 1.0$, then the Ferrers associated Legendre function

$$
Q_{n}^{m}(x)=\left(1.0-x^{2}\right)^{\frac{m}{2}} \frac{d^{m} Q_{n}(x)}{d x^{m}}
$$

is calculated.
(b) This subroutine uses double length arithmetic internally to guarantee precision.
(c) Note that the associated Legendre function of the 2nd kind may be defined as the definition given above for $Q_{n}^{m}(x)$ multiplied by $(-1)^{m}$ when $|x|>1.0$ or $|x|<1.0$ or it may be defined as the associated function multiplied by $(n-m)$!.

(7) Example

(a) Problem

Obtain the value of $Q_{n}^{m}(x)$ at $n=4, m=2$ and $x=1.8$.
(b) Input data
$\mathrm{N}=4, \mathrm{M}=2$ and $\mathrm{XI}=1.8$.
(c) Main program

```
PROGRAM BILEG2
EXAMPLE OF DILEG2 (***
    READ (5,*) N
    READ (5,*) M
    WRITE (6,1000) N,M,XI
    CALL DILEG2(N,M,XI, XO, IERR)
    WRITE(6,2000) IERR,XO
1000 FORMAT(;',/,/,5X,'*** DILEG
FORMAT(',',/,/,5X,'*** DILEG2 ***',/,/,6X,'** INPUT **',&
/,l,8X,'N = ',I3,5X,'M =',I3,5X,'XI = ', 'F6.2 ) ,
/,/, 8X, 'VALUE OF QNM(X)',/,/,10X,'XO = ',D18.10)
```

(d) Output results

```
*** DILEG2 ***
** INPUT **
    N = 4 M = 2 XI = 1.80
```

** OUTPUT**
IERR $=0$
VALUE OF QNM (X)
$X O=0.7031257577 D-01$

2.13 ORTHOGONAL POLYNOMIALS

2.13.1 DIOPLE, RIOPLE

Legendre Polynomial

(1) Function

Calculates the value of the Legendre polynomial

$$
P_{i}(x)=\frac{1}{2^{i} i!} \frac{d^{i}}{d x^{i}}\left(x^{2}-1\right)^{i} \quad(i=0,1, \cdots, n) .
$$

(2) Usage

Double precision:
CALL DIOPLE (N, XI, XO, IERR)
Single precision:
CALL RIOPLE (N, XI, XO, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	N	I	1	Input	Highest order n
2	XI	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
3	XO	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	$0: \mathrm{N}$	Output	Value of $P_{i}(x)(i=0,1, \cdots, n)$
4	IERR	I	1		

(4) Restrictions
(a) $\mathrm{N} \geq 0$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.
4000	Overflow occurred during the calculation.	

(6) Notes
(a) This subroutine uses double length arithmetic internally to guarantee precision.
(7) Example
(a) Problem

Obtain the value of $P_{n}(x)$ at $n=3$ and $x=0.8$.
(b) Input data
$\mathrm{N}=3$ and $\mathrm{XI}=0.8$.
(c) Main program
! *** PROGRAM BIOPLE
EXAMPLE OF DIOPLE ***
IMPLICIT REAL (8) (A-H, $0-Z$)
DIMENSION XO (0:3)
READ $(5, *)$
READ $(5, *)$
READ $(5, *)$ XI
WRITE $(6,1000) ~ N, X I$
CALL DIOPLE (N, XI, XO, IERR)
WRITE $(6,2000)$ IERR, XO (3)
1000 FORMAT (', ${ }^{2}, /, /, 5 \mathrm{X}, ' * * *$ DIOPLE $* * *, /, /, 6 \mathrm{X},{ }^{\prime} * * \operatorname{INPUT} * * ', \&$

/,//, 8X, 'VALUE OF PN (X)',/,/,10X,' $\mathrm{XO}=$ ', D18.10)
(d) Output results

```
*** DIOPLE ***
** INPUT **
    N = 3 XI = 0.80
```

** OUTPUT**
IERR = 0
VALUE OF PN(X)
$X 0=0.8000000000 \mathrm{D}-01$

2.13.2 DIZGLW, RIZGLW

Gauss=Legendre Formula

(1) Function

Evaluate the integration points and weights of (high degree) Gauss=Legendre formula.
(2) Usage

Double precision:
CALL DIZGLW (N, Z, W, WORK, IERR)
Single precision:
CALL RIZGLW (N, Z, W, WORK, IERR)
(3) Arguments

D:Double precision real Z:Double precision complex R:Single precision real C:Single precision complex					$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	N	I	1	Input	Degree n
2	Z	$\left\{\begin{array}{l}\text { D } \\ \text { R }\end{array}\right\}$	N	Output	Zero points of $P_{n}(x)$ (stored in ascending order)
3	W	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	N	Output	Weights
4	WORK	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	N	Work	Work area
5	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{N} \geq 1$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N was equal to 1.	Processing continues.
3000	Restriction (a) was not satisfied.	Processing is aborted.
4000	The solution did not converge.	
5000	Overflow occurred.	

(6) Notes

(a) Zero points of $P_{n}(x)$ are set as output.
(b) The original form of Gauss=Legendre formula is

$$
\int_{-1}^{1} f(x) d x=\sum_{j=1}^{n} w_{j} f\left(z_{j}\right)
$$

where z_{j} and w_{j} are zero points and weights of $P_{n}(x)$ respectively. This form holds straightly only when the interval for integration is $[-1,1]$. If the interval for integration is other than $[-1,1]$, it can be reduced to the above case by applying integration by substitution.
(c) It is recommended to avoid applying Gauss=Legendre formula to a vibrating function. To illustrate this, we consider the integration below:

$$
\int_{-1}^{1} 5 e^{-25 x^{2}} \cos (10 A x) d x
$$

This integrand decreases steeply at the both end points. By mapping the interval so that the both end points are mapped to the both infinite points, the value of the integration are calculated as $\sqrt{\pi} e^{-A^{2}}$. This mapping of the interval bears an error of order 10^{-12}. If Gauss=Legendre formula is applied with $N=24$, the error has the order of $0.3 * 10^{-7}$ when $A=0.3$. When $A=2.4$, the calculated value becomes -0.0004898 , but the true value is approximately 0.005585 . This indicates that even a vibration term such as $\cos (24 x)$ can become a cause of an neglectable error in integration.
(d) This subroutine can also be applied to Gauss=Legendre formulas of high degrees.

(7) Example

(a) Problem

Set $\mathrm{N}=24$ to evaluate $\int_{-1}^{1} \frac{1}{1+x+x^{2}} d x=\frac{\pi}{\sqrt{3}}$.
(b) Main program

```
PROGRAM BIZGLW
    IMPLICIT REAL(8) (A-H,O-Z)
    PARAMETER (N=24)
    REAL (8) &
        Z(N),W(2*N)
WRITE (6,10)
    WRITE (6,20)
    CALL DIZGLW(N, Z, W, W(N+1), IERR)
    WRITE (6,40)
    WRITE(6,50) IERR
    WRITE(6,60) N
    WRITE(6,4000)
    WRITE(6,5000) I, Z(I), W(I)
500 CONTINUE
DO 1000 I=1,N
            F=1.D0/(1+X +X*X)
            F= 1.D
1000 CONTINUE
S=2.DO*ASIN(1.DO)/SQRT (3.DO)
WRITE (6,70) N
    WRITE (6,7000) S , D-S
    STOP
    10 FORMAT(1X,', *** DIZGLW *** ,',/,/)
    20 FORMAT (1X,', *** INPUT ***
    30 FORMAT(1X,' N = ', I3,/,/)
    50 FORMAT(1X','IERR= ,,I4,/,/), POINTS FORMULA, (
    60 FORMAT(1X,'TABLE FOR ',I3,' POINTS FORMULA',',/)
4000 FORMAT(1X,''NO ,,10X,'ZERO POINT',15X,' WEIGHT , ,/, /),
5000 FORMAT(1X,' I4, 5X, E20.10,5X, E20.10)
```

```
6000 FORMAT(1X,'COMPUTED VALUE= ', \(\mathrm{E} 20.10, /, /\) )
7000 FORMAT (1X,' TRUE VALUE = ','E20.10',' \(\mathrm{ERR}=\) ', E20.10)
    END
```

(c) Output results

```
*** DIZGLW ***
*** INPUT ***
N = 24
*** OUTPUT ***
IERR= 0
TABLE FOR 24 POINTS FORMULA
```

NO
ZERO POINT
WEIGHT

1	$-0.9951872200 \mathrm{E}+00$
2	$-0.9747285560 \mathrm{E}+00$
3	$-0.9382745520 \mathrm{E}+00$
4	$-0.8864155270 \mathrm{E}+00$
5	$-0.8200019860 \mathrm{E}+00$
6	$-0.7401241916 \mathrm{E}+00$
7	$-0.6480936519 \mathrm{E}+00$
8	$-0.5454214714 \mathrm{E}+00$
9	$-0.4337935076 \mathrm{E}+00$
10	$-0.3150426797 \mathrm{E}+00$
11	$-0.1911188675 \mathrm{E}+00$
12	$-0.6405689286 \mathrm{E}-01$
13	$0.6405689286 \mathrm{E}-01$
14	$0.1911188675 \mathrm{E}+00$
15	$0.3150426797 \mathrm{E}+00$
16	$0.4337935076 \mathrm{E}+00$
17	$0.5454214714 \mathrm{E}+00$
18	$0.6480936519 \mathrm{E}+00$
19	$0.7401241916 \mathrm{E}+00$
20	$0.8200019860 \mathrm{E}+00$
21	$0.8864155270 \mathrm{E}+00$
22	$0.9382745520 \mathrm{E}+00$
23	$0.9747285560 \mathrm{E}+00$
24	$0.9951872200 \mathrm{E}+00$

0.1234122980E-01
$0.2853138863 \mathrm{E}-01$
$0.28531743882 \mathrm{E}-01$
$0.4427743882 \mathrm{E}-01$
$0.5929858492 \mathrm{E}-01$
$0.7334648141 \mathrm{E}-01$
$0.8619016153 \mathrm{E}-01$
$0.8619016153 \mathrm{E}-01$
$0.9761865210 \mathrm{E}-01$
$0.1074442701 \mathrm{E}+00$
$0.1074442701 \mathrm{E}+00$
$0.1155056681 \mathrm{E}+00$
$0.1155056681 \mathrm{E}+00$
$0.1216704729 \mathrm{E}+00$
-. $1258374563 \mathrm{E}+00$
$0.1279381953 \mathrm{E}+00$
. $1279381953 \mathrm{E}+00$
. $1258374563 \mathrm{E}+00$
$0.1216704729 \mathrm{E}+00$
$0.1155056681 \mathrm{E}+00$
$0.1074442701 \mathrm{E}+00$
$0.9761865210 \mathrm{E}-01$
$0.8619016153 \mathrm{E}-01$
$0.7334648141 \mathrm{E}-01$
0.5929858492E-01
$0.4427743882 \mathrm{E}-01$
$0.2853138863 \mathrm{E}-01$
$0.1234122980 \mathrm{E}-01$
GAUSS-LEGENDRE 24 POINTS FORMULA
COMPUTED VALUE $=0.1813799364 \mathrm{E}+01$
TRUE VALUE $=0.1813799364 \mathrm{E}+01 \mathrm{ERR}=-0.3774758284 \mathrm{E}-14$

2.13.3 DIOPLA, RIOPLA

Laguerre Polynomial

(1) Function

Calculates the value of the Laguerre polynomial

$$
L_{i}(x)=\frac{e^{x}}{i!} \frac{d^{i}}{d x^{i}}\left(e^{-x} x^{i}\right) \quad(i=0,1, \cdots, n)
$$

(2) Usage

Double precision:
CALL DIOPLA (N, XI, XO, IERR)
Single precision:
CALL RIOPLA (N, XI, XO, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	N	I	1	Input	Highest order n
2	XI	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
3	XO	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	$0: \mathrm{N}$	Output	Value of $L_{i}(x)(i=0,1, \cdots, n)$
4	IERR	I	1		

(4) Restrictions
(a) $\mathrm{N} \geq 0$
(5) Error indicator

IERR value	Meaning	
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing
4000	Overflow occurred during the calculation.	

(6) Notes
(a) This subroutine uses double length arithmetic internally to guarantee precision.
(7) Example
(a) Problem

Obtain the value of $L_{n}(x)$ at $n=3$ and $x=0.8$.
(b) Input data
$\mathrm{N}=3$ and $\mathrm{XI}=0.8$.
(c) Main program
+** PROGRAM BIOPLA
EXAMPLE OF DIOPLA ***
IMPLICIT REAL (8) (A-H,0-Z)
DIMENSION XO (0:3)
READ $(5, *)$ N
READ $(5, *)$
$\operatorname{WRITE}(6,1000)$
CALL DIOPLA (N, XI, XO, IERR)
WRITE $(6,2000)$ IERR, XO (3)
1000 FORMAT (', $, /, /, 5 \mathrm{X},{ }^{\prime}, * * *$ DIOPLA $* * *, /, /, 6 \mathrm{X},{ }^{\prime} * * \operatorname{INPUT} * *$ ', \&

/,/, 8X, 'VALUE ÓF LN (X)', /, /, 10X', 'XO = ', D18.10)
(d) Output results
*** DIOPLA ***
** INPUT **
$N=3 \quad X I=0.80$
** OUTPUT**
IERR $=0$
VALUE OF LN(X)
$X 0=-0.5253333333 D+00$

2.13.4 DIOPHE, RIOPHE

Hermite Polynomial

(1) Function

Calculates the value of the Hermite polynomial

$$
H_{i}(x)=(-1)^{i} e^{x^{2}} \frac{d^{i}}{d x^{i}}\left(e^{-x^{2}}\right) \quad(i=0,1, \cdots, n)
$$

(2) Usage

Double precision:
CALL DIOPHE (N, XI, XO, IERR)
Single precision:
CALL RIOPHE (N, XI, XO, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	N	I	1	Input	Highest order n
2	XI	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
3	XO	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	$0: \mathrm{N}$	Output	Value of $H_{i}(x)(i=0,1, \cdots, n)$
4	IERR	I	1		

(4) Restrictions
(a) $\mathrm{N} \geq 0$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.
4000	Overflow occurred during the calculation.	

(6) Notes
(a) This subroutine uses double length arithmetic internally to guarantee precision.
(7) Example
(a) Problem

Obtain the value of $H_{n}(x)$ at $n=3$ and $x=0.8$.
(b) Input data
$\mathrm{N}=3$ and $\mathrm{XI}=0.8$.
(c) Main program

```
PROGRAM BIOPHE
EXAMPLE OF DIOPHE ***
IMPLICIT REAL (8) (A-H, \(0-Z\) )
DIMENSION XO \(0: 3\) )
READ \((5, *) N\)
READ (5,*) XI
WRITE \((6,1000) \mathrm{N}, \mathrm{XI}\)
CALL DIOPHE (N, XI, XO, IERR)
WRITE (6, 2000) IERR, XO (3)
```


(d) Output results
*** DIOPHE ***
** INPUT **
$\mathrm{N}=3 \quad \mathrm{XI}=0.80$
** OUTPUT**
IERR $=0$
VALUE OF HN(X)
$X 0=-0.5504000000 D+01$

2.13.5 DIOPCH, RIOPCH

Chebyshev Polynomial

(1) Function

Calculates the value of the Chebyshev polynomial

$$
T_{i}(x)=\frac{(-1)^{i}}{(2 i-1)!!} \sqrt{1-x^{2}} \frac{d^{i}}{d x^{i}}\left(1-x^{2}\right)^{i-1 / 2} \quad(i=0,1, \cdots, n) .
$$

(2) Usage

Double precision:
CALL DIOPCH (N, XI, XO, IERR)
Single precision:
CALL RIOPCH (N, XI, XO, IERR)
(3) Arguments

D:Double precision real R:Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	N	I	1	Input	Highest order n
2	XI	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Input	Value of variable x
3	XO	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	0 : N	Output	Value of $T_{i}(x)(i=0,1, \cdots, n)$
4	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{N} \geq 0$
(5) Error indicator

IERR value	Meaning	Processing	
0	Normal termination.		
3000	Restriction (a) was not satisfied.	Processing is aborted.	
4000	Overflow occurred during the calculation.		

(6) Notes
(a) This subroutine uses double length arithmetic internally to guarantee precision.
(7) Example
(a) Problem

Obtain the value of $T_{n}(x)$ at $n=3$ and $x=0.8$.
(b) Input data
$\mathrm{N}=3$ and $\mathrm{XI}=0.8$.
(c) Main program
*** PROGRAM BIOPCH
EXAMPLE OF DIOPCH ***
IMPLICIT REAL (8) (A-H, O-Z)
DIMENSION XO (0:3)
READ $(5, *)$ N
READ
$\operatorname{WRITE}(6,1000)$
(
N, XI
CALL DIOPCH (N, XI, XO, IERR)
WRITE (6, 2000) IERR, XO (3)

/, /, 8 XX , 'VALUE OF TN(X)',/,/,10X', 'XO $=$ ', D18.10)
(d) Output results
*** DIOPCH ***
** INPUT **
$\mathrm{N}=3 \quad \mathrm{XI}=0.80$
** OUTPUT**
IERR $=0$
VALUE OF TN(X)
$X 0=-0.3520000000 D+00$

2.13.6 DIOPC2, RIOPC2

Chebyshev Function of the 2nd Kind

(1) Function

Calculates the value of the Chebyshev function of the 2nd kind

$$
U_{i}(x)=\frac{\sqrt{1-x^{2}}}{i} \frac{d T_{i}(x)}{d x} \quad(i=0,1, \cdots, n)
$$

(2) Usage

Double precision:
CALL DIOPC2 (N, XI, XO, IERR)
Single precision:
CALL RIOPC2 (N, XI, XO, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	N	I	1	Input	Highest order n
2	XI	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
3	XO	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	$0: \mathrm{N}$	Output	Value of $U_{i}(x)(i=0,1, \cdots, n)$
4	IERR	I	1		

(4) Restrictions
(a) $\mathrm{N} \geq 0,|\mathrm{XI}| \leq 1.0$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes

None

(7) Example

(a) Problem

Obtain the value of $U_{3}(0.8)$.
(b) Input data
$\mathrm{N}=3$ and $\mathrm{XI}=0.8$.
(c) Main program

PROGRAM BIOPC2
$!* * *$ EXAMPLE OF DIOPC2 ***
IMPLICIT REAL (8) ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
DIMENSION XO (0:3)
READ $(5, *)$
READ $(5, *)$
$\operatorname{READ}(5, *)$ XI
$\operatorname{WRITE}(6,1000)$
N, XI
CALL DIOPC2 (N,XI, XO, IERR)
WRITE (6, 2000) IERR, XO (3)
1000 FORMAT(' ',/,/,5X,'*** DIOPC2 $* * *$, ,/,/,6X,'** INPUT $* * ', \&$

END, $/$,, VALUE OF UN (X)' $, /, /, 10 \mathrm{X}, ' \mathrm{XO}=$, ,D18.10)
(d) Output results

```
*** DIOPC2 ***
```

** INPUT **
$\mathrm{N}=3 \quad \mathrm{XI}=0.80$
** OUTPUT**
IERR $=0$
VALUE OF UN (X)
$\mathrm{xO}=0.9360000000 \mathrm{D}+00$

2.13.7 DIOPGL, RIOPGL

Generalized Laguerre Polynomial

(1) Function

Calculates the value of the generalized Laguerre polynomial

$$
L_{i}^{(\alpha)}(x)=\frac{e^{x} x^{-\alpha}}{i!} \frac{d^{i}}{d x^{i}}\left(e^{-x} x^{i+\alpha}\right) \quad(i=0,1, \cdots, n)
$$

(2) Usage

Double precision:
CALL DIOPGL (N, ALF, XI, XO, IERR)
Single precision:
CALL RIOPGL (N, ALF, XI, XO, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	N	I	1	Input	Highest order n
2	ALF	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable α
3	XI	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Input	Value of variable x
4	XO	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	$0: \mathrm{N}$	Output	Value of $L_{i}^{(\alpha)}(x)(i=0,1, \cdots, n)$
5	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{N} \geq 0$
(5) Error indicator

IERR value	Meaning	
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.
4000	Overflow occurred during the calculation.	

(6) Notes

None

(7) Example

(a) Problem

Obtain the value of $L_{n}^{(\alpha)}(x)$ for $n=3, \alpha=0.5$ and $x=0.8$.
(b) Input data
$\mathrm{N}=3, \mathrm{ALF}=0.5$ and $\mathrm{XI}=0.8$.
(c) Main program

PROGRAM BIOPGL
! *** EXAMPLE OF DIOPGL *** IMPLICIT REAL (8) (A-H, O-Z) DIMENSION XO $(0: 3)$
READ $(5, *) N$
READ (5,*) ALF
RRITE (6,1000) N, ALF, XI
CALL DIOPGL (N, ALF,XI, XO, IERR)
WRITE $(6,2000)$ IERR, XÓ (3)
1000 FORMAT (' ${ }^{\prime}, /, /, 5 \mathrm{X}, ' * * *$ DIOPGL $* * * ', /, /, 6 \mathrm{X}, ' * *$ INPUT ${ }^{* *}$ ', $\&$

,I5,\&

(d) Output results

```
*** DIOPGL ***
** INPUT **
    N = 3 ALF = 0.50 XI = 0.80
** OUTPUT**
```

IERR $=0$
VALUE OF LNA (X)
$x 0=-0.2778333333 D+00$

2.14 MATHIEU FUNCTIONS

2.14.1 DIMTCE, RIMTCE

Mathieu Functions of Integer Orders $c e_{n}(x, q)$

(1) Function

Evaluate the value of $c e_{n}(x, q)$.
(2) Usage

Double precision:
CALL DIMTCE (NORD, N, Q, X, CE, ISW, WORK, IERR)
Single precision:
CALL RIMTCE (NORD, N, Q, X, CE, ISW, WORK, IERR)
(3) Arguments

| D:Double precision real
 R:Single precision real | Z:Double precision complex
 C:Single precision complex |
| :--- | :--- |\quad I: \(\left\{\begin{array}{l}INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	NORD	I	1	Input	term number for expansion-1 (See Note (a))
2	N	I	1	Input	order n
3	Q	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	parameter q
4	X	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	variable x
5	CE	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Output	the function $c e_{n}(x, q)$
6	ISW	I	1	Input	$\begin{aligned} & \text { switch } \\ & \text { ISW }=0: \text { after initial setting, evaluate CE } \\ & \text { ISW }=1: \text { only evaluate CE } \end{aligned}$
				Output	if initial setting was done return 1
7	WORK	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	See Contents	Input/ Output	coefficient table (See Note (b)) Size: $2 \times$ NORD $^{2}+6 \times$ NORD +108
8	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $2 \leq \mathrm{NORD} \leq 50$
(b) $0 \leq \mathrm{N} \leq 2 \times \mathrm{NORD}+1$
(c) $\mathrm{ISW}=0$ or $\mathrm{ISW}=1$

(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
2000	It became impossible to calculate in suffi- cient accuracy.	Processing is aborted.
3000	Restriction (a) or (b) was not satisfied.	

(6) Notes
(a) If NORD is small, the precision for CE is not sufficient. Therefore the NORD is prefer to the large value. The value of NORD for the parameter Q and N must be set to the following range:

$$
\min (50.0,0.5 \times \mathrm{N}+10+|\mathrm{Q}|) \leq \mathrm{NORD} \leq 50
$$

(b) To obtain multiple values of Mathieu functions $c e_{n}(x, q)$ where the parameter q is fixed, call this subroutine once with ISW $=0$ and then call this subroutine again after changing only the contents of X and N . Here, the value of NORD must be set to the following range:

$$
\min \left(50.0,0.5 \times \mathrm{N}_{\max }+10+|\mathrm{Q}|\right) \leq \operatorname{NORD} \leq 50
$$

where $N_{\text {max }}$ is the largest order. This enables you to eliminate unnecessary calculations by performing the initial setting only once.
(c) When processing ends with $\operatorname{IERR}=2000$, the accuracy of a calculation result cannot be guaranteed.
(d) Mathieu functions $c e_{n}(x, q)$ can be represented by Fourier series expansion (with cosine terms only). In this subroutine, they are calculated by series sum up to the (NORD+1)-th term. Therefore, the calculation time and accuracy depend on the value of NORD.
(e) As $|\mathrm{Q}|$ or N is larger, the calculation time $c e_{n}(x, q)$ trend to increase. It is prefer to set $\mathrm{N} \leq 90$ and $|\mathrm{Q}| \leq 70.0$.

(7) Example

(a) Problem

Obtain the values of $c e_{7}(x, 5.0)$ on the approximation condition that the number of the expression terms is 21 for $x=1.0,2.0, \cdots, 10.0$.
(b) Main program

PROGRAM BIMTCE

IMPLICIT REAL (8) ($\mathrm{A}-\mathrm{H}, \mathrm{O}$ - Z)
PARAMETER (NORD $=20$)
PARAMETER (NSIZE $=2 *$ NORD $*$ NORD $+6 *$ NORD +108)
REAL (8) WORK (NSIZE)
$!$
$N 7=7$
$Q=5.0 \mathrm{DO}$
$\mathrm{X}=1 . \mathrm{DO}$
$\mathrm{ISW}=0$
ISWO=ISW
CALL DIMTCE(NORD, N7, Q, X, CE, ISW, WORK, IERR)
WRITE $(6,4000)$
WRITE $(6,4500)$
WRITE $(6,5000)$ N7, Q , NORD
WRITE $(6,5300)$
$\operatorname{WRITE}(6,5300)$
$\operatorname{WRITE}(6,5500)$
WRITE (6,6000) X, CE, IERR, ISWO
DO 2000 $I=2$, 10
X= I
ISWO=ISW
CALL DIMTCE(NORD, N7, Q, X, CE, ISW, WORK, IERR)
WRITE $(6,6000) \mathrm{X}, \mathrm{CE}$, IERR, ISWO
2000 CON

```
STOP
```

4000 FORMAT (1X , '*** DIMTCE*')

4500 FORMAT (1X ,'*** INPUT *')
5000 FORMAT(1X ', MATHIEU FUNCTION : $\mathrm{N}=$ ', $\mathrm{I} 4, ' \quad \mathrm{Q}=$, , F 15.6 ,' NORD=', I4)
5300 FORMAT (1X,'*** OUTPUT * ') ,
5500 FORMAT (1X'7X,'X',7X,5X,6X,'CEN', 5X,6X,' CODE',5X,' ISW')
6000 FORMAT (1X,F15.6,5X,F15.6,5X,I6,5X,I6)
END
(c) Output results
*** DIMTCE*
*** INPUT *
MATHIEU FUNCT
$* * *$ OUTPUT $*$ UTPUT
X
1.
1.000000
2.000000
3.000000
4.000000
5.000000
6.000000
7.000000
8.000000
8.000000
9.00000
10.000000

Q=
$\begin{array}{lr}\text { CEN } & \text { CODE } \\ 0.902463 & 0\end{array}$
5.000000 NORD $=20$ 0.902463
-0.128610 -0.666293 -0.796419 0.769659 -0.217824 -0.057805
0.858668
0.931020
0.869127

CODE	ISW
0	0
0	1
0	1
0	1
0	1
0	1
0	1
0	1
0	1
0	1

2.14.2 DIMTSE, RIMTSE

Mathieu Functions of Integer Orders $s e_{n}(x, q)$

(1) Function

Evaluate the value of $s e_{n}(x, q)$.
(2) Usage

Double precision:
CALL DIMTSE (NORD, N, Q, X, SE, ISW, WORK, IERR)
Single precision:
CALL RIMTSE (NORD, N, Q, X, SE, ISW, WORK, IERR)
(3) Arguments

D:Double precision real	Z:Double precision complex
R:Single precision real	C:Single precision complex

\operatorname{INTEGER}(8) as for 64 bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	NORD	I	1	Input	term number for expansion-1 (See Note (a))
2	N	I	1	Input	order n
3	Q	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	parameter q
4	X	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Input	variable x
5	SE	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Output	the function $\operatorname{se}_{n}(x, q)$
6	ISW	I	1	Input	switch ISW $=0$: after initial setting, evaluate SE ISW =1 : only evaluate SE
				Output	if initial setting was done return 1
7	WORK	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	See Contents	Input/ Output	coefficient table (See Note (b)) Size: $2 \times$ NORD $^{2}+6 \times$ NORD +108
8	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $2 \leq \mathrm{NORD} \leq 50$
(b) $1 \leq \mathrm{N} \leq 2 \times \mathrm{NORD}+2$
(c) $\mathrm{ISW}=0$ or $\mathrm{ISW}=1$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
2000	It became impossible to calculate in suffi- cient accuracy.	Processing is aborted.
3000	Restriction (a) or (b) was not satisfied.	

(6) Notes
(a) If NORD is small, the precision for SE is not sufficient. Therefore the NORD is prefer to the large value. The value of NORD for the parameter Q and N must be set to the following range:

$$
\min (50.0,0.5 \times \mathrm{N}+10+|\mathrm{Q}|) \leq \mathrm{NORD} \leq 50 .
$$

(b) To obtain multiple values of Mathieu functions $s e_{n}(x, q)$ where the parameter q is fixed, call this subroutine once with ISW=0 and then call this subroutine again after changing only the contents of X and N. Here, the value of NORD must be set to the following range:

$$
\min \left(50.0,0.5 \times \mathrm{N}_{\max }+10+|\mathrm{Q}|\right) \leq \mathrm{NORD} \leq 50
$$

where $N_{\text {max }}$ is the largest order. This enables you to eliminate unnecessary calculations by performing the initial setting only once.
(c) When processing ends with $\operatorname{IERR}=2000$, the accuracy of a calculation result cannot be guaranteed.
(d) Mathieu functions $s e_{n}(x, q)$ can be represented by Fourier series expansion (with sine terms only). In this subroutine, they are calculated by series sum up to the (NORD+1)-th term. Therefore, the calculation time and accuracy depend on the value of NORD.
(e) As $|\mathrm{Q}|$ or N is larger, the calculation time $s e_{n}(x, q)$ trend to increase. It is prefer to set $\mathrm{N} \leq 90$ and $|\mathrm{Q}| \leq 70.0$.

(7) Example

(a) Problem

Obtain the values of $\operatorname{se}_{7}(x, 5.0)$ on the approximation condition that the number of the expression terms is 21 for $x=1.0,2.0, \cdots, 10.0$.
(b) Main program

PROGRAM BIMTSE

IMPLICIT REAL (8) ($\mathrm{A}-\mathrm{H}, \mathrm{O}$-Z)
PARAMETER (NORD $=20$)
PARAMETER (NSIZE $=2 *$ NORD $*$ NORD $+6 *$ NORD +108)
REAL (8) WORK (NSIZE)
$!$

```
N7=7
Q = 5.0DO
ISW=0
ISWO=ISW
CALL DIMTSE(NORD, N7, Q, X, SE, ISW, WORK, IERR)
WRITE (6,4000)
WRITE (6,4500)
WRITE (6,5000) N7, Q , NORD
WRITE (6,5000)
WRITE (6,5300)
WRITE (6,6000) X, SE, IERR ISWO
WRITE(6,6000) X, SE, IERR, ISWO
DO 2000 I= 2, 10
    X= I
    ISWO=ISW
    CALL DIMTSE(NORD, N7, Q, X, SE, ISW, WORK, IERR)
    WRITE (6,6000) X, SE,'IERR, ISWO
2000 CONTINUE
STOP
4 0 0 0 ~ F O R M A T ( 1 X ~ , ' * * * ~ D I M T S E * ' ) ~
```

4500 FORMAT (1X ,'*** INPUT *')
5000 FORMAT (1X ','MATHIEU FUNCTION : $\mathrm{N}=$ ', $\mathrm{I} 4, ' \mathrm{Q}=$, , F 15.6 ,' NORD $=$, , I4)
5300 FORMAT (1X,'*** OUTPUT *,)
5500 FORMAT (1X',7X, 'X',7X,5X,6X,'SEN', 5X,6X,' CODE',5X,' ISW')
6000 FORMAT (1X,F15.6,5X,F15.6,5X, I6 ,5X, I 6)
END
(c) Output results
*** DIMTSE*
*** TNPUT *
MATHIEU FUNCTION : N= 7 Q= 5.000000 NORD= 20
*** OUTPUT *
X
1.0
1.000000
2.000000 3.000000 4.000000 . 000000
6.000000
7.000000
8.000000
9.000000

SEN CODE
0.370085
0.956161 0.815456 0.585207 -0.568524 -1.022084 -1.001135 -0.411058
0.447748 0.529804
E
0
0
0
0
0
0
0
0
0
0
10.000000

2.15 OTHER SPECIAL FUNCTIONS

2.15.1 WIXSPS, VIXSPS

Di-Log Function

(1) Function

For real numbers $X_{i}(\geq 0, i=1, \cdots, N)$, obtain values of di-log function defined as

$$
L i_{2}\left(X_{i}\right)=-\int_{0}^{X_{i}} \log |t-1| \frac{d t}{t}
$$

(2) Usage

Double precision:
CALL WIXSPS (NV,XV,YV, IERR)
Single precision:
CALL VIXSPS (NV,XV,YV, IERR)

(3) Arguments

D:Double precision real

R:Single precision real | Z:Double precision complex |
| :--- |
| C:Single precision complex |\quad I: \(\left\{\begin{array}{l}INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer\end{array}\right\}\)
(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(b) $\mathrm{XV}(\mathrm{i}) \geq 0 \quad(\mathrm{i}=1, \cdots, \mathrm{NV})$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.

(6) Notes
(a) $L i_{2}(\mathrm{XV}(\mathrm{i}))(\mathrm{i}=1, \cdots, \mathrm{NV})$ are stored in $\mathrm{YV}(\mathrm{i})$.
(b) $L i_{2}(x)$ increases monotonically in $0 \leq x<2$, reaches the peak of $\pi^{2} / 4$ at the point $x=2$. In $x>2$, $L i_{2}(x)$ decreases as the asymptotic formula

$$
L i_{2}(x)=-\frac{1}{2}(\log x)^{2}+\frac{\pi^{2}}{3}+O\left(x^{-1}\right)
$$

(c) The zero point of $L i_{2}(x)$ is the vicinity of $x=12.59517037$.
(7) Example
(a) Problem

Obtain the values of $L i_{2}\left(x_{i}\right)$ for $x_{i}=0.2 * i(i=1,2, \cdots, 10)$.
(b) Input data
$\mathrm{NV}=10$ and array XV.
(c) Main program

PROGRAM EIXSPS
EXAMPLE OF WIXSPS ***
IMPLICIT NONE
INTEGER NV
PARAMETER ($\mathrm{NV}=10$)
PARAMETER ($N V=10$
INTEGER IERR, I
REAL (8) XV (NV), YV (NV)
REAL (8) FIVE
PARAMETER
DO $\begin{aligned} 100 \mathrm{I} & =1, \mathrm{NV} \\ \mathrm{XV}(\mathrm{I}) & =\text { DBLE }(\mathrm{I}) / \mathrm{FIVE}\end{aligned}$
100 CONTINUE
$!\quad \operatorname{WRITE}(6,6000)$ NV
DO $110 \quad I=1$,NV
WRITE $(6,6010) \mathrm{I}, \mathrm{XV}(\mathrm{I})$
110 CONTINUE
CALL WIXSPS (NV, XV, YV, IERR)
WRITE $(6,6020)$ IERR
DO $120 \mathrm{I}=1$,NV
WRITE $(6,6030)$ I, YV (I)
120 CONTINUE
STOP
6000 FORMAT (/, \&
WIXSPS
INPUT
NV $=$
***', /, / /, \&
$\mathrm{NV}=,, \mathrm{I} 4, /$),
6010 FORMAT(1X, $\quad \operatorname{XV}(,, I 2, ')=,, F 10.6)$
6020 FORMAT (/ \&
$\begin{aligned} & \text { 1X,', } \\ & \text { 1X } \\ & \text { OUTPUT } \\ & \text { IERR }=\end{aligned} * *, /, /, \&$
6030 FORMAT(1X,', \quad IERR =', I5, $/$ LI2 (XV'(',I2,')) $=$, , F10.6)
END
(d) Output results
*** WIXSPS ***
** INPUT **
$N V=10$
$\mathrm{XV}(1)=0.200000$
$\mathrm{XV}(2)=0.400000$
$\mathrm{XV}(3)=0.600000$
$\mathrm{XV}(3)=0.600000$
$\operatorname{XV}(4)=0.800000$
$\operatorname{XV}(5)=1.000000$
$\mathrm{XV}(5)=1.000000$
$\mathrm{XV}(6)=1.200000$
$\mathrm{XV}(6)=1.200000$
$\mathrm{XV}(7)=1.400000$
$\mathrm{XV}(7)=1.400000$
$\mathrm{XV}(8)=1.600000$
$\operatorname{XV}(9)=1.800000$
** OUTPUT **
IERR = 0

LI2	XV(1)	$)=0.211004$
LI2	XV(2)	0.449283
LI2(XV(3)	$)=0.727586$
LI2(XV(4)	$)=1.074795$
LI2	XV (5)	1.644934
LI2(XV(6)	$)=2.129169$
LI2(XV(7)	$)=2.319073$
LI2(XV(8)	2.413131
LI2	XV (9)	$)=2.455876$
LI2 ${ }^{\text {(}}$	XV (10)	$)=2.467401$

2.15.2 WIDBEY, VIDBEY

Debye Function

(1) Function

For real values $X_{i}(\geq 0, i=1, \cdots, N)$, obtain each value of the Debye function

$$
F_{D}\left(X_{i}\right)=\frac{3}{X_{i}^{3}} \int_{0}^{X_{i}} \frac{e^{t} t^{4}}{\left(e^{t}-1\right)^{2}} d t
$$

(2) Usage

Double precision:
CALL WIDBEY (NV,XV,YV, IERR)
Single precision:
CALL VIDBEY (NV,XV,YV, IERR)
(3) Arguments

D:Double precision real \begin{tabular}{l}
Z:Double precision complex

R:Single precision real

\quad I:

C:Single precision complex
\end{tabular}\(\quad\left\{\begin{array}{l}INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	NV	I	1	Input	Number N of X_{i}
2	XV	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	NV	Input	$X_{i}(i=1, \cdots, \mathrm{NV})$
3	YV	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	NV	Output	$F_{D}\left(X_{i}\right)(i=1, \cdots, \mathrm{NV})$
4	IERR	I	1		

(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(b) $\mathrm{XV}(\mathrm{i}) \geq 0 \quad(\mathrm{i}=1, \cdots, \mathrm{NV})$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.

(6) Notes
(a) $F_{D}(\mathrm{XV}(\mathrm{i})) \quad(\mathrm{i}=1, \cdots, \mathrm{NV})$ are stored in $\mathrm{YV}(\mathrm{i})$.
(b) Debye function $F_{D}(y)$ decreases monotonically with y.
(c) $F_{D}(0)$ means $\lim _{y \rightarrow+0} F_{D}(y)$.

(7) Example

(a) Problem

Obtain the value of $F_{D}\left(x_{i}\right)$ for $x_{i}=0.2 * i(i=1,2, \cdots, 10)$.
(b) Input data

NV $=10$ and array XV.
(c) Main program

```
PROGRAM EIDBEY
! *** EXAMPLE OF WIDBEY ***
    IMPLICIT NONE
! INTEGER NV
    PARAMETER ( NV = 10 )
    INTEGER IERR, I
    REAL (8) XV (NV), YV (NV)
    REAL (8) FIVE
    PARAMETER ( FIVE = 5.DO )
    DO \(100 \mathrm{I}=1\), NV
    100 CONTINUE
    WRITE \((6,6000)\) NV
    DO \(110 I=1\), NV
    10 CONTINUE
CALL WIDBEY( NV, XV, YV, IERR
WRITE \((6,6020)\) IERR
DO \(120 \quad I=1\),NV
    WRITE 6,6030 ) I, YV(I)
    120 CONTINUE
!
    STOP
    6000 FORMAT(/,\&
                1X, '***
```



```
                1X,', \({ }^{* *}\) IN
\(6010 \operatorname{FORMAT}\left(1 X, \quad \operatorname{XV}\left(', I \prime^{\prime}, '\right)={ }^{\prime}, F 10.6\right)\)
6020 FORMAT ( 1 , \& , , ** OUTPUT \(* *, /, /, \&\)
```


(d) Output results
*** WIDBEY ***
** INPUT **
$\mathrm{NV}=10$
$X V(1)=0.200000$
$X V(2)=0.20000$
$X V(2)=0.400000$
$X V(3)=0.600000$
$\operatorname{XV}(4)=0.800000$
$X V(5)=1.000000$
$\operatorname{XV}(6)=1.200000$
$\operatorname{XV}(7)=1.400000$
$X V(8)=1.600000$
$X V(9)=1.800000$
$\mathrm{XV}(10)=2.000000$
** OUTPUT **
IERR $=0$

	XV (1))	
(XV(2)		0.992045
D	XV (3)		0.982229
D	XV (4))=	0.968717
(XV (5)	$)=$	0.951732
FD	XV (6)		0.931545
(XV (7)		0.908467
D	XV (8)	$=$	0.882842
FD	XV (9)		0.855031
FD	XV (10)	$=$	0.825408

2.15.3 WINPLG, VINPLG

Spherical Harmonic Function

(1) Function

For given real numbers $X_{i}\left(\left|X_{i}\right| \leq 1 ; i=1, \cdots, N\right)$, this program obtains spherical harmonic functional systems (order $m=0, \cdots, n$) of the degree n which are normalized and defined as

$$
P_{n}^{* m}\left(X_{i}\right)=\frac{1}{4 \pi \sqrt{-1}^{m}} A_{n, m} \int_{-\pi}^{\pi}\left(X_{i}+\sqrt{-1} \sqrt{1-X_{i}^{2}} \cos \phi\right)^{n} \cos (m \phi) d \phi,
$$

where normalize coefficients $A_{n, m}$ are

$$
A_{n, 0}=\sqrt{\frac{2 n+1}{\pi}} ; A_{n, m}=\sqrt{\frac{2(2 n+1)(n-m)!(n+m)!}{\pi(n!)^{2}}}(m=1, \cdots, n) .
$$

(2) Usage

Double precision:

CALL WINPLG (NV,XV,N,PLG,NVL,WORK, IERR)

Single precision:
CALL VINPLG (NV,XV,N,PLG,NVL,WORK, IERR)
(3) Arguments

D:Double precision real Z:Double precision complex R:Single precision real \quad C:Single precision complex					$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \mathrm{bit} \text { Integer } \\ \text { INTEGER }(8) \text { as for } 64 \mathrm{bit} \text { Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	NV	I	1	Input	Number N of X_{i}
2	XV	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	NV	Input	$X_{i}(i=1, \cdots, \mathrm{NV})$
3	N	I	1	Input	Degree n
4	PLG	$\left\{\begin{array}{l}\text { D } \\ \text { R }\end{array}\right\}$	See Contents	Output	$\begin{aligned} & \hline \text { Spherical harmonic } P_{n}^{* m}\left(X_{i}\right) \\ & (i=1, \cdots, \mathrm{NV} ; m=0, \cdots, \mathrm{~N}) \\ & \text { (See Note (a)) } \\ & \text { Size: NVL, } \mathrm{N}+1 \end{aligned}$
5	NVL	I	1	Input	Adjustable dimension of array PLG
6	WORK	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	See Contents	work	Work area Size: $3 \times \mathrm{NV}+\mathrm{N}+1$
7	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $1 \leq \mathrm{NV} \leq \mathrm{NVL}$
(b) $\mathrm{N} \geq 1$
(c) $|\mathrm{XV}(\mathrm{i})| \leq 1 \quad(\mathrm{i}=1, \cdots, \mathrm{NV})$

(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.
3100	Restriction (c) was not satisfied.	

(6) Notes
(a) $P_{n}^{* \mathrm{~m}}(\mathrm{XV}(\mathrm{i}))$ are stored in $\mathrm{PLG}(\mathrm{i}, \mathrm{m}+1)$ for $\mathrm{i}=1, \cdots, \mathrm{NV} ; \mathrm{m}=0, \cdots, \mathrm{~N}$.
(b) When $m=0, \cdots, n$ for a fixed n, it is better to use this subroutine than to use 2.12.1 $\left\{\begin{array}{l}\text { DILEG1 } \\ \text { RILEG1 }\end{array}\right\}$.
(c) If two integers n_{1} and n_{2} satisfy $n_{1}, n_{2} \geq m$ for a non-negative integer m, the following integration relation is satisfied.

$$
\int_{-1}^{1} P_{n_{1}}^{* m}(x) P_{n_{2}}^{* m}(x) d x=\frac{\delta_{n 1, n 2}}{\left(1+\delta_{0, m}\right) \pi}
$$

If the normalized spherical harmonic functions $P_{n}^{* m}(\cos \theta) \cos (m \phi)(m=0, \cdots, n)$ and $P_{n}^{* m}(\cos \theta) \sin (m \phi)$ ($m=1, \cdots, n$) are obtained for $n=1,2, \cdots$, then these functions consist the orthonormal basis for surface integration on a unit spherical surface $\int_{-\pi \leq \phi \leq \pi ; 0 \leq \theta \leq \pi} \sin \theta d \theta d \phi$.
(d) The following relation holds:

$$
\frac{2 n+1}{4 \pi} P_{n}\left(x y+\sqrt{\left(1-x^{2}\right)\left(1-y^{2}\right)} \cos \phi\right)=\sum_{m=0}^{n} P_{n}^{* m}(x) P_{n}^{* m}(y) \cos (m \phi)(-1 \leq x \leq 1,-1 \leq y \leq 1) .
$$

(7) Example

(a) Problem

Obtain spherical harmonic functional values $P_{n}^{* m}\left(x_{i}\right)(m=0, \cdots, n)$ for $x_{1}=0.57735026919$ and $x_{2}=-0.57735026919$ of the degree $n=10$.
(b) Input data
$\mathrm{NV}=2, \mathrm{NVL}=2$, array XV and $\mathrm{N}=10$.
(c) Main program

PROGRAM EINPLG
! *** EXAMPLE OF WINPLG *** IMPLICIT NONE
! INTEGER NV,N,NVL
INTEGER NV ,N N NVL,$N=10$, NVL $=2$)
INTEGER IERR,I
REAL (8) XV (NV), PLG (NVL , N+1) , WORK ($3 * N V+N+1$)
$!$
$X V(1)=0.57735026919 D 0$
$X V(2)=-X V(1)$
$!\quad \operatorname{WRITE}(6,6000)$ NV,N,NVI
WRITE $(6,6010) \mathrm{XV}(1), \mathrm{XV}(2)$
! CALL WINPLG(NV, XV, N, PLG, NVL, WORK, IERR)
$\operatorname{WRITE}(6,6020)$ IERR
DO $100 \mathrm{I}=0, \mathrm{~N}$
WRITE $(6,6030) \mathrm{N}, \mathrm{I}, \operatorname{PLG}(1, \mathrm{I}+1), \operatorname{PLG}(2, \mathrm{I}+1)$
100 CONTINUE
STOP
6000 FORMAT (
1X,'*** WINPLG $* * * ', /, /, \&$

6020 FORMAT (/, \&

6030 FORMAT ($1 \mathrm{X}, 7 \mathrm{X}, \mathrm{I} 2$, , TH DEGREE HARMONIC ORDER ', \& END
(d) Output results
*** WINPLG ***
** INPUT **
$\mathrm{NV}=2 \mathrm{~N}=10 \quad \mathrm{NVL}=2$
$\mathrm{XV}=0.577350 \quad-0.577350$
** OUTPUT **
IERR $=0$

2.15.4 WIXSLA, VIXSLA

Langevin Function

(1) Function

For $x=X_{i}$, calculates the value of the Langevin function

$$
L(x)=\operatorname{coth}(x)-\frac{1}{x}
$$

(2) Usage

Double precision:

> CALL WIXSLA (NV, XI, XO, IERR)

Single precision:
CALL VIXSLA (NV, XI, XO, IERR)
(3) Arguments
$\begin{array}{l}\text { D:Double precision real } \begin{array}{l}\text { Z:Double precision complex } \\ \text { R:Single precision real }\end{array} \quad \text { C:Single precision complex }\end{array}$ I: $\left.\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}$
(4) Restrictions
(a) $\mathrm{NV} \geq 1$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.

(6) Notes
(a) If $L(x)$ is calculated directly according to its definition, precision will be bad at $x \simeq 0$. Therefore, this subroutine should be used.
(7) Example
(a) Problem

Obtain $L(x)$ for $x=0.0,0.1, \cdots, 0.9$.
(b) Main program

PROGRAM EIXSLA
IMPLICIT REAL (8) (A-H,O-Z)
PARAMETER (NV=10)
REAL (8) XI (NV) , XO (NV)
PARAMETER (CNAME='W'IXSLA', CFNC=, L')
!
DNV=NV
DO $1000 \quad \mathrm{I}=1$, NV
$I)=(I-1) / D N V$
1000 CONTINUE
! CALL WIXSLA (NV, XI, XO, IERR)
WRITE $(6,6000)$ CNAME
WRITE $(6,6100)$
DO 2000 I=1,NV
WRITE $(6,6200) \mathrm{I}, \mathrm{XI}(\mathrm{I})$
2000 CONTINUE
WRITE $(6,6300)$
WRITE $(6,6400)$ IERR
DO $3000 \mathrm{I}=1$,NV WRITE $(6,6500)$ CFNC,XI(I), XO(I)
3000 CONTINUE
STOP
6000 FORMAT (1X,
6100 FORMAT (1X, ,*** ,A6,' *'
6200 FORMAT (1X,', XI $(,, I 2, ’)=,, F 10.6)$
6200 FORMAT (1X,' 'XI (',I2,' $=$ ',, F10
6400 FORMAT (1X, IERR=, I5)
6500 FORMAT (1X, A6,'(', 'F10.6,') = ', F10.6)
END
(c) Output results

2.15.5 WIXZTA, VIXZTA

Hurwitz Zeta Function

(1) Function

For $a>0$ ands $=X_{i} \geq 0$, obtain the value of Hurwitz zeta function subtracted by $(s-1)^{-1}$

$$
\zeta(s, a)-(s-1)^{-1}=\frac{1}{\Gamma(s)}\left(\int_{1}^{\infty} \frac{e^{-a t}}{1-e^{-t}} t^{s-1} d t+\int_{0}^{1}\left(\frac{e^{-a t}}{1-e^{-t}}-\frac{1}{t}\right) t^{s-1} d t+(s-1)^{-1}\right)-(s-1)^{-1}
$$

where the right-hand side is an example of the analytical continuation of

$$
\sum_{n=0}^{\infty}(n+a)^{-s}-(s-1)^{-1}
$$

$(\Re(s)>1)$ to the region $\Re(s)>0$.
(2) Usage

Double precision:
CALL WIXZTA (NV, X, A, Y, IERR)
Single precision:
CALL VIXZTA (NV, X, A, Y, IERR)
(3) Arguments
D:Double precision real

R:Single precision real | Z:Double precision complex |
| :--- |
| C:Single precision complex |\quad I: \(\left\{\begin{array}{l}INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	NV	I	1	Input	Number of inputs
2	X	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	NV	Input	Value of variable s
3	A	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Input	Parameter a
4	Y	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	NV	Output	Value of Hurwitz zeta function $\zeta(s, a)-1 /(s-1)$
5	IERR	I	1		

(4) Restrictions

(a) $\mathrm{A}>0.0$
(b) $\mathrm{X}(\mathrm{i}) \geq 0.0$
(c) $\mathrm{NV}>0$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a), (b) or (c) was not satisfied.	Processing is aborted.

(6) Notes
(a) $\zeta(s, a)$ can be continued analytically to a rational function of the complex argument s, and has only pole $s=1$. This subroutine does not calculates values of this function itself, but it calculates values of this function subtracted by the function $1 /(s-1)$. Therefore, when $\mathrm{X}(\mathrm{i})=1,-\mathrm{Y}(\mathrm{i})$ equals di-gammafunction $\psi(a)$.
(b) Poly-gamma-function can be given as the values $\mathrm{Y}(\mathrm{i})$ for $\mathrm{X}(\mathrm{i})=2,3, \cdots$ multiplied by a certain constant.
(7) Example
(a) Problem

Evaluate $\zeta(x, a)-(x-1)^{-1}$ for $x=0.5 \mathrm{i}(\mathrm{i}=1, \cdots, 10)$ and $a=1$.
(b) Main program

PROGRAM EIXZTA
REAL (8) X (10), Y(10) , A
INTEGER NV,IERR,I ,
! $\mathrm{NV}=10$
DO $1000 \mathrm{I}=1,10$
1000 CONTINUE
A=1.D0
CALL WIXZTA (NV, X, A, Y, IERR)
WRITE $(6,5900)$
WRITE $(6,6000) \quad X(1), A$
DO $2000 \mathrm{I}=2$, NV X (1),
WRITE (6,6050) X (I)
2000
CONTINUE
$\operatorname{WRITE}(6,6060)$
WRITE $(6,6060)$
WRITE $(6,6100)$ IERR
DO $3000 \mathrm{I}=1$, NV
IF (X (I).EQ.1.DO) THEN
WRITE $(6,6200) \quad X(I), X(I), Y(I)$
ELSE
ENDIF
3000 CONTINUE
STO
5900 FORMAT (1X,'*** WIXZTA $* * * ', /, /)$

6060 FORMAT (1X,/,/,1X,'*** OUTPUT ***',
6100 FORMAT (1X,'OUTPUT VALUES : IERR= ','I5,/,/)
6200 FORMAT (1X,', ZETA (', F10.7, , ,1) $-1 /(,, F 10.7, '-1)=,, F 10.7, \&$
6300 FORMAT (1X,',ZETA (', F10.7,', 1) $-1 /(,, F 10.7, '-1)=,, F 10.7, \&$
END
(c) Output results
*** WIXZTA ***
*** INPUT ***
$X=0.5000000 \quad A=1.0000000$
$X=1.0000000$
$X=1.5000000$
$X=2.0000000$
$X=2.5000000$
$X=3.0000000$
$X=3.5000000$
$X=4.0000000$
$X=4.5000000$
$x=5.0000000$
*** OUTPUT ***
OUTPUT VALUES : IERR= 0

| ZETA $(0.5000000,1)$ | $-1 /(0.5000000-1)=$ | 0.5396455 | ZETA $(0.5000000,1)=$ | -1.4603545 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ZETA $(1.0000000,1)$ | $-1 /(1.0000000-1)=$ | 0.5772157 | EULER CONSTANT | | |
| ZETA $(1.5000000,1)$ | $-1 /(1.5000000-1)=$ | 0.6123753 | ZETA $(1.5000000,1)=$ | 2.6123753 | |
| ZETA $(2.0000000,1)$ | $-1 /(2.0000000-1)=$ | 0.6449341 | ZETA $(2.0000000,1)=$ | 1.6449341 | |
| ZETA $(2.5000000,1)$ | $-1 /(2.5000000$ | $-1)=$ | 0.6748206 | ZETA $(2.5000000,1)=$ | 1.3414873 |
| ZETA $(3.0000000,1)$ | $-1 /(3.0000000$ | $-1)=$ | 0.7020569 | ZETA $(3.0000000,1)=$ | 1.2020569 |
| ZETA $(3.5000000,1)$ | $-1 /(3.5000000$ | $-1)=$ | 0.7267339 | ZETA $(3.5000000,1)=$ | 1.1267339 |
| ZETA $(4.0000000,1)$ | $-1 /(4.0000000$ | $-1)=$ | 0.7489899 | ZETA $(4.0000000,1)=$ | 1.0823232 |
| ZETA $(4.5000000,1)$ | $-1 /(4.5000000-1)=$ | 0.7689932 | ZETA $(4.5000000,1)=$ | 1.0547075 | |
| ZETA $(5.0000000,1)-1 /(5.0000000-1)=$ | 0.7869278 | ZETA $(5.0000000,1)=$ | 1.0369278 | | |

2.15.6 DIXEPS, RIXEPS

Zeta Function of the Positive Definite Quadratic Form $x^{2}+a y^{2}$

(1) Function

For $s>-1$, obtain an analytical continuation of the zeta function subtracted by the function to cancel its pole for a positive quadratic form $x^{2}+a y^{2}$

$$
f(s ; a) \equiv \sum_{(m, n) \in Z^{2},(m, n) \neq(0,0)}\left(m^{2}+a n^{2}\right)^{-s}-\frac{\pi^{s} a^{-s / 2}}{\Gamma(s)(s-1)}(s>1)
$$

(2) Usage

Double precision:
CALL DIXEPS (S, A, Y, IERR)
Single precision:
CALL RIXEPS (S, A, Y, IERR)
(3) Arguments
$\left.\begin{array}{l}\text { D:Double precision real } \begin{array}{l}\text { Z:Double precision complex } \\ \text { R:Single precision real }\end{array} \quad \text { C:Single precision complex }\end{array} \quad \begin{array}{|c|c|c|c|c|}\hline \text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}$
(4) Restrictions
(a) $\mathrm{S}>-1$
(b) $\mathrm{A}>0$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.

(6) Notes
(a) The zeta function for positive quadratic form $x^{2}+a y^{2}$ is a rational function which has only single pole at the point $s=1$. This subroutine does not calculates values of this function itself, but it calculates values of this function subtracted by the function $\frac{\pi^{s} a^{-s / 2}}{\Gamma(s)(s-1)}$.
(b) All integer pairs (m, n) without $m=n=0$.

(7) Example

(a) Problem

Obtain value of zeta-function of the form $x^{2}+a y^{2}$ for $s=3.0, a=1.0$ and check this value by another method using Hurwitz zeta function.
(b) Input data
$\mathrm{S}=3.0$ and $\mathrm{A}=1.0$.
(c) Main program

PROGRAM BIXEPS
! *** EXAMPLE OF DIXEPS $* * *$ IMPLICIT NONE
REAL (8) S, Y, A , Z , PAI3, Z1, Z2, Z3, F1, F2 PARAMETER (PAI3 $=31.006276680299820175476315067101 \mathrm{DO} / 4 . \mathrm{DO}$) INTEGER IERR

```
S = 3.DO
F1 = 0.25D
F2 = 0.75D0
```

$!$
WRITE $(6,6000) \mathrm{S}, \mathrm{A}$
! CALL DIXEPS (S, A, Y, IERR)
! $\operatorname{WRITE}(6,6010)$ IERR
WRITE $(6,6020)$
$\mathrm{Z}=\mathrm{Y}+\mathrm{PAI} 3$
CALL DIXZTA (S, A, Z1, IERR)
IF (IERR.NE. 0) WRITE $(6,6030)$
CALL DIXZTA (S, F1, Z2, IERR)
IF (IERR.NE. 0) WRITE $(6,6030)$
CALL DIXZTA (S, F2, Z3, IERR)
IF (IERR.NE.0) WRITE (6, 6030)
$\mathrm{Z} 2=(\mathrm{Z} 2-\mathrm{Z} 3) * \mathrm{~F} 1 * * \mathrm{~S}$
$\mathrm{Z} 1=$
$\mathrm{Z} 1 * \mathrm{Z} 2 / \mathrm{F} 1$
$\mathrm{Z} 1=\mathrm{Z} 1 * \mathrm{Z} 2 / \mathrm{F} 1$
WRITE $(6,6040) \mathrm{Z}, \mathrm{Z} 1$
$!$
STOP
6000 FORMAT (/,\& $1 \mathrm{X},{ }^{*}, * *$ DIXEPS $* * *, /$,/, \&
1X,' ** INPUT **',/',\&
1X,' $\quad S=, F 10.7, \quad, \mathrm{~A}=, \mathrm{F} 10.7, /)$
6010 FORMAT (/, \&

6020 FORMAT (1X,' \quad IERR $=$ ', I5,', $=$, F10.7,/)
6030 FORMAT (1X,' $\quad * *$ ERROR IN'DIXZTA $* *, /$)
6040 FORMAT (1X,' ZETA FUNCTION FOR $M * M+N * N=Y+\operatorname{POLER}=$, , \&
$1 \mathrm{X}, \stackrel{\mathrm{F} 10.7, /, \&}{\mathrm{~F} 10.7, /)} \mathrm{ANOTHER}$ OBTAINING $4 * \mathrm{ZETA}(\mathrm{S}) * \mathrm{~L}(\mathrm{~S}, \mathrm{KAI} 4)=$, \&
END
(d) Output results

```
*** DIXEPS ***
    ** INPUT **
        S=3.0000000 A= 1.0000000
    ** OUTPUT **
        IERR = 0
        Y = -3.0926556
        ZETA FUNCTION FOR M M M +N*N = Y + POLER = 4.6589136
        ANOTHER OBTAINING 4*ZETA (S)*L(S,KAI4) = 4.6589136
```


Chapter 3

SORTING AND RANKING

3.1 INTRODUCTION

This chapter describes the subroutines for sorting, ranking, and merging data. This library provides subroutines having the following functions.
(1) Sorting a list of data
(2) Sorting a list of pairwise data
(3) Ranking of a list of data
(4) Top-N extraction
(5) Merging two sorted lists of data
(6) Merging two sorted lists of pairwise data

3.1.1 Algorithms Used

3.1.1.1 Sorting

The algorithms for sorting in ascending order are below. The algorithms for sorting in descending order, which differ only in terms of the relative magnitudes, are similar.
(1) Shell sort
(1) Set the spacing h.
(2) Take all subsequences of spacing h from the data sequence.
(3) Compare adjacent pairs within each subsequence to arrange them in ascending order. If they are in the reverse order, exchange their positions and confirm again the relative order with the preceding data. If they are again in the reverse order, exchange the positions and work back toward the beginning.
(4) Decrease the spacing h and repeat steps (2) and (3). When the processing for $h=1$ ends, sorting is completed.
(2) Heap sort
(1) Organize the assigned data into a heap tree (well-ordered binary tree in which parents have value greater than or equal to those of children).
(2) Exchange the root and the data at the very end of the tree.
(3) Let the portion excluding the very last data be A.
(4) Consider A to be a new tree, and organize this into a heap tree again.
(5) Repeat steps (2) to (4). When the remaining data is only the root, sorting is completed.
(3) Quick sort
(1) Count the number of data values within the sort interval.
(2) Do the following depending on the number of data values.

- if the number of data values is less than or equal to one:

Do nothing.

- if the number of data values is 2 :
if they are in ascending order, exchange their positions.
- if the number of data values is greater than or equal to three:
(1) Select one pivot value from within the sort interval.
(2) Divide the data within the interval into two intervals consisting of values greater than the pivot value and values less than the pivot value.
(3) Repeat steps (1) and (2). When the number of data values in all data intervals is less than or equal to two, sorting is completed.
(4) Merge sort
(1) Count the number of data values within the sort interval.
(2) Do the following depending on the number of data values.
- If the number of data values is one:

Do nothing.

- If the number of data values is two :
if they are in ascending order, exchange their positions.
- If the number of data values is greater than or equal to three:
(1) Divide the data within the interval in half into the top half and bottom half.
(2) Recursively merge sort the top half. Recursively merge sort the bottom half.
(3) Merge the sorted top half and bottom half.

3.1.1.2 Ranking of a list of data

Given n data values, this function returns the ascending rank number corresponding to each data value and the number of data values having the same rank.

3.1.1.3 Top-N extraction

Given n data values $a_{i}(i=1,2, \cdots, n)$, this function obtains the first m data values $a_{j}\left(j=j_{1}, j_{2}, \cdots, j_{m}\right)(m<n)$ of the data sequence consisting of the original data values rearranged in descending or ascending order.

3.1.1.4 Merging two sorted lists of data

This function merges two data sequences $a_{i} \quad(i=1,2, \cdots, n)$ and $b_{j} \quad(j=1,2, \cdots, m)$, which had each been sorted into ascending order, to obtain the data sequence $c_{k} \quad(k=1,2, \cdots, \ell)$, where, c_{k} satisfies the following relationship.

$$
c_{1} \leq c_{2} \leq \cdots \leq c_{\ell}
$$

3.1.1.5 Merging two sorted list of pairwise data

This function merges the set of data $\left(a_{i}, b_{i}\right) \quad(i=1,2, \cdots, n)$, which had been sorted into ascending order of a_{i}, and the set of data $\left(c_{j}, d_{j}\right) \quad(j=1,2, \cdots, m)$, which had been sorted into ascending order of c_{j}, to obtain the set of data $\left(e_{k}, f_{k}\right) \quad(k=1,2, \cdots, \ell)$, where, e_{k} satisfies the following relationship.

$$
e_{1} \leq e_{2} \leq \cdots \leq e_{\ell}
$$

If a second order sort was specified, the function determines $k=1,2, \cdots, \ell$ so that $f_{k} \leq f_{k+1}$ for any k for which $e_{k}=e_{k+1}$ is satisfied.

3.1.2 Reference Bibliography

(1) Niklaus Wirth, "ALGORITHMS + DATA STRUCTURES = PROGRAMS", Prentice-Hall Inc. (1976).
(2) Hiroto Namihira,"Sorting and Searching", CQ Publishing Co. Ltd.
(3) Yoshiyuki Kondo, "Algorithms and Data Structures", Softbank Publishing Inc.

3.2 SORTING

3.2.1 DSSTA1, RSSTA1
 Sorting a List of Data

(1) Function

Given n data values $a_{i_{k}}(k=1,2, \cdots, n)$, the DSSTA1 or RSSTA1 subroutine obtain the data sequence $a_{j_{k}}(k=1,2, \cdots, n)$ consisting of the original data values a_{i} rearranged in ascending or descending order. Here, a_{j} satisfies the following relationship.

$$
\text { For ascending order : } a_{j_{1}} \leq a_{j_{2}} \leq \cdots \leq a_{j_{n}}
$$

For descending order : $a_{j_{1}} \geq a_{j_{2}} \geq \cdots \geq a_{j_{n}}$
(2) Usage

Double precision:
CALL DSSTA1 (A,N,ISW,WK,IWK, IERR)
Single precision:
CALL RSSTA1 (A,N,ISW,WK,IWK, IERR)
(3) Arguments

D:Double precision real	Z:Double precision complex
R:Single precision real	C:Single precision complex

INTEGER(8) as for 64 bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	A	\{D	N	Input	Data to be sorted a_{i}
		R $\}$		Output	Sorted data a_{j}
2	N	I	1	Input	Size of array A
3	ISW	I	1	Input	Sort method selection switch (See Note (a))
4	WK	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	See Contents	Work	Work area Size: N (When ISW=4,-4) 1 (Otherwise)
5	IWK	I	See Contents	Work	Work area Size: $\begin{array}{ll} 2 \times \mathrm{N} & (\text { When ISW }=3,-3) \\ 1 & \text { (Otherwise) } \end{array}$
6	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{N} \geq 1$
(b) $\mathrm{ISW}=1,2,3,4,-1,-2,-3,-4$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.
3100	Restriction (b) was not satisfied.	

(6) Notes
(a) The sort methods to be selected by ISW are as follows.

ISW	Sort Method	ISW	Sort Method
1	Shell sort (ascending order)	-1	Shell sort (descending order)
2	Heap sort (ascending order)	-2	Heap sort (descending order)
3	Quick sort (ascending order)	-3	Quick sort (descending order)
4	Merge sort (ascending order)	-4	Merge sort (descending order)

The user should select an appropriate sort method according to the properties of the input data. The features of each sort method are shown below.

- Shell sort

The average of the amount of calculation is on the order of $0\left(n^{1.5}\right)$. A fast, stable sort is performed for any kind of data. Sorting is faster if part of the data sequence has been sorted.
Retention of the ordinal relationships among data having the same value is not guaranteed between before and after sorting.
No work area is necessary.

- Heap sort

Although the amount of calculation is on the order of $O(n \log n)$, the constant term portion is large. The sort time does not change much according to the properties of the input data.
Retention of the ordinal relationships among data having the same value is not guaranteed between before and after sorting.
No work area is necessary.

- Quick sort

Although the average of the amount of calculation is on the order of $O(n \log n)$, this is an extremely inefficient sort for data having certain types of regularities such as data that has been partially sorted to begin with. This is the fastest sort method for random data.
Retention of the ordinal relationships among data having the same value is not guaranteed between before and after sorting.

- Merge sort

Although the amount of calculation is on the order of $O(n \log n)$, the constant term portion is large. The sort time does not change much according to the properties of the input data.
The ordinal relationships before sorting among data having the same value is retained after sorting.

(7) Example

(a) Problem

Sort the following data in ascending order by using a shell sort.
$\mathrm{A}(1)=5.0$
$\mathrm{A}(2)=4.0$
$\mathrm{A}(3)=9.0$
$\mathrm{A}(4)=6.0$
$\mathrm{A}(5)=2.0$
$\mathrm{A}(6)=5.0$
(b) Input data

Array A, N=6 and ISW=1.
(c) Main program

PROGRAM BSSTA1
! *** EXAMPLE OF DSSTA1 ***
IMPLICIT NONE
! INTEGER NA
PARAMETER ($\mathrm{NA}=100$)
INTEGER $N, I S W, I W K(2 * N A), I E R R, I$
REAL (8) A(NA), WK (NA)
! DATA SET
DATA (A (I) , I=1,6) /5.0D0,4.0D0,9.0D0,6.0D0,2.0DO,5.0D0/
N
N
$\mathrm{ISW}=6$
! WRITE INPUT DATA
$\operatorname{WRITE}(6,6000)$ ISW, N
WRITE $(6,6000)$
DO $110 \quad \mathrm{I}=1, \mathrm{~N}$
WRITE $(6,6010)$ I,A(I)
110 CONTINUE
$!$ SORT
SORT
CALL DSSTA1 (A , N , ISW , WK , IWK , IERR)
WRITE OUTPUT DATA
WRITE $(6,6020)$ IERR
IF (IERR. LT. 3000) THEN
DO $120 \mathrm{I}=1, \mathrm{~N}$ WRITE $(6,6010)$ I,A(I)
120 CONTINUE
ENDIF
STOP
6000 FORMAT (/,\& 1X,', ***

DSSTA1 ***',/,/,\&
DSSTA

6010 FORMAT (1X,

END
(d) Output results
*** DSSTA1 ***
** INPUT **
$\begin{array}{lll}\text { ISW } & = & 1 \\ \mathrm{~N} & = & 6\end{array}$
$A(1)=5.0$
$A(2)=4.0$
$A(3)=9.0$
$A(3)=9.0$
$A(4)=6.0$
$A(5)=2.0$
$A(6)=5.0$
** OUTPUT **
IERR $=0$
$A(1)=2.0$
$A(2)=4.0$
$A(2)=4.0$
$A(3)=5.0$
$A(4)=5.0$
$A(4)=5.0$
$A(5)=6.0$
$A(5)=6.0$
$A(6)=9.0$

3.2.2 DSSTA2, RSSTA2

Sorting a List of Pairwise Data

(1) Function

Given two sets of n data values $a_{i_{k}}(k=1,2, \cdots, n), b_{i_{k}}(k=1,2, \cdots, n)$, this subroutine obtains the data sequence $a_{j_{k}}(k=1,2, \cdots, n)$ consisting of the original a_{i} data values rearranged in ascending or ascending order and the data sequence $b_{j_{k}}(k=1,2, \cdots, n)$ corresponding to it.
Here, a_{j} satisfies the following relationship.

$$
\text { For ascending order : } a_{j_{1}} \leq a_{j_{2}} \leq \cdots \leq a_{j_{n}}
$$

$$
\text { For descending order : } a_{j_{1}} \geq a_{j_{2}} \geq \cdots \geq a_{j_{n}}
$$

If a second order sort is specified, the subroutine determines $j=j_{1}, j_{2}, \cdots, j_{n}$ so that the following relationship is satisfied for any k for which $a_{j_{k}}=a_{j_{k+1}}$ is satisfied.

$$
\begin{aligned}
& \text { For ascending order : } b_{j_{k}} \leq b_{j_{k+1}} \\
& \text { For descending order : } b_{j_{k}} \geq b_{j_{k+1}}
\end{aligned}
$$

(2) Usage

Double precision:
CALL DSSTA2 (A,N,B,ISW1,ISW2,WK,IWK, IERR)
Single precision:
CALL RSSTA2 (A,N,B,ISW1,ISW2,WK,IWK, IERR)

(3) Arguments

$\left.\begin{array}{l}\text { D:Double precision real } \begin{array}{l}\text { Z:Double precision complex } \\ \text { R:Single precision real }\end{array} \quad \text { C:Single precision complex }\end{array} \quad \begin{array}{|c|c|c|c|l|}\hline \text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}$
(4) Restrictions
(a) $\mathrm{N} \geq 1$
(b) $\mathrm{ISW} 1=1,2,3,4,-1,-2,-3,-4$
(c) $\mathrm{ISW} 2=0$ or 1
(5) Error indicator

IERR value	Meaning	
0	Normal termination.	Processing
3000	Restriction (a) was not satisfied.	Processing is aborted.
3100	Restriction (b) was not satisfied.	
3200	Restriction (c) was not satisfied.	

(6) Notes

(a) The sort methods to be selected by ISW1 are as follows.

ISW1	Sort Method	ISW1	Sort Method
1	Shell sort (ascending order)	-1	Shell sort (descending order)
2	Heap sort (ascending order)	-2	Heap sort (descending order)
3	Quick sort (ascending order)	-3	Quick sort (descending order)
4	Merge sort (ascending order)	-4	Merge sort (descending order)

The user should select an appropriate sort method according to the properties of the input data. The features of each sort method are shown below.

- Shell sort

The average of the amount of calculation is on the order of $O\left(n^{1.5}\right)$. A fast, stable sort is performed for any kind of data. Sorting is faster if part of the data sequence has been sorted.
It is not guaranteed that ordinal relations among plural values of the second set having the same value of the first set keep unchanged between before and after sorting.
No work area is necessary.

- Heap sort

Although the amount of calculation is on the order of $O(n \log n)$, the constant term portion is large.
The sort time does not change much according to the properties of the input data.
It is not guaranteed that ordinal relations among plural values of the second set having the same value of the first set keep unchanged between before and after sorting.
No work area is necessary.

- Quick sort

Although the average of the amount of calculation is on the order of $O(n \log n)$, this is an extremely inefficient sort for data having certain types of regularities such as data that has been partially sorted to begin with. This is the fastest sort method for random data.
It is not guaranteed that ordinal relations among plural values of the second set having the same value of the first set keep unchanged between before and after sorting.

- Merge sort

Although the amount of calculation is on the order of $O(n \log n)$, the constant term portion is large. The sort time does not change much according to the properties of the input data.
The ordinal relationships before sorting among data having the same value is retained after sorting.
(7) Example
(a) Problem

Sort the following data for A in ascending order by using a shell sort and rearrange the corresponding data for B according to the sorted data for A . Also perform a second order sort.
$\mathrm{A}(1)=5.0, \mathrm{~B}(1)=3.0$
$\mathrm{A}(2)=4.0, \mathrm{~B}(2)=4.0$
$\mathrm{A}(3)=9.0, \mathrm{~B}(3)=2.0$
$\mathrm{A}(4)=6.0, \mathrm{~B}(4)=3.0$
$\mathrm{A}(5)=2.0, \mathrm{~B}(5)=8.0$
$\mathrm{A}(6)=5.0, \mathrm{~B}(6)=1.0$
(b) Input data

Arrays A and $\mathrm{B}, \mathrm{N}=6, \mathrm{ISW} 1=1$ and $\mathrm{ISW} 2=1$.
(c) Main program

PROGRAM BSSTA2
$!* * *$ EXAMPLE OF DSSTA2 $2 * *$ IMPLICIT NONE
$!$
INTEGER NA
PARAMETER (NA = 100)
INTEGER N,ISW1, ISW2, IWK ($2 * N A$), IERR , I
REAL (8) A (NA) , B (NA), WK ($2 * N A$)
! DATA SET
DATA (A (I) , I=1,6) /5.0DO,4.0D0,9.0D0,6.0D0,2.0D0,5.0DO/ DATA (B (I) , I=1,6) /3.0D0,4.0D0,2.0D0,3.0D0,8.0D0,1.0D0/
$\begin{array}{ll}\mathrm{N} & =6 \\ \text { ISW1 } & =1\end{array}$
ISW1 $=1$
ISW2 $=1$
$!$ WRITE INPUT DATA
WRITE (6,6000) ISW1, ISW2, N
DO $110 \mathrm{I}=1, \mathrm{~N}$
WRITE $(6,6010) \quad \mathrm{I}, \mathrm{A}(\mathrm{I}), \mathrm{I}, \mathrm{B}(\mathrm{I})$
10 CONTINUE
!
SORT
CALL DSSTA2 (A , N , B , ISW1, ISW2, WK , IWK , IERR)
WRITE OUTPUT DATA
WRITE $(6,6020)$ IERR
IF (IERR. LT. 3000) THEN
DO $120 \mathrm{I}=1$,N
WRITE $(6,6010) \mathrm{I}, \mathrm{A}(\mathrm{I}), \mathrm{I}, \mathrm{B}(\mathrm{I})$
120 CONTINUE
ENDIF
STOP
6000 FORMAT (/, \&
X,'*** DSSTA2 $* * * ', /, /, \&$
1X,', **
INPUT **',l,l,\&
1X,',
1X,', $\quad \mathrm{N}^{2}=,, I 6, /, \&$

FORMAT ($/, \&, \quad * * \operatorname{OUTPUT}, * *,, /, /, \& ~$
END
(d) Output results
*** DSSTA2 ***
** INPUT **
$\begin{array}{lll}\text { ISW1 } & = & 1 \\ \text { ISW2 } & = & 1 \\ \mathrm{~N} & = & 6\end{array}$

$\mathrm{A}(1)=5.0$	$\mathrm{~B}(1)=3.0$
$\mathrm{~A}(2)=4.0$	$\mathrm{~B}(2)=4.0$
$\mathrm{~A}(3)=9.0$	$\mathrm{~B}(3)=2.0$
$\mathrm{~A}(4)=6.0$	$\mathrm{~B}(4)=3.0$
$\mathrm{~A}(5)=2.0$	$\mathrm{~B}(5)=8.0$
$\mathrm{~A}(6)=5.0$	$\mathrm{~B}(6)=1.0$

** OUTPUT **
IERR $=0$

$\mathrm{A}(1)=2.0$	$\mathrm{~B}(1)=8.0$
$\mathrm{~A}(2)=4.0$	$\mathrm{~B}(2)=4.0$
$\mathrm{~A}(3)=5.0$	$\mathrm{~B}(3)=1.0$
$\mathrm{~A}(4)=5.0$	$\mathrm{~B}(4)=3.0$
$\mathrm{~A}(5)=6.0$	$\mathrm{~B}(5)=3.0$
$\mathrm{~A}(6)=9.0$	$\mathrm{~B}(6)=2.0$

3.3 RANKING

3.3.1 DSSTRA, RSSTRA

Ranking of a List of Data

(1) Function

Given n data values, the DSSTRA or RSSTRA returns the ascending rank number corresponding to each data value and the number of data values having the same rank (See Note (a)). The precise specifications are as follows. Given n data values $a_{i}(i=1,2, \cdots, n)$, if the data sequence consisting of the original data values rearranged in ascending order are given by the following $a_{j}\left(j=j_{1}, j_{2}, \cdots, j_{m_{1}+\cdots+m_{k}}\right)$:

$$
\begin{aligned}
a_{j_{1}}= & a_{j_{2}} \cdots=a_{j_{m_{1}}} \leq \\
& a_{j_{m_{1}+1}}=a_{j_{m_{1}+2}} \cdots=a_{j_{m_{1}+m_{2}}} \leq \\
& \cdots \leq \\
& a_{j_{m_{1}+\cdots+m_{k-1}+1}}=a_{j_{m_{1}+\cdots+m_{k-1}+2}} \cdots=a_{j_{m_{1}+\cdots+m_{k}}}
\end{aligned}
$$

where $\left(m_{1}+\cdots+m_{k}=n\right)$, the subroutine obtains the ranking data $r_{j}(j=1,2, \cdots, n)$ defined by $r_{j_{m_{1}+\cdots+m_{l-1}+1}}=r_{j_{m_{1}+\cdots+m_{l-1}+2}}=\cdots=r_{j_{m_{1}+\cdots+m_{l}}}=l$. Here, m_{l} is the number of identical rankings for the l-th smallest data value. To obtain the number of identical rankings, the data is stored in $c_{j}(j=1,2, \cdots, n)$ so that $c_{j_{m_{1}+\cdots+m_{l-1}+1}}=c_{j_{m_{1}+\cdots+m_{l-1}+2}}=\cdots=c_{j_{m_{1}+\cdots+m_{l}}}=m_{l}$ is satisfied.
(2) Usage

Double precision:
CALL DSSTRA (A, N, IR, IC, ISW, IW, IERR)
Single precision:
CALL RSSTRA (A, N, IR, IC, ISW, IW, IERR)

(3) Arguments

D:Double precision real R :Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	N	Input	Data that is to be ranked a_{i}
2	N	I	1	Input	Size of array A
3	IR	I	N	Output	Assigned rankings r_{j} associated with A
4	IC	I	N	Output	When ISW=0, number of identically ranked data c_{j} When ISW=1 this is not used (See Note (b))
5	ISW	I	1	Input	Identically ranked data count output switch ISW=0: Output the number of identically ranked data in IC. ISW=1: Do not output the number of identically ranked data.
6	IW	I	N	Work	Work area
7	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{N} \geq 2$
(b) $\mathrm{ISW}=0$ or $\mathrm{ISW}=1$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.
3010	Restriction (b) was not satisfied.	

(6) Notes
(a) $\mathrm{A}(\mathrm{i})$ is the $\operatorname{IR}(\mathrm{i})$-th smallest data value among all of the data, and when $\operatorname{ISW}=0$, the number of $\operatorname{IR}(\mathrm{i})$-th smallest data values is IC(i).
(b) Since IC is not used when $\mathrm{ISW}=1$, a dummy array can be set for the argument.

(7) Example

(a) ProblemRank the following data.
$\mathrm{A}(1)=1.2$
$\mathrm{A}(2)=3.2$
$\mathrm{A}(3)=4.2$
$\mathrm{A}(4)=5.2$
$\mathrm{A}(5)=7.2$
$\mathrm{A}(6)=1.2$
$\mathrm{A}(7)=9.2$
$\mathrm{A}(8)=1.2$
$\mathrm{A}(9)=1.2$
$\mathrm{A}(10)=7.2$
$\mathrm{A}(11)=6.2$
$\mathrm{A}(12)=8.2$
$\mathrm{A}(13)=7.2$
$\mathrm{A}(14)=5.2$
$\mathrm{A}(15)=0.2$
$\mathrm{A}(16)=2.2$
(b) Input data

Array A, N=16 and ISW=0.
(c) Main program

```
PROGRAM BSSTRA
EXAMPLE OF DSSTRA ***
IMPLICIT REAL(8) (A-H,O-Z)
PARMENION A(N)
    READ (5,*) (A(I), I=1,N)
    WRITE(6,6000) N,ISW'
    CALL DSSTRA (A,N,IR,IC,ISW,IW, IERR)
    WRITE (6,6010) IERR
    WRITE (6,6020)
        DO 100 I=1,N
        WRITE(6,6030) I,A(I),IR(I),IC(I)
    100 CONTINUE
        STOP
6000 FORMAT(', *** DSSTRA ***',/,/,' ** INPUT **',/,/,7X,'N = ',I4,/,7X,&
```



```
6020 FORMAT(14X,'A',7X,'IR',6X,'IC')
6030 FORMAT(6X,I3,2X,F5.1,3X,I5,3X,I5)
END
```

(d) Output results

```
*** DSSTRA ***
** INPUT **
    N ISW = 16
** OUTPUT **
```

 IERR \(=0\)
 | |
| :---: |
| NNNNNNNNNNNNNNNÑ |
| |

3.3.2 DSSTPT, RSSTPT

Top-N Extraction

(1) Function

Given n data values $a_{i}(i=1,2, \cdots, n)$, the DSSTPT or RSSTPT obtains the first m data values $a_{j}(j=$ $\left.j_{1}, j_{2}, \cdots, j_{m}\right)(m<n)$ of the data sequence consisting of the original data values rearranged in descending or ascending order.
(2) Usage

Double precision:
CALL DSSTPT (A, N, M, P, ISW, IERR)
Single precision:
CALL RSSTPT (A, N, M, P, ISW, IERR)
(3) Arguments
$\begin{array}{l}\text { D:Double precision real } \begin{array}{l}\text { Z:Double precision complex } \\ \text { R:Single precision real }\end{array} \text { C:Single precision complex }\end{array}$ I: $\left.\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}$
(4) Restrictions
(a) $\mathrm{ISW} \in\{0,1\}$
(b) $\mathrm{M} \leq 0, \mathrm{~N} \leq 0, \mathrm{~N}<\mathrm{M}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.

(6) Notes

(a) The desired result is to return the elements of array A sorted in descending (ISW=1) or ascending (ISW=0) order in the first M elements of array A. For M, enter the number of elements you want to be sorted, and the number of elements that were actually sorted is output in M. Here, (number of elements you want to be sorted) \leq (number of elements that were actually sorted).
(b) The processing of this subroutine proceeds by sequentially dividing the input data based on a certain threshold value into a set of data greater than the threshold value and a set less than the threshold value. When the size of the set obtained in this way approaches the number of elements you want to be sorted, that set is rearranged. The initial threshold value is calculated as follows based on the data assigned for parameter P .

$$
\text { Initial value of threshold value }=\mathrm{MAX} \times \mathrm{P}+\mathrm{MIN} \times(1.0-\mathrm{P})
$$

Here, MAX represents the maximum value of the data contained in array A and MIN represents the minimum value of the data contained in array A . Therefore, the initial value of the threshold value is defined as the point where the MAX and MIN are internally divided into $(1.0-\mathrm{P}): \mathrm{P}$. When the characteristics of the data to be sorted are known, the processing speed can be increased by assigning suitable data for P , that is, the initial value of the threshold value. For example, if n uniformly random numbers from the interval $(0,1)$ are given and you want to get the smallest m data values among them, the optimum threshold value estimate is $\frac{m}{n}$. Therefore, you should specify P as follows.

$$
\mathrm{P}=\frac{m}{n}
$$

The number of times the threshold value actually was updated is output in P as a $\left\{\begin{array}{c}\text { double-precision } \\ \text { single-precision }\end{array}\right\}$ real number. If this value is small, it indicates that the initial value of the threshold value was suitable.

(7) Example

(a) Problem

Obtain the five smallest data values when the following data has been sorted in ascending order.
$\mathrm{A}(1)=5.0$
$\mathrm{A}(2)=39.0$
$\mathrm{A}(3)=15.0$
$\mathrm{A}(4)=8.0$
$\mathrm{A}(5)=23.0$
$\mathrm{A}(6)=45.0$
$\mathrm{A}(7)=61.0$
$\mathrm{A}(8)=25.0$
$\mathrm{A}(9)=33.0$
$\mathrm{A}(10)=45.0$
$\mathrm{A}(11)=39.0$
$\mathrm{A}(12)=10.0$
$\mathrm{A}(13)=21.0$
$\mathrm{A}(14)=5.0$
$\mathrm{A}(15)=23.0$
$\mathrm{A}(16)=38.0$
$\mathrm{A}(17)=41.0$
$\mathrm{A}(18)=55.0$
$\mathrm{A}(19)=61.0$
$\mathrm{A}(20)=39.0$
(b) Input data

Array $\mathrm{A}, \mathrm{N}=20, \mathrm{M}=5, \mathrm{P}=0.3$ and $\mathrm{ISW}=0$.
(c) Main program

```
PROGRAM BSSTPT
! *** EXAMPLE OF DSSTPT ***
    IMPLICIT REAL (8) (A-H, O-Z)
    REAL(8) A(100)
        INTEGER I,N,IERR,M
        INTEGER ISW
        ISW=0
! \(\operatorname{READ}(*, 5000) \mathrm{N}, \mathrm{M}, \mathrm{P}\), ISW
    \(\operatorname{WRITE}(6,6000)\) N, M, ISW, P
        READ (*,5010)(A(I), \(\mathrm{I}=1,20\) )
        DO \(100 \mathrm{I}=1\),
    100 CONTINUE
    CALL DSSTPT (A,N,M,P,ISW, IERR)
    \(\operatorname{WRITE}(6,6020)\)
        \(\operatorname{WRITE}(6,6030)\) IERR
        \(\operatorname{WRITE}(6,6040) \mathrm{M}\)
        \(\operatorname{DO} 110 \mathrm{I}=1, \mathrm{M}\)
    WRITE (6,6010)I, A (I)
    110 CONTINUE
5000 FORMAT (I2,I2,F4.1,I2)
5010 FORMAT (20F5.1)
6000 FORMAT(, ', ,/,5X,',*** DSSTPT \({ }^{* * * ', /, \& ~}\)
```



```
    6010 FORMAT (9X,'A(',I2,')', F5.1)
    6020 FORMAT (',',/,6X,',** OUTPUT **', /)
    6030 FORMAT ( 9 X, ' \(\operatorname{IERR}\) ' \(=\) ', I4)
    6040 FORMAT (9X,' \(\mathrm{M}=\), ', \(44, /\) )
    END
```

(d) Output results

```
*** DSSTPT ***
** INPUT **
    N=20 M= 5 ISW= 0 P= 0.3
    A( 1) r
    A( 2) }39.
    A( 3) 15.0
    A(4) 8.0
    A(5) 23.0
    A( 7) 61.0
    A( 8) 25.0
    A(10) 45.0
    A(11) 39.0
    A(12) 10.0
    A(14) 5.0
    A(15) 23.0
    A(16) 38.0
    A(16) 38.0
    A(18) 55.0
    A(19) 61.0
    A(20) 39.0
** OUTPUT **
    IERR = 0
```


3.4 MERGING

3.4.1 DSMGON, RSMGON

Merging Two Sorted Lists of Data

(1) Function

The DSMGON or RSMGON merges two data sequences $a_{i}(i=1,2, \cdots, n)$ and $b_{j}(j=1,2, \cdots, m)$, which had each been sorted into ascending order, to obtain the data sequence $c_{k}(k=1,2, \cdots, \ell)$, where, c_{k} satisfies the following relationship.

$$
c_{1} \leq c_{2} \leq \cdots \leq c_{\ell}
$$

(2) Usage

Double precision:
CALL DSMGON (A, NN, B, NM, C, NL, IERR)
Single precision:
CALL RSMGON (A, NN, B, NM, C, NL, IERR)
(3) Arguments

D:Double precision real | Z:Double precision complex |
| :--- |
| R:Single precision real |\quad C:Single precision complex \(\quad\left\{\begin{array}{l}INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer\end{array}\right\}\)
(4) Restrictions
(a) $\mathrm{NN} \geq 1$
(b) $\mathrm{NM} \geq 1$
(c) $1 \leq \mathrm{NL} \leq \mathrm{NN}+\mathrm{NM}$
(d) $\mathrm{A}(1) \leq \mathrm{A}(2) \leq \cdots \leq \mathrm{A}(\mathrm{NN})$
(e) $\mathrm{B}(1) \leq \mathrm{B}(2) \leq \cdots \leq \mathrm{B}(\mathrm{NM})$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	Restriction (c) was not satisfied.	NL $=$ NN + NM is set and processing is performed.
3000	Restriction (a) was not satisfied.	Processing is aborted.
3100	Restriction (b) was not satisfied.	
3200	Restriction (d) was not satisfied.	
3300	Restriction (e) was not satisfied.	

(6) Notes
(a) When NL $<\mathrm{NN}+\mathrm{NM}$, only the NL smallest values of the merged result are output.

(7) Example

(a) Problem

Divide the sequence $a_{i}(i=1,2, \cdots, n)$, which contains n data stored in array X , into partial sequence of the length n_{s}, and iterate merging of the partial sequences to sort the whole of the sequence a_{i}. And, when files on an external memory device, instead of the arrays in the program below, are used, this problem becomes an external sort problem of n data a_{i}.
(b) Input data

Array X and length n.
(c) Main program

```
        PROGRAM BSMGON
! *** EXAMPLE OF DSMGON ***
    IMPLICIT NONE
! INTEGER NA
    PARAMETER( NA = 100 )
    INTEGER N,IERR
        INTEGER ILOOP,ISIZE,ISIZE2,IA,IB,IC,ICREST
        INTEGER ISTA,ISTB,ISTC,ISIZEA,ISIZEB,ISIZEC
        INTEGER I,J,K
        REAL(8) X(NA),A(NA),B(NA),C(NA)
!
    DATA SET
    N}=1
        DO 100 I=1,N
            X(I)= DBLE( INT(SIN(DBLE(I))*100)}
    100 CONTINUE
!
        WRITE INPUT DATA
        WRITE (6, 6000)
        DO 110 I=1,N
            WRITE(6,6010) I,X(I)
    110 CONTINUE
!
    EXTERNAL SORT
        DO 120 I=1,N
    120 CONTINUE
        IF ( N .EQ. 1 ) THEN
        GOTO 130
    ENDIF
    ILOOP = 0
    DO 140 I=1,N
            ILO( 2**ILOOP ,GE. N ) THEN
            IF(GOTO 150
            ENDIF
    140 CONTINUE
    150 CONTINUE
    DO 160 I=1,ILOOP
        ISIZE = 2** (I-1)
        ISIZE2 = 2 ** I
!
        IA = 0
```

```
        IB \(=0\)
        IC \(=0\)
        DO \(170 \mathrm{~J}=1\),N/ISIZE2
            DO \(\begin{aligned} & 180 \mathrm{~K}=1, \text { ISIZE } \\ & \mathrm{IA}= \\ & \mathrm{IA}+1\end{aligned}\)
                \(\stackrel{I A}{\mathrm{IA}(\mathrm{IA})} \stackrel{\mathrm{IA}}{=} \stackrel{+}{\mathrm{C}}(\mathrm{I} \mathrm{IC}+\mathrm{K})\)
            continue
            IC \(=\) IC + ISIZE
            DO \(190 \mathrm{~K}=1\), ISIZE
                \(\mathrm{IB}=\mathrm{IB}+1\)
                    \({ }^{\mathrm{B}(\mathrm{IB})}=\mathrm{C}(\mathrm{IC}+\mathrm{K})\)
            continue
            IC = IC + ISIZE
        continue
        ICREST \(=\mathrm{N}-\mathrm{IC}\)
        IF ( ( 0 . LT . ICREST ) .AND. (ICREST .LE. ISIZE) ) THEN
            DO \(200 \mathrm{~K}=1\), ICREST
                \(\mathrm{IA}=1 \mathrm{IA}+1\)
            Continue
        ENDIF
        IF ( (ISIZE .LT . ICREST ) .AND. (ICREST .LT. (ISIZE*2)) ) THEN
            DO \(210 \mathrm{~K}=1\),ISIZE
                    \(\mathrm{IA}=\mathrm{IA}+\stackrel{1}{\mathrm{C}}(\mathrm{IA} \mathrm{C}+\mathrm{K})\)
                \(\underset{\text { A }}{\text { A }}\) IA \()=C(I C+K)\)
            continue
            IC \(=\) IC + ISIZE
            DO \(220 \mathrm{~K}=1\), (ICREST-ISIZE)
                    IB \(=1 B+1\)
                \({ }_{\text {continue }}^{\mathrm{B}(\mathrm{IB})}=\mathrm{C}(\mathrm{IC}+\mathrm{K})\)
            CONTINUE
        Endif
        DO \(230 \mathrm{~J}=1, \mathrm{~N} /\) ISIZE2
            ISTA \(=(J-1) *\) ISIZE +1
            ISTB \(=(\mathrm{J}-1) *\) ISIZE +1
            ISTC \(=(\mathrm{J}-1) *\) ISIZE2 +1
            ISIZEA = ISIZE
            ISIZEB = ISIZE
            ISIZEC \(=\) ISIZEA + ISIZEB
            CALL DSMGON\&
            (A (ISTA) , ISIZEA , B (ISTB) , ISIZEB, C(ISTC), ISIZEC, IERR)
                CONTINUE \({ }_{\text {IF }}(0\). LT. ICREST ) . AND. (ICREST .LE. ISIZE) ) THEN
```



```
            ISTA
ISTC
\(=\)
\(=N / I S I S Z E 2\)
N
            \(\begin{aligned} & \text { ISTC } \\ & \text { ISIZEA }\end{aligned}=\) ICREST
            \({ }_{\text {DO }} 240 \mathrm{~K}=1\), ISIIZEA
                D0 \(\underset{C}{24(I S T C+K)})=A(\) ISTA \(+K)\)
                    Continue
                ENDIF
                IF ( (ISIZE . LT \(\cdot\) ICREST ) AND. (ICREST .LT. (ISIZE*2)) ) THEN
                    ISTA \(=\) N/ISIZE2 \(*\) ISIZE +1
                    ISTB \(=\) N/ISIZE2 \(*\) ISIZE +1
                    ISTC \(=\) N/ISIZE2 \(2 *\) ISIZE \(2+1\)
                    ISIZEA \(=\) ISIZE
                    ISIZEB = ICREST - ISIZE
                    ISIZEC = ISIZEA + ISIZEB
                    CALL DSMGON\&
                    (A (ISTA), ISIZEA , B(ISTB), ISIZEB, C(ISTC), ISIZEC, IERR)
                ENDIF
        160 CONTINUE
        130 CONTINUE
! WRITE OUTPUT DATA
        \(\operatorname{WRITE}(6,6020)\)
\(\operatorname{IF}(\operatorname{IERR} . \operatorname{IERR}\)
\(3000)\) THEN
            DO \(250 \mathrm{I}=1, \mathrm{~N}, \mathrm{Cl}\)
        250
            continue
        Endif
    STOP
    6000 FORMAT ( \(/\), \&
```



```
        \(\left.{ }_{\mathrm{N}=1}^{\mathrm{INPUT}}, \mathrm{I6}, /\right)^{* \prime}\),
```



```
        END
(d) Output results
```

```
*** DSMGON ***
```

*** DSMGON ***
** INPUT **
** INPUT **
N = 17
N = 17
X(1)=84.0

```
    X(1)=84.0
```

$\mathrm{X}(3)=14.0$	
	X $(5)=-95.0$
	$\mathrm{X}(6)=-27.0$
	X ${ }^{\text {(} 7 \text {) }}$) $=65.0$
	人 $\mathrm{X}(8)=98.0$ $\mathrm{x}(\mathrm{g})=41.0$
	$\mathrm{X}(10)=-54.0$
	$\mathrm{X}(11)=-99.0$
	X $(12)=-53.0$
	(${ }^{\text {P }}$ (12) $=42.0$
	$\mathrm{X}(15)=65.0$
	$\mathrm{X}(16)=-28.0$
	$\mathrm{X}(17)=-96.0$
**	OUTPUT
	IERR =
	1) $=-99.0$
	C(2) $=-96.0$
	C(3) $=-95.0$
	C(4) $=-75.0$
	C(5) $=-54.0$
	C(6) $=-53.0$
	C(7) $=-28.0$
	$\mathrm{C}(8)=-27.0$
	$\mathrm{C}(8)=14.0$ $\mathrm{C}(10)=41.0$
	$\mathrm{C}(11)=42.0$
	$\mathrm{C}(12)=65$
	$\mathrm{C}(13)=65.0$
	C $(14)=84$.
	$\mathrm{C}(15)=90.0$
	$\mathrm{C}(16)=98.0$

3.4.2 DSMGPA, RSMGPA

Merging Two Sorted Lists of Pairwise Data

(1) Function

The DSMGPA or RSMGPA merges the set of data $\left(a_{i}, b_{i}\right) \quad(i=1,2, \cdots, n)$, which had been sorted into ascending order of a_{i}, and the set of data $\left(c_{j}, d_{j}\right) \quad(j=1,2, \cdots, m)$, which had been sorted into ascending order of c_{j}, to obtain the set of data $\left(e_{k}, f_{k}\right)(k=1,2, \cdots, \ell)$, where, e_{k} satisfies the following relationship.

$$
e_{1} \leq e_{2} \leq \cdots \leq e_{\ell}
$$

If a second order sort was specified, the subroutine determines $k=1,2, \cdots, \ell$ so that

$$
f_{k} \leq f_{k+1}
$$

for any k for which $e_{k}=e_{k+1}$ is satisfied.
(2) Usage

Double precision:
CALL DSMGPA (A, NN, B, C, NM, D, E, NL, F, ISW, IERR)
Single precision:
CALL RSMGPA (A, NN, B, C, NM, D, E, NL, F, ISW, IERR)

(3) Arguments

D:Double precision real R:Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	NN	Input	Data to be merged a_{i}.
2	NN	I	1	Input	Size of array A.
3	B	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	NN	Input	Data b_{i} corresponding to a_{i}.
4	C	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	NM	Input	Data to be merged c_{j}
5	NM	I	1	Input	Size of array C.
6	D	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	NM	Input	Data d_{j} corresponding to c_{j}.
7	E	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	NL	Output	Merged data e_{k}.
8	NL	I	1	Input	Size of array E.
9	F	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	NL	Output	Data f_{k} corresponding to e_{k}.
10	ISW	I	1	Input	Second order sort switch ISW=0: Do not perform second order sort ISW=1: Perform second order sort
11	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{NN} \geq 1$
(b) $\mathrm{NM} \geq 1$
(c) $1 \leq \mathrm{NL} \leq \mathrm{NN}+\mathrm{NM}$
(d) $\mathrm{A}(1) \leq \mathrm{A}(2) \leq \cdots \leq \mathrm{A}(\mathrm{NN})$
(e) $\mathrm{C}(1) \leq \mathrm{C}(2) \leq \cdots \leq \mathrm{C}(\mathrm{NM})$
(f) $I S W=0$ or $I S W=1$
(g) When ISW $=1$ is specified, $\mathrm{B}(i) \leq \mathrm{B}(i+1)$ must be satisfied for any i for which $\mathrm{A}(i)=\mathrm{A}(i+1)$ is satisfied.
(h) When ISW $=1$ is specified, $\mathrm{D}(i) \leq \mathrm{D}(i+1)$ must be satisfied for any i for which $\mathrm{C}(i)=\mathrm{C}(i+1)$ is satisfied.
(5) Error indicator

IERR value	Meaning	Processing	
0	Normal termination.		
1000	Restriction (c) was not satisfied.	NL $=$ NN + NM is set and processing is performed.	
3000	Restriction (a) was not satisfied.	Processing is aborted.	
3100	Restriction (b) was not satisfied.		
3200	Restriction (d) was not satisfied.		
3300	Restriction (e) was not satisfied.		
3400	Restriction (f) was not satisfied.		
3500	Restriction (g) was not satisfied.		
3600	Restriction (h) was not satisfied.		

(6) Notes
(a) When $\mathrm{NL}<\mathrm{NN}+\mathrm{NM}$, only the NL smallest values of the merged result are output.

(7) Example

(a) Problem

Divide the sequence $\left(a_{i}, b_{i}\right)(i=1,2, \cdots, n)$, which contains a couple of n data stored in arrays X and Y, into partial sequences of the length n_{s}, and iterate merging of the partial sequences to sort the whole of the sequence $\left(a_{i}, b_{i}\right)$. And, when files on an external memory device, instead of the arrays in the program below, are used, this problem becomes an external sort problem of a couple of n data a_{i} and b_{i}.
(b) Input data

Array X, length n and ISW=1.
(c) Main program

```
    PROGRAM BSMGPA
! *** EXAMPLE OF DSMGPA ***
    IMPLICIT NONE
    INTEGER NA
    PARAMETER( NA = 100 )
    INTEGER N,ISW,IERR
    INTEGER ILOOP,ISIZE,ISIZE2,IA,IB,IC,ICREST
    INTEGER ISTA,ISTB,ISTC,ISIZEA,ISIZEB,ISIZEC
    INTEGER I,J,K
    REAL(8) PI
    PARAMETER(PI = 3.1415926535897932384DO )
    REAL (8) X (NA),A(NA), B(NA), C(NA)
    REAL(8) Y(NA),A2(NA),B2(NA),C2(NA)
!
    DATA SET
    N = 17
DO 100 I=1,N
            X(I) = DBLE( INT(SIN(DBLE(I))*100) )
                Y(I) = DBLE( INT(SIN(DBLE(I)+PIT*0.5D0)*100))
    100 CONTINUE
    ISW = 1
! WRITE INPUT DATA
WRITE (6,6000) N,ISW
DO 110 I=1,N
WRITE(6,6010) I,X(I),I,Y(I)
    110 CONTINUE
!
EXTERNAL SORT
DO 120 I=1,N
        C(I) = X (I)
    CONTINUE
    IF( N N.EQ. 1 ) THEN
        GOTO 130
ENDIF
```

```
    ILOOP = 0
    DO 140 I=1,N
        ILOOP = ILOOP + 1
        IF(2**ILOOP .GE. N ) THEN
        GOTO 150
    ENDIF
    140 CONTINUE
    150 CONTINUE
    DO 160 I=1,ILOOP
        ISIZE =2 ** (I-1)
        IA = 0
        IB =0
        DO 170 J=1,N/ISIZE2
            DO 180 K=1,ISIZE
                IA IN IA+ 1 + = (IC+K)
                A(IA) = C(IC+K)
                CONTINUE
                IC = IC + ISIZE 
                    DO 190 K=1, ISIZE
                    B(IB) = = C C (IC+K)
                    lol
                CONTINUE
                IC = IC + ISIZE
    170 CONTINUE
        ICREST = N - IC
        IF( (0 LT. ICREST ) .AND. (ICREST .LE. ISIZE) ) THEN
            DO 200 K=1, ICREST
                IA = IA +1
                    A(IA) = C(IC+K)
                A2(IA) = C2(IC+K)
    200
                continue
        ENDIF
        IF((ISIZE .LT. ICREST ) .AND. (ICREST .LT. (ISIZE*2)) ) THEN
            DO 210 K=1,ISIZE
                    IA = IA + 1
                    (IA) = C(IC+K)
                A2(IA) = C2(IC+K)
                continue
                IC = IC + ISIZE
                    DO 220 K=1,(ICREST-ISIZE)
                    IB = IB + + 1 
                    B(IB) = C(IC+K)
                conTINUE
        ENDIF
        DO 230 J=1,N/ISIZE2
            lol
            ISTC = (J-1) * ISIZE2 + 1
            ISIZEA = ISIZE
            ISIZEB = ISIZ
            ISIZEC = ISIZEA + ISIZEB
            CALL DSMGPA&
            (A(ISTA),ISIZEA,A2(ISTA),B(ISTB),ISIZEB,B2(ISTB) ,&
                C(ISTC),ISIZEC,C2(ISTC),ISW,IERR)
        continue
        IF( (0 .LT. ICREST ) . AND. (ICREST .LE. ISIZE) ) THEN
            ISTA = N/ISIZE2* ISIZE
            ISTC = N/ISIZE2 * ISIZE2
            ISIZEA = ICREST
            DO 240 K=1,ISIZEA
                    C(ISTC+K) = A (ISTA +K)
                    C(ISTC+K) = A(ISTA+K)
                continue
        ENDIF
        IF( (ISIZE .LT. ICREST ) .AND. (ICREST .LT. (ISIZE*2)) ) THEN
            ISTA = N/ISIZE2 * ISIZE +i
            ISTB = N/ISIZE2 * ISIZE + + 1
            ISIZEA = ISIZE
            ISIZEB = ICREST - ISIZE
            ISIZEC = ISIZEA + ISIZEB
            CALL DSMGPA&
                    (A(ISTA),ISIZEA, A2(ISTA) ,B(ISTB), ISIZEB, B2(ISTB) ,&
                C(ISTC),ISIZEC, C2(ISTC),ISW,IERR)
            ENDIF
    160 CONTINUE
130 CONTINUE
    WRITE OUTPUT DATA
    WRITE(6,6020) IERR ) THEN
        DO 250 I= 1,N
    250
        CONTINUE
        ENDIF
        STOP
```

```
6000 FORMAT (/,\&
            \(1 \mathrm{X}, ', * * *\)
                DSMGPA
                    INPUT,
```



```
                            1X,', **
```



```
6010 FORMAT (1X,',
6010 FORMAT (1X,',
    (1X, \(1 \times\),
1X,
```


(d) Output results
*** DSMGPA ***
** INPUT **

N	$=$
ISW	17

$X(1)=84.0$
$X(2)=90.0$ $X(2)=90.0$
$X(3)=14.0$ $X(3)=14.0$
$X(4)=-75.0$ $X(4)=-75.0$
$X(5)=-95.0$ $X(5)=-95.0$
$X(6)=-27.0$ $\mathrm{X}(7)=-27.0$
$\mathrm{X}(7)=65.0$ $X(7)=65.0$
$X(8)=98.0$ $X(8)=98.0$
$X(9)=41.0$ $X(10)=-54.0$ $X(11)=-99.0$
$X(12)=-53.0$ $X(13)=42.0$ $X(14)=99.0$ $X(15)=65.0$ $X(16)=-28.0$
$X(17)=-96.0$
** OUTPUT **
IERR $=0$

$C(1)=-99.0$	$\mathrm{C} 2(1)=0.0$
$C(2)=-96.0$	$\mathrm{C} 2(2)=-27.0$
$C(3)=-95.0$	$C 2(3)=28.0$
$C(4)=-75.0$	$C 2(4)=-65.0$
$C(5)=-54.0$	$C 2(5)=-83.0$
$C(6)=-53.0$	$C 2(6)=84.0$
$C(7)=-28.0$	$C 2(7)=-95.0$
$C(8)=-27.0$	$C 2(8)=96.0$
$C(9)=14.0$	$C 2(9)=-98.0$
$C(10)=41.0$	$C 2(10)=-91.0$
$C(11)=42.0$	$C 2(11)=90.0$
$C(12)=65.0$	$C 2(12)=-75.0$
$C(13)=65.0$	$C 2(13)=75.0$
$C(14)=84.0$	$C 2(14)=54.0$
$C(15)=90.0$	$C 2(15)=-41.0$
$C(16)=98.0$	$C 2(16)=-14.0$
$C(17)=99.0$	$C 2(17)=13.0$

Chapter 4

ROOTS OF EQUATIONS

4.1 INTRODUCTION

This chapter describes subroutines that obtain the roots of an algebraic equation, a nonlinear equation or a set of simultaneous nonlinear equations.
This library provides the following two types of subroutines for obtaining the roots of the algebraic equations.
(1) Subroutine that takes real-type input of real coefficients and provides real-type output of complex roots
(2) Subroutine that takes complex-type input of complex coefficients and provides complex-type output of complex roots

In addition, this library provides the following three types of subroutines for obtaining the roots of nonlinear equations.
(1) Subroutine that obtains one root when given an initial value
(2) Subroutine that obtains one root when given an interval
(3) Subroutine that obtains all roots within an interval

Among these subroutines, the ones that obtain a single root of a real function by assigning an initial value have been designed with particularly careful consideration so that a root is obtained even if the initial value is far from the root or if the function oscillates in the interval between the root and initial value.
When obtaining the roots of a set of simultaneous nonlinear equations, a Jacobian matrix calculation subroutine may or may not be given. Subroutines for both of these cases have global convergence, and careful consideration has been given so that these problems can be solved even without scaling each of the simultaneous equations.

4.1.1 Notes

(1) Although for real coefficient algebraic equations, roots near zero tend to be obtained first, this is not the case for complex coefficient algebraic equations.
(2) If there are multiple roots and the multiplicity of the roots is n, then for an algebraic equation, the precision of the solution at that root is on the order of $\sqrt[n]{\text { Unit for determining error, }}$, and for a nonlinear equation for which the solution is obtained by assigning an initial value, the precision is on the order of $n \times($ required precision) .
(3) Except when obtaining a single root within an interval, convergence is determined for a nonlinear equation as follows. If e_{r} is the required precision, ε is the unit for determining error, and Δx is the amount x is updated, then convergence is considered to have occurred when the following relationships hold:

$$
\left(|\Delta x|<e_{r} \times \max (1,|x|) \text { and } \quad|f(x)|<e_{r}+64 \times \varepsilon \times|x|\right) \text { or } f(x)=0
$$

That is, convergence is considered to have occurred when the function value is zero or when both the function value and the movement of the solution are close to zero. Therefore, even if the problem is ill conditioned, convergence is correctly determined, and if there are multiple roots, precision can be maintained although the amount of calculations increases.
However, this decision criterion tends to be more severe than a method that decides based on only the movement of the solution, based on only the function value or based on either the movement of the solution or the function value.
(4) Convergence is considered to have occurred for a set of simultaneous nonlinear equations when the following relationships hold for all $i \quad(i=1, \cdots$, number of order $)$:

$$
\left(\left|\Delta x_{i}\right|<e_{r} \times \max \left(1,\left|x_{i}\right|\right) \text { and }\|f(x)\|_{\infty}<e_{r}+64 \times \varepsilon \times\left|x_{i}\right|\right) \text { or } f_{i}(x)=0
$$

(5) Note the following within a program that uses any of these ASL subroutines to obtain roots of a nonlinear equation or a set of simultaneous nonlinear equations.
(a) Names of equation-defining functions or subroutines that are to be used as arguments must be declared by using an EXTERNAL statement.
Example:
Nonlinear equation (Let \bar{F} and D have the same names in the main program and the function subprograms)

- Main program

2

```
EXTERNAL F , DF
    2
CALL \(\left\{\begin{array}{l}\text { DLNRDS } \\ \text { RLNRDS }\end{array}\right\}(\boxed{\mathrm{F}}, \boxed{\mathrm{DF}}, \cdots)\)
2
```

- Function subprograms

$$
\begin{aligned}
& \text { FUNCTION } \boxed{\mathrm{F}}(\mathrm{X}) \\
& \quad \begin{array}{l}
\text { ? } \\
\boxed{\mathrm{F}} \\
\text { ? }
\end{array}=f(\mathrm{X}) \\
& \text { FUNCTION } \boxed{\mathrm{DF}}(\mathrm{X}) \\
& \quad \text { ? } \\
& \begin{array}{l}
\mathrm{DF} \\
2
\end{array}=f^{\prime}(\mathrm{X})
\end{aligned}
$$

Example:
Set of simultaneous nonlinear equations (Let SUB and SUBD have the same names in the main program and the subroutine subprograms)

- Main program

```
l
EXTERNAL SUB,SUBD
    l
    CALL {\begin{array}{l}{\mathrm{ DLSRDS }}\\{\mathrm{ RLSRDS }}\end{array}}(\textrm{SUB},\textrm{SUBD},\cdots)
        l
```

- Subroutine subprograms

$$
\begin{aligned}
& \text { SUBROUTINE SUB (X, N, F) } \\
& \text { DIMENSION X }(\mathrm{N}), \mathrm{F}(\mathrm{~N}) \\
& 2 \\
& \mathrm{~F}(1)=f_{1}(\mathrm{X}(1), \cdots, \mathrm{X}(\mathrm{~N})) \\
& 2 \\
& \mathrm{~F}(\mathrm{~N})=f_{\mathrm{N}}(\mathrm{X}(1), \cdots, \mathrm{X}(\mathrm{~N})) \\
& 2 \\
& \text { SUBROUTINE SUBD (X, N, A) } \\
& \text { DIMENSION X }(\mathrm{N}), \mathrm{A}(\mathrm{~N}, \mathrm{~N}) \\
& 2 \\
& \mathrm{~A}(1,1)=\partial f_{1} / \partial x_{1} \\
& 2 \\
& \mathrm{~A}(\mathrm{~N}, \mathrm{~N})=\partial f_{\mathrm{N}} / \partial x_{\mathrm{N}} \\
& 2
\end{aligned}
$$

(6) If several errors occur at the same time, only the value of the most severe error will be output for the error indicator, and information about the other errors may be lost.

4.1.2 Algorithms Used

4.1.2.1 Roots of a real coefficient algebraic equation

4.1.2.1.1 When the degree $n=2$

The roots are obtained as follows by using the formula for the roots of a quadratic equation.
For the quadratic equation:

$$
x^{2}+a_{1} x+a_{0}=0
$$

if we let:

$$
\begin{aligned}
r & =-\frac{a_{1}}{2} \\
D & =r^{2}-a_{0}
\end{aligned}
$$

then the roots are obtained as shown below for the following three cases.
(1) $|D| \leq \varepsilon$

The roots are:

$$
x=r, r
$$

(2) If $D<0$

The roots are:

$$
x=(r, \pm \sqrt{-D})
$$

(3) If $D>0$

The roots are:

$$
x=\alpha, \frac{a_{0}}{\alpha}
$$

where,

$$
\alpha= \begin{cases}r+\sqrt{D} & (r \geq 0) \\ r-\sqrt{D} & (r<0)\end{cases}
$$

4.1.2.1.2 When the degree $n=3$

The roots are obtained as follows by using the Cardano method.
For the cubic equation:

$$
x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0
$$

consider the following cases.
(1) If $\left|a_{0}\right| \leq \varepsilon \quad\left(x\left(x^{2}+a_{2} x+a_{1}\right)=0\right)$

By using the method described in (a) to solve the quadratic equation:

$$
x^{2}+a_{2} x+a_{1}=0
$$

to obtain the roots α and β, the roots of the cubic equation are:

$$
x=0, \alpha, \beta
$$

(2) If $\left|a_{2}\right| \leq \varepsilon \quad\left(x^{3}+a_{1} x+a_{0}=0\right)$

Consider the following two cases.
(a) $\left|a_{1}\right| \leq \varepsilon \quad\left(x^{3}+a_{0}=0\right)$

The roots are:

$$
x=r,\left(-\frac{r}{2}, \pm \frac{\sqrt{3} r}{2}\right)
$$

where,

$$
r= \begin{cases}-\sqrt[3]{a_{0}} & \left(a_{0} \geq 0\right) \\ \sqrt[3]{-a_{0}} & \left(a_{0}<0\right)\end{cases}
$$

(b) Otherwise

Assume b_{1} and b_{0} are as follows:

$$
\begin{aligned}
b_{1} & =\frac{a_{1}}{3} \\
b_{0} & =-\frac{a_{0}}{2}
\end{aligned}
$$

and use the method shown in subsection iii. below to solve the equation:

$$
x^{3}+3 b_{1} x-2 b_{0}=0
$$

(3) Otherwise

The cubic equation:

$$
x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0
$$

can be transformed by using the variable transformation:

$$
\begin{aligned}
x & =y-Y M X \\
Y M X & =\frac{a_{2}}{3}
\end{aligned}
$$

to:

$$
y^{3}+3 b_{1} y-2 b_{0}=0
$$

where, b_{1} and b_{0} are given by:

$$
\begin{aligned}
& b_{1}=\frac{3 a_{1}-a_{2}^{2}}{9} \\
& b_{0}=\frac{\left(9 a_{1}-2 a_{2}^{2}\right) a_{2}-27 a_{0}}{54}
\end{aligned}
$$

Consider the following three cases.
(a) If $\left|b_{0}\right| \leq \varepsilon \quad\left(y\left(y^{2}+3 b_{1}\right)=0\right)$
i. If $b_{1}<0$
y and x are as follows:

$$
\begin{aligned}
y & =0, \pm \sqrt{-3 b_{1}} \\
x & =-Y M X, \pm \sqrt{-3 b_{1}}-Y M X
\end{aligned}
$$

Cancellation of significant digits that may occur in the calculation is prevented by using relationships between roots and coefficients.
ii. If $b_{1} \geq 0$
y and x are as follows:

$$
\begin{aligned}
y & =0,\left(0, \pm \sqrt{-3 b_{1}}\right) \\
x & =-Y M X,\left(-Y M X, \pm \sqrt{-3 b_{1}}\right)
\end{aligned}
$$

(b) If $\left|b_{1}\right| \leq \varepsilon \quad\left(y^{3}-2 b_{0}=0\right)$
y and x are as follows:

$$
\begin{aligned}
& y=r,\left(-\frac{r}{2}, \pm \frac{\sqrt{3} r}{2}\right) \\
& x=r-Y M X,\left(-\frac{r}{2}-Y M X, \pm \frac{\sqrt{3} r}{2}\right)
\end{aligned}
$$

where,

$$
r= \begin{cases}\sqrt[3]{2 b_{0}} & \left(b_{0} \geq 0\right) \\ -\sqrt[3]{-2 b_{0}} & \left(b_{0}<0\right)\end{cases}
$$

Cancellation of significant digits that may occur in the calculation is prevented by using relationships between roots and coefficients.
(c) Otherwise $\quad\left(y^{3}+3 b_{1} y-2 b_{0}=0\right)$

If we let:

$$
y=s+t
$$

we obtain the following equation:

$$
s^{3}+t^{3}-2 b_{0}+3\left(s t+b_{1}\right)(s+t)=0
$$

If we determine s and t so that the following relationships hold:

$$
\left\{\begin{aligned}
s t & =-b_{1} \\
s^{3}+t^{3} & =2 b_{0}
\end{aligned}\right.
$$

then we can use this to obtain $y . s^{3}$ and t^{3} are the two roots of:

$$
z^{2}-2 b_{0} z-b_{1}^{3}=0
$$

If we let:

$$
\begin{aligned}
D & =b_{0}^{2}+b_{1}^{3}=D_{s}^{2} D_{d} \\
D_{s} & = \begin{cases}b_{0} & \left(\left|b_{0}\right| \geq\left|b_{1}\right|\right) \\
b_{1} & \left(\left|b_{0}\right|<\left|b_{1}\right|\right)\end{cases} \\
D_{d} & =\left\{\begin{array}{cc}
1+b_{1}\left(\frac{b_{1}}{b_{0}}\right)^{2} & \left(\left|b_{0}\right| \geq\left|b_{1}\right|\right) \\
\left(\frac{b_{0}}{b_{1}}\right)^{2}+b_{1} & \left(\left|b_{0}\right|<\left|b_{1}\right|\right)
\end{array}\right.
\end{aligned}
$$

we can obtain y and x by considering the following three cases.
i. If $\left|D_{d}\right| \leq \varepsilon^{2} \quad\left(\left(z-b_{0}\right)^{2}=0\right)$
s and t are as follows:

$$
\begin{aligned}
s^{3} & =t^{3}=b_{0} \\
s, t & =r,\left(-\frac{r}{2}, \pm \frac{\sqrt{3} r}{2}\right)
\end{aligned}
$$

where,

$$
r= \begin{cases}\sqrt[3]{b_{0}} & \left(b_{0} \geq 0\right) \\ -\sqrt[3]{-b_{0}} & \left(b_{0}<0\right)\end{cases}
$$

Since s and t satisfy st $=-b_{1}, y$ and x are as follows:

$$
\begin{aligned}
& y=2 r,-r,-r \\
& x=2 r-Y M X,-r-Y M X,-r-Y M X
\end{aligned}
$$

Cancellation of significant digits that may occur in the calculation is prevented by using relationships between roots and coefficients.
ii. If $D<0$
s^{3} and t^{3} are as follows:

$$
\begin{aligned}
& s^{3}=\left(b_{0}, \sqrt{-D}\right) \\
& t^{3}=\left(b_{0},-\sqrt{-D}\right)
\end{aligned}
$$

Now, from the following:

$$
\left|s^{3}\right|^{2}=\left|t^{3}\right|^{2}=-b_{1}^{3}
$$

s and t are as follows:

$$
\begin{aligned}
s & =\frac{r}{2} e^{\sqrt{-1} \frac{\theta}{3}}, \frac{r}{2} e^{\sqrt{-1}\left(\pi+\frac{\theta-\pi}{3}\right)}, \frac{r}{2} e^{\sqrt{-1}\left(\frac{\theta+\pi}{3}-\pi\right)} \\
t & =\frac{r}{2} e^{-\sqrt{-1} \frac{\theta}{3}}, \frac{r}{2} e^{-\sqrt{-1}\left(\pi+\frac{\theta-\pi}{3}\right)}, \frac{r}{2} e^{-\sqrt{-1}\left(\frac{\theta+\pi}{3}-\pi\right)}
\end{aligned}
$$

Therefore, y and x are as follows:

$$
\begin{aligned}
& y=r \cos \frac{\theta}{3},-r \cos \frac{\pi-\theta}{3},-r \cos \frac{\pi+\theta}{3} \\
& x=r \cos \frac{\theta}{3}-Y M X,-r \cos \frac{\pi-\theta}{3}-Y M X,-r \cos \frac{\pi+\theta}{3}-Y M X
\end{aligned}
$$

where,

$$
\begin{aligned}
r & = \begin{cases}-2 \sqrt{b_{1}} & \left(b_{1} \geq 0\right) \\
2 \sqrt{-b_{1}} & \left(b_{1}<0\right)\end{cases} \\
\theta & = \begin{cases}\tan ^{-1} D_{\theta} & \left(b_{0} \geq 0\right) \\
\pi-\tan ^{-1} D_{\theta} & \left(b_{0}<0\right)\end{cases} \\
D_{\theta} & =\frac{|D|}{\left|b_{0}\right|}= \begin{cases}\sqrt{\left|D_{d}\right|} & \left(\left|b_{0}\right| \geq\left|b_{1}\right|\right) \\
\frac{\left|D_{s}\right| \sqrt{\left|D_{d}\right|}}{\left|b_{0}\right|} & \left(\left|b_{0}\right|<\left|b_{1}\right|\right)\end{cases}
\end{aligned}
$$

Cancellation of significant digits that may occur in the calculation is prevented by using relationships between roots and coefficients.
iii. If $D>0$
s^{3} and t^{3} are as follows:

$$
\begin{aligned}
s^{3} & =\alpha \\
t^{3} & =\beta \\
\alpha & = \begin{cases}b_{0}+\sqrt{D}=\left|D_{s}\right| r & \left(b_{0} \geq 0\right) \\
b_{0}-\sqrt{D}=-\left|D_{s}\right| r & \left(b_{0}<0\right)\end{cases} \\
\beta & =-\frac{b_{1}^{3}}{\alpha}
\end{aligned}
$$

where,

$$
r=\frac{\left|b_{0}\right|+\sqrt{D}}{\left|D_{s}\right|}= \begin{cases}1+\sqrt{\left|D_{d}\right|} & \left(\left|b_{0}\right| \geq\left|b_{1}\right|\right) \\ \frac{\left|b_{0}\right|}{\left|D_{s}\right|}+\sqrt{\left|D_{d}\right|} & \left(\left|b_{0}\right|<\left|b_{1}\right|\right)\end{cases}
$$

Therefore, s and t are as follows:

$$
\begin{aligned}
& s=\alpha^{\prime},\left(-\frac{\alpha^{\prime}}{2}, \pm \frac{\sqrt{3} \alpha^{\prime}}{2}\right) \\
& t=\beta^{\prime},\left(-\frac{\beta^{\prime}}{2}, \pm \frac{\sqrt{3} \beta^{\prime}}{2}\right)
\end{aligned}
$$

where,

$$
\begin{aligned}
& \alpha^{\prime}= \begin{cases}\sqrt[3]{|\alpha|} & \left(b_{0} \geq 0\right) \\
-\sqrt[3]{|\alpha|} & \left(b_{0}<0\right)\end{cases} \\
& \beta^{\prime}=\left\{\begin{array}{cl}
\sqrt[3]{|\beta|} & \left(b_{0} b_{1}<0\right) \\
-\sqrt[3]{|\beta|} & \left(b_{0} b_{1} \geq 0\right)
\end{array}\right.
\end{aligned}
$$

Since s and t satisfy st $=-b_{1}, y$ and x are as follows:

$$
\begin{aligned}
& y=u,\left(-\frac{u}{2}, \pm \frac{\sqrt{3} v}{2}\right) \\
& x=u-Y M X,\left(-\frac{u}{2}-Y M X, \pm \frac{\sqrt{3} v}{2}\right)
\end{aligned}
$$

where,

$$
u=\alpha^{\prime}+\beta^{\prime}, v=\alpha^{\prime}-\beta^{\prime}
$$

Cancellation of significant digits that may occur in the calculation is prevented by using relationships between roots and coefficients.

4.1.2.1.3 When the degree $n=4$

The roots are obtained as follows by using the Ferrari method.
For the quartic (fourth degree) equation:

$$
x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0
$$

consider the following cases.
(1) If $\left|a_{0}\right| \leq \varepsilon \quad\left(x\left(x^{3}+a_{3} x^{2}+a_{2} x+a_{1}\right)=0\right)$

By using the method described in (b) to solve the cubic equation:

$$
x^{3}+a_{3} x^{2}+a_{2} x+a_{1}=0
$$

to obtain the roots α, β and γ, the roots of the quartic equation are:

$$
x=0, \alpha, \beta, \gamma
$$

(2) If $\left|a_{3}\right| \leq \varepsilon \quad\left(x^{4}+a_{2} x^{2}+a_{1} x+a_{0}=0\right)$

Consider the following two cases.
(a) If $\left|a_{1}\right| \leq \varepsilon \quad\left(x^{4}+a_{2} x^{2}+a_{0}=0\right)$

If we let:

$$
\begin{aligned}
r & =-\frac{a_{2}}{2} \\
D & =r^{2}-a_{0}
\end{aligned}
$$

we can obtain x by considering the following three cases.
i. If $|D| \leq \varepsilon \quad\left(\left(x^{2}-r\right)^{2}=0\right)$
x is as follows:

$$
x= \begin{cases}\sqrt{r}, \sqrt{r},-\sqrt{r},-\sqrt{r} & (r \geq 0) \\ (0, \sqrt{-r}),(0, \sqrt{-r}),(0,-\sqrt{-r}),(0,-\sqrt{-r}) & (r<0)\end{cases}
$$

ii. If $D<0$
x^{2} is as follows:

$$
x^{2}=(r, \pm \sqrt{-D})
$$

Therefore, x is as follows:

$$
x=(\alpha, \pm \beta),(-\alpha, \pm \beta)
$$

where,

$$
\begin{aligned}
& \begin{cases}\alpha=\sqrt{\frac{r+N R D}{2}}, & \beta=\frac{\sqrt{-D}}{2 \alpha} \\
\beta=\sqrt{\frac{-r+N R D}{2}}, & (r>0) \\
\beta=\frac{\sqrt{-D}}{2 \beta} & (r \leq 0)\end{cases} \\
& N R D=\sqrt{r^{2}-D}= \begin{cases}|r| \sqrt{1+\frac{-D}{r^{2}}} & (|r| \geq \sqrt{-D}) \\
\sqrt{-D} \sqrt{\frac{r^{2}}{-D}+1} & (|r|<\sqrt{-D})\end{cases}
\end{aligned}
$$

iii. If $D>0$
x^{2} is as follows:

$$
x^{2}=\alpha, \beta
$$

where,

$$
\begin{aligned}
& \alpha= \begin{cases}r+\sqrt{D} & (r \geq 0) \\
r-\sqrt{D} & (r<0)\end{cases} \\
& \beta=\frac{a_{0}}{\alpha}
\end{aligned}
$$

Therefore, x is as follows:

$$
x= \begin{cases} \pm \sqrt{\alpha}, \pm \sqrt{\beta} & (r, \beta \geq 0) \\ \pm \sqrt{\alpha},(0, \pm \sqrt{-\beta}) & (r \geq 0, \beta \leq 0) \\ (0 \pm \sqrt{-\alpha}), \pm \sqrt{\beta} & (r<0, \beta \geq 0) \\ (0 \pm \sqrt{-\alpha}),(0 \pm \sqrt{-\beta}) & (r, \beta<0)\end{cases}
$$

(b) Otherwise

Use the method shown in subsection iii. below to solve the equation:

$$
x^{4}+a_{2} x^{2}+a_{1} x+a_{0}=0
$$

(3) Otherwise

The quartic equation:

$$
x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}=0
$$

can be transformed by using the variable transformation:

$$
\begin{aligned}
x & =y-Y M X \\
Y M X & =\frac{a_{3}}{4}
\end{aligned}
$$

to:

$$
y^{4}+b_{2} y^{2}+b_{1} y+b_{0}=0
$$

where, b_{2}, b_{1} and b_{0} are given by:

$$
\begin{aligned}
& b_{2}=\frac{8 a_{2}-3 a_{3}^{2}}{8} \\
& b_{1}=\frac{8 a_{1}-a_{3}\left(4 a_{2}-a_{3}^{2}\right)}{8} \\
& b_{0}=\frac{256 a_{0}-a_{3}\left(64 a_{1}-a_{3}\left(16 a_{2}-3 a_{3}^{2}\right)\right)}{256}
\end{aligned}
$$

Consider the following four cases.
(a) $b_{1}^{2} \leq \varepsilon^{2} \max \left(\left|4 b_{0} b_{2}\right|,\left|b_{2}^{3}\right|\right) \quad\left(y^{4}+b_{2} y_{2}+b_{0}=0\right)$

If we let:

$$
\begin{aligned}
r & =-\frac{b_{2}}{2} \\
D & =r^{2}-b_{0}
\end{aligned}
$$

we can obtain y and x by considering the following three cases.
i. If $|D| \leq \varepsilon$
y and x are as follows:

$$
\begin{aligned}
\left(y^{2}-r\right)^{2} & =0 \\
y & = \begin{cases} \pm \sqrt{r}, \pm \sqrt{r} & (r \geq 0) \\
(0, \pm \sqrt{-r}),(0, \pm \sqrt{-r}) & (r<0)\end{cases} \\
x & = \begin{cases} \pm \sqrt{r}-Y M X, \pm \sqrt{r}-Y M X & (r \geq 0) \\
(-Y M X, \pm \sqrt{-r}),(-Y M X, \pm \sqrt{-r}) & (r<0)\end{cases}
\end{aligned}
$$

ii. If $D<0$
y and x are as follows:

$$
\begin{aligned}
y^{2} & =(r, \pm \sqrt{-D}) \\
y & =(\alpha, \pm \beta),(-\alpha, \pm \beta) \\
x & =(\alpha-Y M X, \pm \beta),(-\alpha-Y M X, \pm \beta)
\end{aligned}
$$

where,

$$
\begin{aligned}
& \left\{\begin{array}{ll}
\alpha=\sqrt{\frac{r+N R D}{2}}, & \beta=\frac{\sqrt{-D}}{2 \alpha}
\end{array} \quad(r>0)\right. \\
& \beta=\sqrt{\frac{-r+N R D}{2}},
\end{aligned} \quad \alpha=\frac{\sqrt{-D}}{2 \beta} \quad(r \leq 0), ~(|r|>\sqrt{-D}) ~ \begin{cases}|r| \sqrt{1+\frac{-D}{r^{2}}} & (|r|<\sqrt{-D}) \\
\sqrt{-D} \sqrt{\frac{r^{2}}{-D}+1} & \left(\left\lvert\, r D=\sqrt{r^{2}-D}= \begin{cases} & (r)\end{cases} \right.\right.\end{cases}
$$

iii. If $D>0$
y and x are as follows:

$$
\begin{aligned}
y^{2} & =\alpha, \beta \\
\alpha & =\left\{\begin{aligned}
r+\sqrt{D} & (r \geq 0) \\
r-\sqrt{D} & (r<0)
\end{aligned}\right. \\
\beta & =\frac{b_{0}}{\alpha}
\end{aligned}
$$

$$
\begin{aligned}
& y= \begin{cases} \pm \sqrt{\alpha}, \pm \sqrt{\beta} & (r, \beta \geq 0) \\
(0, \pm \sqrt{-\alpha}), \pm \sqrt{\beta} & (r<0, \beta \geq 0) \\
\pm \sqrt{\alpha},(0, \pm \sqrt{-\beta}) & (r \geq 0, \beta<0) \\
(0, \pm \sqrt{-\alpha}),(0, \pm \sqrt{\beta}) & (r, \beta<0)\end{cases} \\
& x= \begin{cases} \pm \sqrt{\alpha}-Y M X, \pm \sqrt{\beta}-Y M X & (r, \beta \geq 0) \\
(-Y M X, \pm \sqrt{-\alpha}), \pm \sqrt{\beta}-Y M X & (r<0, \beta \geq 0) \\
\pm \sqrt{\alpha}-Y M X,(-Y M X, \pm \sqrt{-\beta}) & (r \geq 0, \beta<0) \\
(-Y M X, \pm \sqrt{-\alpha}),(-Y M X, \pm \sqrt{-\beta}) & (r, \beta<0)\end{cases}
\end{aligned}
$$

(b) If $\left|b_{0}\right| \leq \varepsilon \quad\left(y\left(y^{3}+b_{2} y+b_{1}\right)=0\right)$

By using the method described in (b) to solve the cubic equation:

$$
y^{3}+b_{2} y+b_{1}=0
$$

to obtain the roots α, β and γ, the roots of the quartic equation are:

$$
x=-Y M X, \alpha-Y M X, \beta-Y M X, \gamma-Y M X
$$

(c) If $b_{1}^{2}>10^{-4}\left|b_{2}\left(b_{2}^{2}-4 b_{0}\right)\right|$

If the quartic equation:

$$
y^{4}+b_{2} y^{2}+b_{1} y+b_{0}=0
$$

is transformed by adding $p y^{2}+\frac{p^{2}}{4}$ to both sides, it appears as follows:

$$
\left(y^{2}+\frac{p}{2}\right)^{2}=\left(p-b_{2}\right) y^{2}-b_{1} y+\frac{p^{2}}{4}-b_{0}
$$

To express the right-hand side in the form of the square of a linear expression, the following equation should be satisfied:

$$
b_{1}^{2}-\left(p-b_{2}\right)\left(p^{2}-4 b_{0}\right)=0
$$

That is,

$$
p^{3}-b_{2} p^{2}-4 b_{0} p+\left(4 b_{2} b_{0}-b_{1}^{2}\right)=0
$$

If we solve this equation by the method described in (b) and take the real root obtained for this equation for p, then since the following relationship holds:

$$
\left(y^{2}+\frac{p}{2}\right)^{2}=\left(p-b_{2}\right)\left\{y-\frac{b_{1}}{2\left(p-b_{2}\right)}\right\}^{2}
$$

by solving the quadratic equation:

$$
y^{2} \pm \sqrt{p-b_{2}} y \mp \frac{b_{1}}{2 \sqrt{p-b_{2}}}+\frac{p}{2}=0 \quad(\text { Compound same order })
$$

the solutions of the quartic equation are obtained as follows:

$$
\begin{aligned}
y & =\alpha \pm \sqrt{\beta-\gamma},-\alpha \pm \sqrt{\beta+\gamma} \\
\alpha & =\frac{\sqrt{p-b_{2}}}{2} \\
\beta & =-\frac{p+b_{2}}{4} \\
\gamma & =\frac{4 b_{1}}{\alpha}
\end{aligned}
$$

However, if $p \simeq b_{2}$, the solution obtained by using this method is not very precise. The condition $p \simeq b_{2}$ occurs when:

$$
\left|p-b_{2}\right|=\left|\frac{b_{1}^{2}}{p^{2}-4 b_{0}}\right| \simeq\left|\frac{b_{1}^{2}}{b_{2}^{2}-4 b_{0}}\right|<\delta\left|b_{2}\right|
$$

that is, when:

$$
b_{1}^{2}<\delta\left|b_{2}\left(b_{2}^{2}-4 b_{0}\right)\right|
$$

where, δ is a sufficiently small positive number.
If the following condition holds:

$$
b_{1}^{2} \leq \varepsilon^{2} \max \left(\left|b_{2}^{3}\right|,\left|4 b_{0} b_{2}\right|\right)
$$

the solution of the quartic equation is obtained by ignoring b_{1} as described earlier and solving the following equation:

$$
y^{4}+b_{2} y^{2}+b_{0}=0
$$

On the other hand, if the following condition holds:

$$
10^{-4}\left|b_{2}\left(b_{2}^{2}-4 b_{0}\right)\right| \geq b_{1}^{2}>\varepsilon^{2} \max \left(\left|b_{2}^{3}\right|,\left|4 b_{0} b_{2}\right|\right)
$$

the solution of the quartic equation is obtained by using the method described in subsection D. below.
(d) Otherwise

It is known that the roots of the quartic equation:

$$
y^{4}+b_{2} y^{2}+b_{1} y+b_{0}=0
$$

can be expressed by using the square roots of the three roots z_{1}, z_{2} and z_{3} of the cubic equation:

$$
z^{3}+\frac{b_{2}}{2} z^{2}+\frac{b_{2}^{2}-4 b_{0}}{16} z-\frac{b_{1}^{2}}{64}=0
$$

(where, z_{1}, z_{2} and z_{3} are generally complex numbers) as follows:

$$
\begin{aligned}
y= & \sqrt{z_{1}}+\sqrt{z_{2}}+\sqrt{z_{3}}, \\
& \sqrt{z_{1}}-\left(\sqrt{z_{2}}+\sqrt{z_{3}}\right), \\
& -\sqrt{z_{1}}+\sqrt{z_{2}}-\sqrt{z_{3}}, \\
& -\sqrt{z_{1}}-\left(\sqrt{z_{2}}-\sqrt{z_{3}}\right)
\end{aligned}
$$

However, \sqrt{z} represents one of the two square roots $(\pm \sqrt{z})$ that z has. Although it is not known in advance which of the square roots should be selected, since the four root combinations are either y, which was shown above or $-y$, which is obtained by reversing all of the signs of the root, the root can be determined from the relationship between the roots and coefficients according to the sign of b_{1}. The cubic equation is solved by using the method described in (b).

4.1.2.1.4 When the degree $n>4$

This problem is solved by using the Hirano method, which is described below.
Assume that the given equation is as follows:

$$
P_{n}(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0
$$

The Hirano method obtains all roots of the equation by alternately searching for a root according to iterative improvement of an approximate root and then reducing the equation. The origin is assumed as the starting value for the approximate root, and the expansion coefficients when the polynomial $P_{n}(x)$ is expanded around
this approximate root are used to sequentially approach the true root. The root $x=\left(x_{R}, x_{I}\right)$ obtained in this manner is used to reduce the equation, and all roots of the equation are obtained by sequentially repeating similar operations for the reduced equation.
The root $x=\left(x_{R}, x_{I}\right)$ is determined as follows.
The convergence decision value ζ is determined as follows.
Let the calculation of the coefficients c_{k} for $(k=n, n-1, \cdots, 0)$ have an error of $\varepsilon\left|c_{k}\right|$ and let the calculation of ζ have an error of up to $\varepsilon|x|$ (where, $x=z+\zeta$ is the value of the true root). Since $P_{n}(z+\zeta)$ can be calculated from:
(1) Let the initial value of the approximate value $z=\left(z_{R}, z_{I}\right)$ of root x be $z=0$.
(2) Until the relationship $\left|P_{n}\left(z+\zeta_{m}\right)\right| \leq \delta$ holds, replace z by $z+\zeta_{m}$ and repeat the following calculations.
(a) Expand the polynomial $P_{n}(x)$ centered on z as follows:

$$
P_{n}(\zeta+z)=c_{n} \zeta^{n}+c_{n-1} \zeta^{n-1}+\cdots+c_{1} \zeta+c_{0} \quad(x=\zeta+z)
$$

using synthetic division to calculate the coefficients c_{k} for ($k=n, n-1, \cdots, 0$).
(b) Let $\mu=1$.
(c) Calculate $\zeta_{k}(\mu)$ for $(k=1, \cdots, n)$ as follows:

$$
\zeta_{k}(\mu)=\left(-\mu \frac{c_{0}}{c_{k}}\right)^{1 / k} \quad \text { for } \quad(k=1, \cdots, n)
$$

and let ζ_{m} be the one that has the smallest absolute value. Check whether the relationship $\mid P_{n}(z+$ $\left.\zeta_{m}\right) \left.\left|\leq\left(1-\frac{\mu}{4}\right)\right| P_{n}(z) \right\rvert\,$ holds. If not, replace μ by $\frac{\mu}{2}$ and repeat this calculation sequentially until the relationship holds.
(3) Assume $z+\zeta_{m}$ is the root of the equation $P_{n}(x)=0$.

$$
\begin{aligned}
b_{n} & =c_{n} \\
b_{k} & =b_{k+1} \zeta+c_{k} \text { for }(k=n-1, n-2, \cdots, 0) \\
P_{n}(z+\zeta) & =b_{0}
\end{aligned}
$$

the error δ for the calculation of $P_{n}(z+\zeta)$ can be calculated from:

$$
\begin{aligned}
d_{n}= & \varepsilon\left|c_{n}\right| \\
d_{k}= & d_{k+1}(|\zeta|+\varepsilon|x|)+\varepsilon\left(|x|\left|b_{k+1}\right|+\left|c_{k}\right|\right) \\
& \text { for } \quad(k=n-1, n-2, \cdots, 0) \\
\delta= & d_{0}
\end{aligned}
$$

Now, in the calculation, let $\zeta=\zeta_{m}$, and x is approximated by $z+\zeta_{m}$.
Although the Hirano method proceeds by sequentially obtaining roots while reducing the equation, an error analysis is performed as follows during each reduction process to determine whether reduction succeeds.
(a) Reduction according to a single real root

If the equation:

$$
P_{n}(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0
$$

is reduced as follows using the real root z :

$$
P_{n}(x)=(x-z)\left(b_{n} x^{n-1}+b_{n-1} x^{n-2}+\cdots+b_{1}\right)+b_{0}=0
$$

the coefficients are calculated as follows:

$$
\begin{aligned}
b_{n} & =a_{n} \\
b_{k} & =a_{k}+b_{k+1} z \text { for }(k=n-1, n-2, \cdots, 0)
\end{aligned}
$$

Although b_{0} originally is 0.0 , if an error of up to $\sqrt{\varepsilon}|z|$ is permitted for z and an error of up to $\varepsilon\left|a_{k}\right|$ is permitted for a_{k}, the maximum error δ_{k} permitted for b_{k} is expressed as follows:

$$
\begin{aligned}
\delta_{n} & =\varepsilon\left|a_{n}\right| \\
\delta_{k} & =\varepsilon\left|a_{k}\right|+\left(\delta_{k+1}+\sqrt{\varepsilon}\left|b_{k+1}\right|\right)|z| \quad \text { for } \quad(k=n-1, n-2, \cdots, 0)
\end{aligned}
$$

Therefore, when $\left|b_{0}\right|<\delta_{0}$, reduction is assumed to have succeeded.
(b) Reduction according to complex conjugate roots

If the equation:

$$
P_{n}(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0
$$

is reduced as follows using the complex conjugate roots $z=\left(z_{R}, z_{I}\right)$ and $\bar{z}=\left(z_{R},-z_{I}\right)$:

$$
P_{n}(x)=(x-z)(x-\bar{z})\left(b_{n} x^{n-2}+b_{n-1} x^{n-3}+\cdots+b_{2}\right)+b_{1} x+b_{0}=0
$$

the coefficients are calculated as follows:

$$
\begin{aligned}
b_{n} & =a_{n} \\
b_{n-1} & =a_{n-1}+2 z_{R} b_{n} \\
b_{k} & =a_{k}+2 z_{R} b_{k+1}-\left(z_{R}^{2}+z_{I}^{2}\right) b_{k+2} \text { for }(k=n-1, n-3, \cdots, 0)
\end{aligned}
$$

Although b_{0} and b_{1} originally are 0.0 , if an error of up to $\sqrt{\varepsilon}\left|z_{R}\right|$ is permitted for z_{R}, an error of up to $\sqrt{\varepsilon}\left|z_{I}\right|$ is permitted for z_{I}, and an error of up to $\varepsilon\left|a_{k}\right|$ is permitted for a_{k}, the maximum error δ_{k} permitted for b_{k} is expressed as follows:

$$
\begin{aligned}
& \delta_{n}= \varepsilon\left|a_{n}\right| \\
& \delta_{n-1}= \varepsilon\left|a_{n-1}\right|+\delta_{n}\left|2 z_{R}\right|+\sqrt{\varepsilon}\left|2 z_{R} b_{n}\right| \\
& \delta_{k}= \varepsilon\left|a_{k}\right|+\delta_{k+1}\left|2 z_{R}\right|+\sqrt{\varepsilon}\left|2 z_{R} b_{k+1}\right|+\delta_{k+2}\left(z_{R}^{2}+z_{I}^{2}\right) \\
&+2 \sqrt{\varepsilon} \\
&\left(\left|z_{R}\right|+\left|z_{I}\right|\right)\left|b_{k+2}\right| \text { for }(k=n-2, n-3, \cdots, 0)
\end{aligned}
$$

Therefore, when $\left|b_{0}\right|<\delta_{0}$ and $\left|b_{1}\right|<\delta_{1}$, reduction is assumed to have succeeded.

4.1.2.2 The roots of complex coefficient algebraic equations

This problem is solved by using the Durand-Kerner cubic method.
Assume that the given equation is as follows:

$$
P_{n}(Z)=a_{0} Z^{n}+a_{1} Z^{n-1}+\cdots+a_{n-1} Z+a_{n}=0 \text { for }\left(a_{0} \neq 0\right)
$$

The iteration formula for obtaining all roots simultaneously is as follows:
where $P_{n}^{\prime}\left(z_{i}{ }^{(\nu)}\right)$ is obtained according to the following formula:

$$
\begin{aligned}
& \left\{\begin{aligned}
b_{0}{ }^{(1)} & =a_{0} \\
b_{0}{ }^{(2)} & =a_{0} \\
b_{k}{ }^{(1)} & =z_{i}^{(\nu)} b_{k-1}^{(1)}+a_{k} \\
b_{k}{ }^{(2)} & =z_{i}^{(\nu)} b_{k-1}^{(2)}+b_{k}^{(1)}
\end{aligned} \text { for }(k=1, \cdots, n-1)\right.
\end{aligned} P_{n}^{\prime}\left(z_{i}{ }^{(\nu)}\right)=b_{n-1}{ }^{(2)} .
$$

Convergence is assumed to have occurred if the value of $P_{n}(z)$ is within the error included when it is calculated by Horner's method. That is, if ε is the unit for determining error, then for:

$$
\left\{\begin{array}{llll}
b_{0} & =a_{0} & : \text { Where the } b_{0} \text { error is } & \delta_{0}=0.0 \\
b_{k}^{\prime} & =z_{i}{ }^{(\nu)} b_{k-1} & : \text { Where the } b_{k}^{\prime} \text { error is } & \delta_{k}{ }^{*}=\delta_{k-1}\left|z_{i}{ }^{(\nu)}\right|+\varepsilon\left|b_{k}^{\prime}\right| \\
b_{k} & =b_{k}^{\prime}+a_{k} & : \text { Where the } b_{k} \text { error is } & \delta_{k}=\delta_{k}{ }^{*}+\varepsilon \max \left(\left|a_{k}\right|,\left|b_{k}^{\prime}\right|,\left|b_{k}\right|\right) \\
P_{n}(z) & =b_{n} & &
\end{array}\right.
$$

therefore the specified value δ_{n} of the maximum error of $P_{n}\left(z_{i}{ }^{(\nu)}\right)$ is given by:

$$
\left\{\begin{aligned}
\delta_{0} & =0.0 \\
\delta_{k} & =\delta_{k-1}\left|z_{i}^{(\nu)}\right|+\varepsilon\left\{\left|b_{k}^{\prime}\right|+\max \left(\left|a_{k}\right|,\left|b_{k}^{\prime}\right|,\left|b_{k}\right|\right)\right\} \quad \text { for } \quad(k=1, \cdots, n)
\end{aligned}\right.
$$

and if $\left|P_{n}\left(z_{i}{ }^{(\nu)}\right)\right| \leq \delta_{n}$, then convergence is assumed to have occurred.
Iterations are continued only for unconverged $z_{i}(\nu)$, and the calculation ends when all values are considered to have converged.
The iteration initial values are determined by the following three steps method.
(1) Determine the Aberth initial value.

For a center at:

$$
\beta=\frac{\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}}{n}=-\frac{a_{1}}{n a_{0}}
$$

obtain the radius r of a circle that includes all roots. Using derived division, obtain the coefficients c_{0}, \cdots, c_{n} such that:

$$
P_{n}(Z)=P_{n}(\beta+\zeta)=c_{0} \zeta^{n}+c_{1} \zeta^{n-1}+\cdots+c_{n-1} \zeta+c_{n}
$$

Let m be the number of nonzero coefficients among c_{1}, \cdots, c_{n} and obtain r^{+}as follows:

$$
r^{+}=\max _{k=1, \cdots, n}\left(m \frac{\left|c_{k}\right|}{\left|c_{0}\right|}\right)^{1 / k}
$$

Let r^{+}be the initial value of r, and obtain x such that:

$$
Q_{n}(x)=\left|c_{0}\right| x^{n}-\left|c_{1}\right| x^{n-1}-\cdots-\left|c_{n-1}\right| x-\left|c_{n}\right|=0
$$

Let this value of x be r.
(2) Decrease the radius of the circle that includes all roots.

Let z be represented by:

$$
z=\beta+r w
$$

Then $\varphi_{\ell}(w)$ and $\varphi_{\ell+1}(w)$ can be defined as follows:

$$
\begin{aligned}
P_{n}(\beta+r w) & =\left(c_{0} r^{n}\right) w^{n}+\left(c_{1} r^{n-1}\right) w^{n-1}+\cdots+\left(c_{n-1} r\right) w+c_{n} \\
& =d_{0}{ }^{(0)} w^{n}+d_{1}{ }^{(0)} w^{n-1}+\cdots+d_{n-1}{ }^{(0)} w+d_{n}{ }^{(0)} \\
& =\varphi_{0}(w) \\
\varphi_{\ell}(w) & =d_{0}{ }^{(\ell)} w^{n \ell}+d_{1}{ }^{(\ell)} w^{n \ell-1}+\cdots+d_{n \ell-1}{ }^{(\ell)} w+d_{n \ell}{ }^{(\ell)} \quad\left(d_{0}^{(\ell)} \neq 0\right)
\end{aligned}
$$

(a) When $\left|a_{0}{ }^{(\ell)}\right|<\left|a_{n \ell}{ }^{(\ell)}\right|$

$$
\varphi_{\ell+1}(w)=\varphi_{\ell}(w)-\frac{d_{0}^{(\ell)}}{\overline{d_{n \ell}{ }^{(\ell)}}} \tilde{\varphi_{\ell}}(w)
$$

(b) When $\left|a_{0}^{(\ell)}\right| \geq\left|a_{n \ell}{ }^{(\ell)}\right|$

$$
\varphi_{\ell+1}(w)=\left\{\varphi_{\ell}(w)-\frac{d_{n \ell}{ }^{(\ell)}}{\overline{d_{0}(\ell)}} \tilde{\varphi}_{\ell}(w)\right\} / w
$$

where:

$$
\tilde{\varphi_{\ell}}(w)=\overline{d_{n \ell}{ }^{(\ell)}} w^{n \ell}+\overline{d_{n \ell-1}^{(\ell)}} w^{n \ell-1}+\cdots+\overline{d_{1}(\ell)} w+\overline{d_{0}{ }^{(\ell)}}
$$

until $\varphi_{n}=$ constant.
The number of roots outside of the circle having radius r is equal to the number of times $\left|a_{0}{ }^{(\ell)}\right|<\left|a_{n \ell}{ }^{(\ell)}\right|$ had occurred when φ_{n} was obtained. The roots inside this circle are the remaining roots.
The radius of the minimum circle that includes all roots is obtained by a bisection method beginning with the Aberth initial value r according to the condition that $\left|a_{0}{ }^{(\ell)}\right|>\left|a_{n \ell}{ }^{(\ell)}\right|$ occurs for all roots.
(3) Find the radius that minimizes the sum of the squares of the distances from the various roots.

Use the method described in (b) to obtain the numbers of roots inside and outside the circle of each radius that is obtained by having the radius r obtained in (b). In j iterations, the ring D_{j} of width $r 2^{-j}$ is obtained. If we let the average of the interior radius and exterior radius of ring D_{j} be $r_{j}{ }^{*}$ and the number of roots contained in D_{j} be N_{j}, then the desired radius r is obtained by:

$$
r=\frac{\sum_{j=1}^{m} r_{j}{ }^{*} N_{j}}{n}
$$

The initial value for the iteration is obtained from this r by using the following equation:

$$
z_{j}{ }^{(0)}=\beta+r \exp \left[i\left(\frac{2 \pi(j-1)}{n}+\frac{3}{2 n}\right)\right] \text { for }(j=1, \cdots, n ; i=\sqrt{-1})
$$

4.1.2.3 The roots of real functions (initial value specified; derivative definition required)

Assume that the given nonlinear equation is $f(x)=0$ and that the derivative of $f(x)$ is $f^{\prime}(x)$. This algorithm is based on Newton's method, which is given by:

$$
x^{(\nu+1)}=x^{(\nu)}-\frac{f\left(x^{(\nu)}\right)}{f^{\prime}\left(x^{(\nu)}\right)}
$$

However, since a root is not obtained by this method if the function oscillates or if the root update amount is too large, the algorithm has been improved as follows.
(1) Newton's iteration is performed as follows:

$$
x^{(\nu+1)}=x^{(\nu)}-\frac{f\left(x^{(\nu)}\right)}{f^{\prime}\left(x^{(\nu)}\right)}
$$

(2) If $f^{\prime}\left(x^{(\nu)}\right)=0$ or $\left|f\left(x^{(\nu+1)}\right)\right| \geq\left|f\left(x^{(\nu)}\right)\right|$, then skip to (c); otherwise, let $x^{(\nu)}=x^{(\nu+1)}$ and return to (a).
(3) If $\nu=1$ or $f^{\prime}\left(x^{(\nu-1)}\right) \geq 0$, let $I S=-1$; otherwise let $I S=1$.

Let $R=1, \quad P=0, \quad I O L D=\operatorname{sign}\left\{1, I S \times f\left(x^{(\nu)}\right)\right\}$, and $I 1=-I O L D$.
(4) Let $I 2=\operatorname{sign}\left\{1, I S \times f\left(x^{(\nu)}\right)\right\}$.

If $I 2 \times I 1>0$, then change is accelerated by letting $P=P+1$; otherwise, it is decelerated by letting $R=R+1$. (For I : Old update direction and $I 2$: New update direction, + indicates update in the positive direction and - indicates update in the negative direction.)
$x^{(\nu)}$ is updated by the following iteration.
Let ε be the unit for determining error, and let $x^{(\nu+1)}$ be as follows:

$$
x^{(\nu+1)}=x^{(\nu)}+I S \times \sinh ^{-1}\left(f\left(x^{(\nu)}\right)\right) \times 2^{\{(p-3) / 3-R\}}+\left|x^{(\nu)}+1\right| \times I 2 \times \varepsilon
$$

(For IS: Global function slope estimate, + indicates decreasing to the right and - indicates increasing to the right.)
This update is repeated at least three times.
(5) For $f\left(x^{(\nu-1)}\right) \gg f\left(x^{(\nu)}\right) \gg f\left(x^{(\nu+1)}\right)$, if $\left|f\left(x^{(\nu+1)}\right)\right|$ becomes sufficiently small, return to Newton's method (a).
(6) For $\left|f\left(x^{(\nu+1)}\right)\right|>\left|f\left(x^{(\nu)}\right)\right|$, when $f\left(x^{(\nu+1)}\right)$ and $f\left(x^{(\nu)}\right)$ have the same sign and $I 2=I O L D$, the function slope and search direction are changed by letting $I S=-I S, I O L D=I O L D$ and $I 1=I O L D$.
When this condition occurs for the first time,
Let the left end of the searched interval $X P=x^{(\nu+1)}$ and $F P=f\left(x^{(\nu+1)}\right)$
Let the right end of the searched interval $X Q=X P$ and $F Q=F P$
When this condition occurs for the second or subsequent time,
If $I 2>0$ (Update direction is positive)
Update the right end of the searched interval according to
$X Q=x^{(\nu+1)}, F Q=f\left(x^{(\nu+1)}\right)$
Begin from the left end of the searched interval according to
$x^{(\nu)}=X P, f\left(x^{(\nu)}\right)=F P$.
If $I 2 \leq 0$ (Update direction is negative)
Update the left end of the searched interval according to
$X P=x^{(\nu+1)}, F P=f\left(x^{(\nu+1)}\right)$
Begin from the right end of the searched interval according to
$x^{(\nu)}=X Q, f\left(x^{(\nu)}\right)=F Q$.

Set $P=0$. If the condition described above in (vi) occurs repeatedly several times, set $R=2$ to accelerate the change so that the point emerges from a trough; otherwise, set $R=0$. Then return to (d).
(7) If the condition described in (f) does not occur, then let $I 1=I 2, x^{(\nu)}=x^{(\nu+1)}$ and return to (d). Figure $4-1$ shows an example of the movements described above in (a) through (g).

Figure 4-1

(a) According to a Newton iteration, the following relationship occurs $\left|f\left(x^{(\nu+1)}\right)\right|>$ $\left|f\left(x^{(\nu)}\right)\right|$.
(b) The $x^{(\nu+1)}$ update is performed according to the update expression shown in (d).
(c) Since the update direction was not change due to $\left|f\left(x^{(\nu+1)}\right)\right|>\left|f\left(x^{(\nu)}\right)\right|$, the left end of the searched interval is determined according to (d) and the search direction is reversed.
(d) The search starting point and search direction are changed repeatedly in a similar manner as described in (3).
(e) Since $\left|f\left(x^{(\nu+1)}\right)\right|<\left|f\left(x^{(\nu)}\right)\right|$ occurs, the root is obtained by the Newton's method of (a) or (d).

Convergence is determined as follows. If e_{r} is assumed to be the required precision, then convergence is considered to have occurred when:

$$
\begin{aligned}
& \left(\left|x^{(\nu+1)}-x^{(\nu)}\right|<e_{r} \max \left(1,\left|x^{(\nu+1)}\right|\right) \text { and }\left|f\left(x^{(\nu+1)}\right)\right|<e_{r}+64 \varepsilon\left|x^{(\nu+1)}\right|\right) \\
& \text { or } f\left(x^{(\nu+1)}\right)=0
\end{aligned}
$$

4.1.2.4 The roots of real functions (initial value specified; derivative definition not required)

This algorithm basically uses the secant method indicated by:

$$
x^{(\nu+1)}=x^{(\nu)}-f\left(x^{(\nu)}\right) \frac{x^{(\nu)}-x^{(\nu-1)}}{f\left(x^{(\nu)}\right)-f\left(x^{(\nu-1)}\right)}
$$

which has been improved in a manner similar to that described in (3). However, when approaching $f(x)=0$, an extremum search is performed for a location if a trough occurs or the bisection method is used if the sign of the root is found to reverse. The algorithm is explained in more detail below.
(1) Update the solution by using the secant method.
(2) If both the function value and the update amount are large, then since $x^{(\nu)}$ is far from a root perform the following to be safe:

$$
\left.\begin{array}{l}
X P=X Q=x^{(\nu)} \\
F P=F Q=f\left(x^{(\nu)}\right)
\end{array}\right\}\binom{\text { Set the left and right ends of the searched interval; }}{X P \text { is the left end and } X Q \text { is the right end }}
$$

Let $x^{(\nu+1)}=x^{(\nu)}$ and $f\left(x^{(\nu+1)}\right)=f\left(x^{(\nu)}\right)$ and skip to (c)
If $\left|f\left(x^{(\nu+1)}\right)\right| \geq\left|f\left(x^{(\nu)}\right)\right|$
If $\left|\frac{x^{(\nu)}-x^{(\nu-1)}}{f\left(x^{(\nu-1)}\right)}\right|>0.125 \quad$ (a root is expected to be at a location close to $x^{(\nu)}$)
Let $X P=X Q=x^{(\nu-1)}, F P=F Q=f\left(x^{(\nu-1)}\right), x^{(\nu+1)}=x^{(\nu-1)}$ and $f\left(x^{(\nu+1)}\right)=f\left(x^{(\nu-1)}\right)$ and go to (c)
If $\left|\frac{\left(x^{(\nu)}-x^{(\nu-1)}\right.}{f\left(x^{(\nu-1)}\right)}\right| \leq 0.125$,
If the value was updated in the positive direction,
Let $X P=x^{(\nu-1)}, X Q=x^{(\nu+1)}, F P=f\left(x^{(\nu-1)}\right)$ and $F Q=f\left(x^{(\nu+1)}\right)$
(set searched interval) and perform an extremum search in the interval from $x^{(\nu-1)}$ to $x^{(\nu+1)}$.
If the value was updated in the negative direction,
Let $X P=x^{(\nu+1)}, X Q=x^{(\nu-1)}, F P=f\left(x^{(\nu+1)}\right)$ and $F Q=f\left(x^{(\nu-1)}\right)$ (set searched interval) and perform an extremum search in the interval from $x^{(\nu+1)}$ to $x^{(\nu-1)}$.
If a root is not found by the extremum search then skip to (c).

If none of the above conditions occurs
set $x^{(\nu)}=x^{(\nu+1)}$ and return to (a).
(3) If the function increases to the right in the interval from $x^{(\nu-1)}$ to $x^{(\nu+1)}$, let $I S=-1$; if it increases to the left, let $I S=1$.
Let $R=1, P=0, I O L D=\operatorname{sign}\left\{1, I S \times f\left(x^{(\nu+1)}\right)\right\}$, and $I 1=-I O L D$.
(4) Let $I 2=\operatorname{sign}\left\{1, I S \times f\left(x^{(\nu+1)}\right)\right\}$.

If $I 2 \times I 1>0$, then change is accelerated by letting $P=P+1$; otherwise, it is decelerated by letting $R=R+1$. (For I : Old update direction and $I 2:$ New update direction, + indicates update in the positive direction and - indicates update in the negative direction.)
Let $x^{(\nu)}=x^{(\nu+1)}, f\left(x^{(\nu)}\right)=f\left(x^{(\nu+1)}\right), x^{(\nu-1)}=x^{(\nu)}$ and $f\left(x^{(\nu-1)}\right)=f\left(x^{(\nu)}\right)$.
$x^{(\nu)}$ is updated by the following iteration.
Let ε be the unit for determining error, and let $x^{(\nu+1)}$ be as follows:

$$
x^{(\nu+1)}=x^{(\nu)}+I S \times \sinh ^{-1}\left(f\left(x^{(\nu)}\right)\right) \times 2^{\{(P-3) / 3-R\}}+\left|x^{(\nu)}+1\right| \times I 2 \times \varepsilon
$$

(For $I S$: Global function slope estimate, + indicates decreasing to the right and - indicates increasing to the right.)
This update is repeated at least three times.
(5) For $f\left(x^{(\nu-1)}\right) \gg f\left(x^{(\nu)}\right) \gg f\left(x^{(\nu+1)}\right)$, if $\left|f\left(x^{(\nu+1)}\right)\right|$ becomes sufficiently small, return to the secant method shown in (a).
(6) If the signs of $f\left(x^{(\nu-1)}\right)$ through $f\left(x^{(\nu+1)}\right)$ are the same when $\left|f\left(x^{(\nu-1)}\right)\right|<\left|f\left(x^{(\nu)}\right)\right|<\left|f\left(x^{(\nu+1)}\right)\right|$, then:

```
If \(I 2>0\) (update direction is positive)
    Update the right end of the searched interval by setting
    \(X Q=x^{(\nu+1)}\) and \(F Q=f\left(x^{(\nu+1)}\right)\)
If \(I 2 \leq 0\) (update direction is negative)
    Update the right end of the searched interval by setting
    \(X P=x^{(\nu+1)}\) and \(F P=f\left(x^{(\nu+1)}\right)\)
```

Then, perform an extremum search in the interval from $x^{(\nu+1)}$ to $x^{(\nu-1)}$.
If a root was not found by the extremum search, then set $x^{(\nu+1)}$ and $f\left(x^{(\nu+1)}\right)$ for the endpoint of the searched interval in the direction opposite to the direction that the solution had been updated, let:

$$
I S=-I S, I O L D=-I O L D, I 2=I O L D, P=0, R=1
$$

so that the value is updated in the opposite direction, and return to (d).
(7) If the signs of $f\left(x^{(\nu-1)}\right)$ through $f\left(x^{(\nu+1)}\right)$ are the same when $\left|f\left(x^{(\nu-1)}\right)\right|<\left|f\left(x^{(\nu)}\right)\right|<\left|f\left(x^{(\nu+1)}\right)\right|$, then set $x^{(\nu+1)}$ and $f\left(x^{(\nu+1)}\right)$ for the endpoint of the searched interval in the direction opposite to the direction that the solution had been updated, let:

$$
I S=-I S, I O L D=-I O L D, I 2=I O L D, P=0, R=1
$$

so that the value is updated in the opposite direction, and return to (d).
(8) If none of the conditions shown in (e) through (g) occurs, then let $I 1=I 2$ and return to (d).

The extremum search portion of the algorithm obtains the minimum point by combining a golden section search with sequential parabolic interpolation. (See Section 5.1.2)
If a reversal of the sign of the equation value is seen during the extremum search, then the bisection method is performed to obtain the root that is on the initial value side of that point.

Figure 4-2 shows an example of the movements described above in (a) through (h).
Figure 4-2

(1) Perform the secant method iteration.
(2) $\left|f\left(x^{(\nu+1)}\right)\right|>\left|f\left(x^{(\nu)}\right)\right|$ occurs.
(3) An extremum search is performed, but the extremum is not a root.
(4) The solution is updated according to the update expression shown in (d) and the condition described in (g) occurs.
(5) A similar situation as described in (4) occurs even though the movement is in the opposite direction.
(6) Since $\left|f\left(x^{(\nu+1)}\right)\right|<\left|f\left(x^{(\nu)}\right)\right|$ occurs, the root is obtained by the secant method of (a) or (d).

Convergence is determined as follows. If e_{r} is assumed to be the required precision, then convergence is considered to have occurred when:

$$
\begin{aligned}
& \left(\left|x^{(\nu+1)}-x^{(\nu)}\right|<e_{r} \max \left(1,\left|x^{(\nu+1)}\right|\right) \text { and }\left|f\left(x^{(\nu+1)}\right)\right|<e_{r}+64 \varepsilon\left|x^{(\nu+1)}\right|\right) \\
& \text { or } f\left(x^{(\nu+1)}\right)=0
\end{aligned}
$$

Also, for an extremum search or for the bisection method, convergence is considered to have occurred when:

$$
\text { (Search reduction interval) }<e_{r} \max (1,|x|) \text { and }|f(x)|<e_{r}+64 \varepsilon|x|
$$

4.1.2.5 The roots of real functions (interval specification; derivative definition not required)

Assume that $f(x)$ is continuous on the interval $[a, b]$ and that the signs of the values $f(a)$ and $f(b)$ are opposite.
(1) Let $c=a$ and $d=e=b-a$.
(2) If $|f(c)|<|f(b)|$, exchange b and c and let a be the c after the exchange. In this way, the relationship $|f(b)| \leq|f(c)|$ always will occur and the root is searched for in the interval $[b, c]$.
(3) Let $m=\frac{c-b}{2}$. Also, for:
$\varepsilon=$ Unit for determining error,
$e_{r}=$ Required precision
let:

$$
\delta=\frac{\varepsilon|b|+e_{r}}{2}
$$

(4) If $|e| \geq \delta$ and $|f(b)|<|f(a)|$, then

If $a=c$, the linear interpolation method is applied in the interval between c and b.

$$
\begin{aligned}
P & =(c-b) \frac{f(b)}{f(c)} \\
Q & =1-\frac{f(b)}{f(c)}
\end{aligned}
$$

If $a \neq c,(|f(a)| \leq|f(c)|)$, the inverse quadratic interpolation method is applied in the intervals between a, b and c.

$$
\begin{aligned}
& \text { For } r_{1}=\frac{f(a)}{f(c)}, r_{2}=\frac{f(b)}{f(c)}, r_{3}=\frac{f(b)}{f(a)} \\
& R=r_{3}\left\{(c-b) r_{1}\left(r_{1}-r_{2}\right)-(b-a)\left(r_{2}-1\right)\right\} \\
& Q=\left(r_{1}-1\right)\left(r_{2}-1\right)\left(r_{3}-1\right)
\end{aligned}
$$

If $\left|\frac{P}{Q}\right|>\frac{3}{4}|c-b|-|\delta|$ or $\left|\frac{P}{Q}\right|>\left|\frac{e}{2}\right|$, then skip to (e).
Otherwise, set $e=d$ and $d=-\frac{P}{Q}$.
Set $a=b$ and let:

$$
b=b+\max (d, \operatorname{sign}(\delta, c-b))
$$

(5) If the condition described in (d) does not occur, then set $a=b$, use the bisection method to set b to the midpoint of the interval $[b, c]$, and let $d=e=m$.
(6) If the signs of the values $f(b)$ and $f(c)$ are the same, then set $c=a$ and let $d=e=b-a$.

After the above operation, return to (b).
Convergence is considered to have occurred if $f(b)=0$ or if $|c-b| \leq e_{r}+2 \varepsilon|b|$.

4.1.2.6 All the roots of real functions (interval specification; derivative definition not required)

This algorithm basically uses the same algorithm as the one described in (4) that is for finding a single root of a nonlinear equation when the derivative definition is not required. However, this algorithm uses the fact that $I S$ can be used in the expression shown in (d) to keep the search direction fixed so that roots are always obtained by moving inward from the endpoints of the interval. That is, this algorithm differs from the one in (4), and the following points have been changed.

- Intervals where a search for the solution will be excluded are taken from both ends of the interval.
- First, a root is sought beginning from the right end of the interval. If a root is found, the right end of the interval is changed to that point. Next, a root is sought beginning from the left end of the interval. If a root is found, the left end of the interval is changed to that point.
- If the root update value leaves the interval, it is moved back into the interval and processing continues.
- If the sign of the equation value changes during an extremum search, the roots to both the left and right of that point are obtained by the bisection method.
- If the interval size becomes less than or equal to δ, then processing ends.

When a root is found, the interval size is reduced. However, at this time, the endpoint is shifted by a distance of the following value of δ towards the interior of the interval from that root.

$$
\begin{aligned}
\delta= & \max \left(2 e_{r},(|A|+|B|) \varepsilon, \sqrt[3]{\varepsilon}\right) \\
\text { Where, } & e_{r}: \text { Required precision } \\
& \varepsilon: \text { Unit for determining error } \\
& A, B: \text { Left and right ends of the initially set interval }
\end{aligned}
$$

4.1.2.7 The roots of complex functions (initial value specified; derivative definition not required)

This algorithm finds a solution according to Muller's method.
If the initial value $z=0$, then assume that the starting values are:

$$
\left\{\begin{array}{lll}
z_{1} & = & -1.0 \\
z_{2} & = & 1.0 \\
z_{3} & = & 0.0
\end{array}\right.
$$

If the initial value $z \neq 0$, then assume that the starting values are:

$$
\left\{\begin{array}{l}
z_{1}=0.9 z \\
z_{2}=1.1 z \\
z_{3}=z
\end{array}\right.
$$

Let $f_{i}=f\left(z_{i}\right)$ and define q, q^{\prime}, a, b and c as follows:

$$
\begin{aligned}
q & =\frac{z_{3}-z_{2}}{z_{2}-z_{1}} \\
q^{\prime} & =q+1 \\
a & =q f_{3}-q q^{\prime} f_{2}+q^{2} f_{1} \\
b & =\left(q+q^{\prime}\right) f_{3}-q^{\prime 2} f_{2}+q^{2} f_{1} \\
c & =q^{\prime} f_{3}
\end{aligned}
$$

Define r as follows:

$$
r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{2 c}{-b \mp \sqrt{b^{2}-4 a c}}
$$

and take the r having the smallest absolute value. (If the denominator of r is zero and $f_{1}=f_{2}=f_{3}$, then set $r=1$.)
Let $z=z_{3}+r\left(z_{3}-z_{2}\right)$, and then set z_{3}, z_{2} and z_{1} as follows:

$$
\left\{\begin{array}{l}
z_{3}=z \\
z_{2}=z_{3} \\
z_{1}=z_{2}
\end{array}\right.
$$

and repeatedly iterate these steps.
Convergence is determined as follows. If e_{r} is assumed to be the required precision and ε is assumed to be the unit for determining error, then convergence is considered to have occurred when:

$$
\left(\left|z-z_{3}\right|<e_{r} \max (1,|z|) \text { and }|f(z)|<e_{r}+64 \varepsilon|z|\right) \text { or } f(z)=0
$$

4.1.2 8 The roots of a set of simultaneous nonlinear equations (Jacobian matrix definition optional)

This algorithm obtains a solution according to Marquardt's method, which is explained below.
(1) Let $\lambda=0.1$.
(2) Let the Jacobian matrix of $f(\boldsymbol{x})$ be A.

For $f(\boldsymbol{x})$ and \boldsymbol{x} defined as follows:

$$
\begin{aligned}
f(\boldsymbol{x}) & =\left(f_{1}, f_{2}, \cdots, f_{n}\right)^{T} \\
\boldsymbol{x} & =\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T}
\end{aligned}
$$

where n is the number of order, A is defined as follows:

$$
A=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & & & \vdots \\
\vdots & & & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \cdots & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & \cdots & \cdots & a_{1 n} \\
\vdots & & & \vdots \\
\vdots & & & \vdots \\
a_{n 1} & \cdots & \cdots & a_{n n}
\end{array}\right]
$$

Let D be a matrix formed by setting non-diagonal elements of $A^{T} A$ to zero.
(3) Obtain Δx by solving the simultaneous linear equation:

$$
\left(A^{T} A+\lambda D\right) \Delta \boldsymbol{x}=-A^{T} f(\boldsymbol{x})
$$

(The expression is equivalent to applying Marquardt's method in which x is scaled by $D^{1 / 2}$ and the λI term is added.)
(4) Assume $\boldsymbol{y}=\boldsymbol{x}+\Delta \boldsymbol{x}$.

If $\|f(\boldsymbol{y})\| \geq\|f(\boldsymbol{x})\|$, (where the symbol $\|\cdots\|$ indicates the square norm), then:
If $\lambda=0$, set $\lambda=0.001$
and:
If $\lambda \neq 0$, set $\lambda=10 \lambda$
and then return to (c).
If $\|f(\boldsymbol{y})\|<\|f(\boldsymbol{x})\|$, then if $\|f(\boldsymbol{y})\|<\|f(\boldsymbol{x})\|$ also occurred during the previous iteration, set $\lambda=\frac{\lambda}{10}$.
Set $\boldsymbol{x}=\boldsymbol{y}$ and return to (b).
Since the above Marquardt's method explicitly forms a system of normal equations, it has the shortcoming that it may not converge due to error. Therefore, if e_{r} is assumed to be the required precision and ε is assumed to be the unit for determining error, then if the following condition is reached:

$$
\begin{aligned}
& \left(\|\Delta \boldsymbol{x}\|_{\infty} \leq e^{\prime} \max \left(1,\|\boldsymbol{y}\|_{\infty}\right) \text { and }\|f(\boldsymbol{y})\|_{\infty} \leq e^{\prime}\right) \text { or }\|f(\boldsymbol{y})\|_{\infty}=0 \\
& e^{\prime}=e_{r}{ }^{0.2}
\end{aligned}
$$

where the symbol $\|\cdots\|_{\infty}$ indicates the maximum of the absolute values of the elements
or if $\|f(\boldsymbol{y})\|$ becomes only 0.75 times the value of $\|f(\boldsymbol{y})\|$ from the (4n)-th previous iteration, then processing shifts to the following Newton's method with scaling.
Newton's method with scaling
Define g_{i} as follows:

$$
g_{i}=\max \left(\varepsilon, a_{i 1}, a_{i 2}, \cdots, a_{i n}\right) \text { for }(i=1, \cdots, n)
$$

and perform the following scaling operations:

$$
\begin{aligned}
& \left(a_{i 1}, a_{i 2}, \cdots, a_{i n}\right)=\frac{\left(a_{i 1}, a_{i 2}, \cdots, a_{i n}\right)}{g_{i}} \\
& f_{i}=\frac{f_{i}}{g_{i}}
\end{aligned}
$$

Solve the simultaneous linear equations $A \Delta \boldsymbol{x}=-f(\boldsymbol{x})$ using the Jacobian matrix A and function values $f(\boldsymbol{x})$ that were scaled in this way, and update the solution by using $\Delta \boldsymbol{x}$ as the correction vector.
Convergence is assumed to have occurred when the following relationships hold:

$$
\begin{aligned}
& \left(\|\Delta \boldsymbol{x}\|_{\infty}<e_{r} \max \left(1,\|\boldsymbol{y}\|_{\infty}\right) \text { and }\|f(\boldsymbol{y})\|_{\infty}<e_{r}+64 \varepsilon\|\boldsymbol{y}\|_{\infty}\right) \\
& \text { or }\|f(\boldsymbol{y})\|_{\infty}=0
\end{aligned}
$$

4.1.2 9 The roots of a set of simultaneous nonlinear equations (Jacobian matrix definition not required)

(1) Correction vector $\Delta \boldsymbol{x}$ calculation

Assume that $f(\boldsymbol{x}), A$ and G are as follows:
$f(\boldsymbol{x})$: Function value $f(\boldsymbol{x})$ at variable value \boldsymbol{x}
$A:$ Jacobian matrix $\frac{\partial f}{\partial \boldsymbol{x}}$
G : Inverse matrix of the Jacobian matrix

First, let the Gauss-Newton solution be represented by $\Delta \boldsymbol{x}_{G}$ and the steepest descent solution be represented by $\Delta \boldsymbol{x}_{S}$ as follows:

$$
\begin{aligned}
\Delta \boldsymbol{x}_{G} & =-G f(\boldsymbol{x}) \\
\Delta \boldsymbol{x}_{S} & =\left(\frac{\|\boldsymbol{b}\|^{2}}{\|A \boldsymbol{b}\|^{2}}\right) \boldsymbol{b}
\end{aligned}
$$

where $\boldsymbol{b}=-A^{T} f(\boldsymbol{x})$.
At first, let $\Delta \boldsymbol{x}=\Delta \boldsymbol{x}_{S}$ and $d=\left\|\Delta \boldsymbol{x}_{S}\right\|$.
For the second and subsequent iteration, let d be the step size.
(a) If $d \leq\left\|\Delta \boldsymbol{x}_{S}\right\|$, then:

$$
\Delta \boldsymbol{x}=d \frac{\Delta \boldsymbol{x}_{S}}{\left\|\Delta \boldsymbol{x}_{S}\right\|}
$$

(b) If $\left\|\Delta \boldsymbol{x}_{S}\right\|<d<\left\|\Delta \boldsymbol{x}_{G}\right\|$, then:

$$
\Delta \boldsymbol{x}=\alpha \Delta \boldsymbol{x}_{S}+\beta \Delta \boldsymbol{x}_{G} \text { for } \quad(\alpha>0, \beta>0,\|\Delta \boldsymbol{x}\|=d)
$$

(c) If $\left\|\Delta \boldsymbol{x}_{G}\right\| \leq d$

$$
\Delta x=\Delta x_{G}
$$

(2) Step size d modification

Let Δs be the difference of the sum of the squares of the linearized model function values and let ΔT be the difference of the sum of the squares of the actual function values. Estimate the degree of nonlinearity by using the ratio r of these values.

$$
\begin{aligned}
\Delta s & =\|f(\boldsymbol{x})-A \Delta \boldsymbol{x}\|^{2}-\|f(\boldsymbol{x})\|^{2} \\
\Delta T & =\|f(\boldsymbol{x}+\Delta \boldsymbol{x})\|^{2}-\|f(\boldsymbol{x})\|^{2} \\
r & =\frac{\Delta T}{\Delta s}
\end{aligned}
$$

(a) If $r<0.1$, then reduce d by half and let $\tau=1.0$.
(b) If $r \geq 0.1$, then calculate λ, which is the rate of increase of d, as follows:

$$
\lambda=\sqrt{1-\frac{(r-0.1) \Delta s}{s_{p}+\sqrt{s_{p}{ }^{2}-(r-0.1) s_{s} \Delta s}}}
$$

where, for δf defined as:

$$
\delta f=f(\boldsymbol{x}+\Delta \boldsymbol{x})-\{f(\boldsymbol{x})+A \Delta \boldsymbol{x}\}
$$

s_{p} and s_{s} are as follows:

$$
\begin{aligned}
& s_{p}=\sum_{i=1}^{n}\left|f_{i}(\boldsymbol{x}+\Delta \boldsymbol{x}) \delta f_{i}\right| \\
& s_{s}=\|\delta f\|^{2}
\end{aligned}
$$

Actually, to prevent the value of d from oscillating, d is increased only when an increase is required two times consecutively. Also, the rate of increase is held to at most 2. The actual rate of increase μ is calculated as follows:

$$
\begin{aligned}
\mu & =\min (2, \lambda, \tau) \\
\tau & =\frac{\lambda}{\mu}
\end{aligned}
$$

where the initial value for τ is assumed to be 1 .
In addition, an upper limit $d_{\max }$ and lower limit $d_{\text {min }}$ are set for d and d is controlled so that it falls between these values.
(3) Calculations of the Jacobian matrix A and its inverse matrix G

The Jacobian matrix is obtained according to a difference only for the first iteration, and thereafter, it is sequentially updated. Similarly, its inverse matrix is obtained from the Jacobian matrix only the first iteration, and thereafter, it is sequentially updated. The sequential updates are calculated according to the following formulas:

$$
\begin{aligned}
A & =A+\delta f \frac{\Delta \boldsymbol{x}^{T}}{\|\Delta \boldsymbol{x}\|^{2}} \\
G & =G+(\Delta \boldsymbol{x}-G \Delta f) \Delta \boldsymbol{x}^{T} \frac{G}{\Delta \boldsymbol{x}^{T}} G \Delta f
\end{aligned}
$$

where:

$$
\Delta f=f(\boldsymbol{x}+\Delta \boldsymbol{x})-f(\boldsymbol{x})
$$

(4) Correction vector independence check

To correct the Jacobian matrix efficiently, the correction vectors that are taken sequentially must be nearly mutually orthogonal. Therefore, an original independence concept is defined according to a hybrid method, and the correction vectors are controlled so that they are taken in directions that are as independent as possible. A vector α is said to be independent of the j vectors $\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{j}\right)$ if α forms an angle of at least 30 degrees with an arbitrary vector of the space defined by these j vectors. The calculation for this independence test conceived by Powell is as follows.
n mutually independent vectors from the vectors used to correct the Jacobian matrix during the past $(2 \times n)$ iterations are made to be orthogonal and are stored in $\Omega=\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right)$. The array ℓ of size n is used to store information indicating the number of iterations earlier in which ω_{i} was the correction vector. That is, this information indicates that ω_{i} is the vector that was taken ℓ_{i} iterations earlier. Ω is initialized as the unit matrix, and ℓ is initialized with values $\ell_{i}=n-i+1$ for $(i=1, \cdots, n)$
When a solution is corrected, the following steps are performed.
(a) When $\Delta \boldsymbol{x}=\Delta \boldsymbol{x}_{G}$

Regardless of its independence, $\Delta \boldsymbol{x}$ is taken as the correction vector.
(b) When $\Delta \boldsymbol{x}=\Delta \boldsymbol{x}_{G}$ does not occur

If $\ell_{1}<2 n$ or if $\Delta \boldsymbol{x}$ is independent of $\left(\omega_{2}, \omega_{3}, \cdots, \omega_{n}\right)$, that is, if $\left|\omega_{1}^{T} \Delta \boldsymbol{x}\right|>\frac{\|\Delta \boldsymbol{x}\|}{2}$, then $\Delta \boldsymbol{x}$ is taken as the correction vector. Otherwise, the solution is not corrected.
When the Jacobian matrix is corrected, the following steps are performed.
If $\|\Delta \boldsymbol{x}\|<d_{\min }$ or if $\ell_{1}=2 n$ and $\Delta \boldsymbol{x}$ is not independent of $\left(\omega_{2}, \omega_{3}, \cdots, \omega_{n}\right)$, then $\Delta \boldsymbol{x}=d_{\min } \omega_{1}$ is set.

Otherwise, $\Delta \boldsymbol{x}$ is taken.
Next, Ω and ℓ are revised. When $\Delta \boldsymbol{x}=d_{\min } \omega_{1}$ has been set, the following values should be set:

$$
\begin{array}{rlr}
\omega_{i} & =\omega_{i+1} & \text { for } \quad(i=1, \cdots, n-1) \\
\omega_{n} & =\omega_{1} & \\
\ell_{i} & =\ell_{i+1}+1 & \text { for } \quad(i=1, \cdots, n-1) \\
\ell_{n} & =1 &
\end{array}
$$

Otherwise, the following is performed.
The minimum value k is obtained for which $\left(\omega_{k+1}, \omega_{k+2}, \cdots, \omega_{n}, \Delta \boldsymbol{x}\right)$ are mutually independent. $\left(\omega_{1}, \cdots, \omega_{k-1}, \omega_{k+1}, \omega_{k+2}, \cdots, \omega_{n}, \Delta \boldsymbol{x}\right)$ are made to be orthogonal, and these are again assumed to be $\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right)$. The following values are then set:

$$
\begin{aligned}
& \ell_{i}=\ell_{i}+1 \quad \text { for }(i=1, \cdots, k-1) \\
& \ell_{i}=\ell_{i+1}+1 \quad \text { for } \quad(i=k, \cdots, n-1) \\
& \ell_{n}=1
\end{aligned}
$$

In this way, the relationship $\ell_{1} \leq 2 n$ always holds.
(5) Switch of processing to Newton's method with scaling

If the various equations of the given problem have not been scaled, then trouble may occur during the solution modification process and this algorithm will not converge. Therefore, the following condition is used to detect the trouble during the solution modification process and cause processing to switch to Newton's method with scaling.

$$
\frac{\|f(\boldsymbol{x}+\Delta \boldsymbol{x})\|^{2}-\|f(\boldsymbol{x})\|^{2}}{d}>10^{10}
$$

The algorithm of Newton's method with scaling is as follows.
(a) Jacobian matrix calculation

The Jacobian matrix is obtained according to a difference during every iteration.
(b) Correction vector calculation

Assume that the (i, j) component of the Jacobian matrix is $a_{i j}$. First, the values g_{i} are obtained as follows.
$g_{i}=\max \left(\right.$ Unit for determining error, $\left.a_{i 1}, a_{i 2}, \cdots, a_{i N}\right)$ for $(i=1,2, \cdots, N)$
Then the following scaling operations are performed:

$$
\begin{aligned}
& \left(a_{i 1}, a_{i 2}, \cdots, a_{i N}\right) \leftarrow \frac{\left(a_{i 1}, a_{i 2}, \cdots, a_{i N}\right)}{g_{i}} \\
& f_{i} \leftarrow \frac{f_{i}}{g_{i}} \\
& \text { for } \quad(i=1,2, \cdots, N)
\end{aligned}
$$

The simultaneous linear equations $A \Delta \boldsymbol{x}=-f(\boldsymbol{x})$ obtained by using the Jacobian matrix A and function values $f(\boldsymbol{x})$ that were scaled in this way are solved according to the Crout method. This $\Delta \boldsymbol{x}$ becomes the correction vector.
(6) Convergence decision

Convergence is assumed to have occurred when the following relationships hold:

$$
\begin{aligned}
& \left(\|\Delta \boldsymbol{x}\|_{\infty}<e_{r} \max \left(1,\|\boldsymbol{x}+\Delta \boldsymbol{x}\|_{\infty}\right) \text { and }\|f(\boldsymbol{x}+\Delta \boldsymbol{x})\|_{\infty}<e_{r}+64 \varepsilon\|\boldsymbol{x}+\Delta \boldsymbol{x}\|\right) \\
& \text { or } f(\boldsymbol{x}+\Delta \boldsymbol{x})=0
\end{aligned}
$$

where e_{r} is the required relative precision, and:

$$
\begin{aligned}
\|\boldsymbol{x}\|_{\infty} & =\max _{i}\left|x_{i}\right| \\
\|\Delta \boldsymbol{x}\|_{\infty} & =\max _{i}\left|\Delta x_{i}\right| \\
\|f(\boldsymbol{x}+\Delta \boldsymbol{x})\|_{\infty} & =\max _{i}\left|f_{i}\right|
\end{aligned}
$$

4.1.3 Reference Bibliography

(1) Forsythe, G. E. , Malcolm, M. A. and Moler, C. B. , "Computer Methods for Mathematical Computations", Prentice-Hall Inc. , (1978).

4.2 ALGEBRAIC EQUATIONS

4.2.1 DLARHA, RLARHA

The Roots of Real Coefficient Algebraic Equations

(1) Function

DLARHA or RLARHA solves an algebraic equation having real coefficients. (The roots are stored in real arrays.)
(2) Usage

Double precision:
CALL DLARHA (A, N, XR, XI, WK, IERR)
Single precision:
CALL RLARHA (A, N, XR, XI, WK, IERR)
(3) Arguments
$\begin{array}{ll}\begin{array}{l}\text { D:Double precision real } \\ \text { R:Single precision real }\end{array} & \begin{array}{l}\text { Z:Double precision complex } \\ \text { C:Single precision complex }\end{array}\end{array} \quad$ I: $\left\{\begin{array}{l}\text { INTEGER(4) as for } 32 \text { bit Integer } \\ \text { INTEGER (8) as for } 64 \text { bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	$\mathrm{N}+1$	Input	Coefficients of the algebraic equation stored in the descending powers of $x ; \mathrm{CA}(1)$ is the co- efficient of x^{N}, and CA(N+1) is the constant term.
2	N	I	1	$\left\{\begin{array}{l}\text { Input } \\ \mathrm{R}\end{array}\right\}$	N
3	XR	$\left\{\begin{array}{l}\text { Degree of algebraic equation }\end{array}\right.$			
4	XI	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	N	Output	Imaginary parts of the roots of the algebraic equation
5	WK	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	$4 \times(\mathrm{N}+1)$	Work	Work area (not used when $\mathrm{N} \leq 4)$
6	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) At least one of $A(i), i=1,2, \cdots, N$ must satisfy the condition $|A(i)|>$ Unit for determining error.
(b) $\mathrm{N} \geq 1$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
$2000+i$	The first i roots were obtained correctly, but the subsequent roots were obtained with bad precisions.	Processing terminates with the precision of the $(i+1)$ th root remaining bad.
$2500+j$	$\|\mathrm{A}(\mathrm{i})\| \leq$ Unit for determining error, $\mathrm{i}=1,2, \cdots, \mathrm{j}$	Processing is performed on condition that $\mathrm{A}(\mathrm{i})=0.0, \mathrm{i}=1,2, \cdots, \mathrm{j}$
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.
$4000+i$	The first i roots were obtained, but the subsequent roots could not be obtained.	The first i roots are calculated, and then processing is aborted.

(6) Notes
(a) If there are more than four roots, then except for the last four roots, this subroutine tends to obtain roots in ascending order of their distance from 0.0.
(b) If there is a multiple root, then the relative precision for a root having multiplicity n will be on the order of $\sqrt[n]{\text { Unit for determining error. }}$
(7) Example
(a) Problem

Solve the following equation:

$$
x^{10}-55 x^{8}+1023 x^{6}-7645 x^{4}+21076 x^{2}-14400=0
$$

(b) Input data

Array A which contains coefficients of the algebraic equations:

$$
\begin{array}{lll}
\mathrm{A}(1)=1.0, & \mathrm{~A}(2)=0.0, & \mathrm{~A}(3)=-55.0, \\
\mathrm{~A}(4)=0.0, & \mathrm{~A}(5)=1023.0, & \mathrm{~A}(6)=0.0, \\
\mathrm{~A}(7)=-7645.0, & \mathrm{~A}(8)=0.0, & \mathrm{~A}(9)=21076.0, \\
\mathrm{~A}(10)=0.0, & \mathrm{~A}(11)=14400.0 . &
\end{array}
$$

$\mathrm{N}=10$.
(c) Main program

```
            PROGRAM BLARHA
! *** EXAMPLE OF DLARHA ***
                                    IMPLICIT REAL (8) (A-H,O-Z)
                                    INPLICIT REALRER N,IERR I
                                    DIMENSION A (11), XR(10),XI (10),WK(44)
READ (5,*) N
    READ (5,*) (A (I) , I=1,N+1, 1)
    WRITE(6,1000)
    WRITE (6,2000) N
    WRITE (6,3000)
    WRITE(6,4000) (A (I), I=1,N+1,1)
    CALL DLARHA (A,N ,XR,XI,WK,IERR)
    WRITE (6,5000)
    WRITE (6,6000) IERR
    WRITE (6,7000)
    WRITE (6,8000) (XR(I),XI (I) , I=1,N , 1)
    STOP
!
1000 FORMAT(', ',/,5X,'*** DLARHA ***',/,&
    7X,'* ALGEBRAIC EQUATION *',/,&
    9X,'X**10-55*(X**8)+1023*(X**6)-7645*(X**4)+21076*(X**2)',&
    ,-14400=0',/,&
    6X,'** INPUT **')
    2000 FORMAT (9X,'DEGREE OF ALGEBRAIC EQUATION = ,,I2)
    3000 FORMAT(9X,'COEFFICIENTS OF ALGEBRAIC EQUATION',,/)
4000 FORMAT (9X,F8.1)
```

5000 FORMAT(' ', /, /,6X,'** OUTPUT **')
6000 FORMAT (9X,'IERR $=$, ', I4)
7000 FORMAT (9X,' RDOTS ',','\& \quad 9X,'REAL PART',13X,'IMAGINARY PART', /)
8000 FORMAT (9X,D17.10,5X, D17.10)
END
(d) Output results

```
*** DLARHA ***
    * ALGEBRAIC EQUATION *
    X**10-55*(X**8)+1023*(X**6)-7645*(X**4)+21076*(X**2)-14400=0
** INPUT **
    DEGREE OF ALGEBRAIC EQUATION = 10
    COEFFICIENTS OF ALGEBRAIC EQUATION
        1.0
** OUTPUT **
    IERR =
    REAL PART
```

$0.1000000000 \mathrm{D}+01$ $-0.1000000000 \mathrm{D}+01$ $0.2000000000 \mathrm{D}+01$ $-0.2000000000 \mathrm{D}+01$ $0.3000000000 \mathrm{D}+01$ $-0.3000000000 \mathrm{D}+01$ $0.4000000000 \mathrm{D}+01$ 0. $5000000000 \mathrm{D}+01$ $-0.5000000000 \mathrm{D}+01$ $-0.4000000000 \mathrm{D}+01$

IMAGINARY PART
$0.0000000000 \mathrm{D}+00$
$0.0000000000 \mathrm{D}+00$
0.0000000000D+00
$0.0000000000 \mathrm{D}+00$
$0.0000000000 \mathrm{D}+00$
$0.0000000000 \mathrm{D}+00$
$0.0000000000 \mathrm{D}+00$
$0.0000000000 \mathrm{D}+00$
$0.0000000000 \mathrm{D}+00$ $0.0000000000 \mathrm{D}+00$

4.2.2 ZLACHA, CLACHA

The Roots of Complex Coefficient Algebraic Equations
(1) Function

ZLACHA or CLACHA solves an algebraic equation having complex coefficients. (The coefficients and the roots are stored in complex arrays.)
(2) Usage

Double precision:
CALL ZLACHA (CA, N, NEV, CX, WK, CWK, IERR)
Single precision:
CALL CLACHA (CA, N, NEV, CX, WK, CWK, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad \mathrm{I}:\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	CA	$\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}$	$\mathrm{N}+1$	Input	Coefficients of the algebraic equation stored in the descending powers of $x ; \mathrm{CA}(1)$ is the coefficient of x^{N}, and $\mathrm{CA}(\mathrm{N}+1)$ is the constant term.
2	N	I	1	Input	Degree of algebraic equation
3	NEV	I	1	Input	Maximum number of function evaluations (Default value: 100)
				Output	Actual number of function evaluations
4	CX	$\left\{\begin{array}{l}\text { Z } \\ \text { C }\end{array}\right\}$	N	Output	Roots of the algebraic equation
5	WK	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	$\mathrm{N}+1$	Work	Work area
6	CWK	$\left\{\begin{array}{l}\text { Z } \\ \text { C }\end{array}\right\}$	$4 \times(\mathrm{N}+1)$	Work	Work area
7	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{CA}(1) \neq(0,0)$
(b) $\mathrm{N} \geq 1$
(c) $\mathrm{NEV}>0$ (except when 0 is entered in order to set NEV to the default value)

(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1500	Restriction (c) was not satisfied.	Processing is performed with the default value set for NEV.
$2000+i$	After the first i roots were obtained, con- vergence did not occur within the maxi- mum number of function evaluations.	Processing terminates with roots after the first i roots not converging.
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.

(6) Notes
(a) If 0 is entered for the argument NEV, then the default value will be set.
(b) If there is a multiple root, then the relative precision for a root having multiplicity n will be on the order of $\sqrt[n]{\text { Unit for determining error. }}$

(7) Example

(a) Problem

Solve the following equation:

$$
x^{10}-100 \sqrt{-1} x^{9}-17 x^{6}+1700 \sqrt{-1} x^{5}+16 x^{2}-1600 \sqrt{-1} x=0
$$

(b) Input data

Array CA which contain coefficients of the algebraic equations:

$$
\begin{array}{ll}
\mathrm{CA}(1)=(1.0,0.0), & \mathrm{CA}(2)=(0.0,-100.0) \\
\mathrm{CA}(2)=(0.0,0.0), & \mathrm{CA}(4)=(0.0,0.0) \\
\mathrm{CA}(5)=(-17.0,0.0), & \mathrm{CA}(6)=(0.0,1700.0) \\
\mathrm{CA}(7)=(0.0,0.0), & \mathrm{CA}(8)=(0.0,0.0) \\
\mathrm{CA}(9)=(16.0,0.0), & \mathrm{CA}(10)=(0.0,-1600.0), \\
\mathrm{CA}(11)=(0.0,0.0) &
\end{array}
$$

$\mathrm{N}=10$ and $\mathrm{NEV}=0$.
(c) Main program
! *** EXAMPLE OF ZLACHA ***
IMPLICIT COMPLEX (8) ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{V}, \mathrm{X}-\mathrm{Z}$)
IMPLICIT REAL (8) (W)
INTEGER N , NEV, IERR,
DIMENSION CA(11), CX (10), WK (11) , CWK (44)
$\operatorname{READ}(5, *) \quad \mathrm{N}$
$\operatorname{READ}(5, *)(\mathrm{CA}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N}+1,1)$
WRITE(6,1000)
$\operatorname{WRITE}(6,1000)$
$\operatorname{WRITE}(6,1500)$
$\begin{array}{ll}\text { WRITE } \\ \text { WRITE } & (6,2000) \\ \text { NEV }\end{array}$
WRITE $(6,2000)$
$\operatorname{WRITE}(6,2500)$
WRITE $(6,2500)$
$\operatorname{WRITE}(6,3000)(\mathrm{CA}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N}+1,1)$
CALL ZLACHA (CA , N , NEV , CX , WK , CWK , IERR)
WRITE $(6,3500)$
WRITE (6,4000) IERR
WRITE $(6,4500)$
WRITE $(6,5000)$
$\underset{\operatorname{WRITE}}{\operatorname{WR}} 6,5500)(\mathrm{CX}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N}, 1)$
STOP
$!$
1000 FORMAT (', ,/,5X,'*** ZLACHA ***', /,\&
7X,'* ALGEBRAIC EQUATION *
$9 \mathrm{X}, ' \mathrm{X} * * 10-100 \mathrm{I} *(\mathrm{X} * * 9)-17 *(\mathrm{X} * * 6)+1700 \mathrm{I} *(\mathrm{X} * * 5)+16 *(\mathrm{X} * * 2)$, , \&
' $-1600 \mathrm{I} * \mathrm{X}=0$ ', /, \&
1500 FORMAT (9X,'DEGREE OF ALGEBRAIC EQUATION $=$, ,I2)

```
2000 FORMAT (9X, 'MAXIMUM NUMBER OF FUNCTION EVALUATIONS = ',I3)
2500 FORMAT (9X,' 'COEFFICIENTS OF ALGEBRAIC EQUATION', /,\&
9X,'REAL PART', 5X,' 'IMAGINARY PART',/)
3000 FORMAT ( \(9 \mathrm{X}, \mathrm{F7} .1\), \(7 \mathrm{XX}, \mathrm{F7} .1\) )
```



```
4000 FORMAT (9X, 'IERR \(=\) ', ', I4)
4500 FORMAT (9X,', PRACTICAL NUMBER OF FUNCTION EVALUATIONS = ',I3)
```



```
5500 FORMAT(9X,D17.10,5X,D17.10)
END
```

(d) Output results

** OUTPUT **
IERR = 0
PRACTICAL NUMBER OF FUNCTION EVALUATIONS = 17
ROOTS
REAL PART IMAGINARY PART
$0.0000000000 \mathrm{D}+00$
$0.0000000000 \mathrm{D}+00$
0.2000000000D+01
-0.2000000000D+0
$0.0000000000 \mathrm{D}+00$
-0. $1000000000 \mathrm{D}+0$
$-0.0000000000 \mathrm{D}+00$
$0.1000000000 \mathrm{D}+01$
$0.0000000000 \mathrm{D}+00$
$0.1000000000 \mathrm{D}+03$
-0.2000000000D+01
$0.6483734377 \mathrm{D}-18$
$0.2000000000 \mathrm{D}+01$
$0.7826070366 \mathrm{D}-19$
$-0.1000000000 \mathrm{D}+01$
$0.8029504743 \mathrm{D}-18$
$0.1000000000 \mathrm{D}+01$
. $1000000000 \mathrm{D}+01$
$0.6074219118 \mathrm{D}-19$

4.3 NONLINEAR EQUATIONS

4.3.1 DLNRDS, RLNRDS

A Root of a Real Function (Initial Value Specified; Derivative Definition Required)

(1) Function

DLNRDS or RLNRDS obtains a root of a nonlinear equation from an initial value, when the derivative of the nonlinear equation is defined.
(2) Usage

Double precision:
CALL DLNRDS (F, DF, X, ER, NEV, IERR)
Single precision:
CALL RLNRDS (F, DF, X, ER, NEV, IERR)
(3) Arguments

D:Double precision real R:Single precision real	C:Double precision complex
C:Single precision complex	

\operatorname{INTEGER}(8) as for 64 b i t Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	F	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	-	Input	Name F(X) of function subprogram that defines the equation
2	DF	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	-	Input	Name $\operatorname{DF}(\mathrm{X})$ of function subprogram that defines the derivative
3	X	\{ $\left.\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Initial value of root
				Output	Root
4	ER	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Required precision (Default value: (Unit for determining error) \times 64)
5	NEV	I	2	Input	NEV(1): Maximum number of function evaluations (Default value: 100) NEV(2): Maximum number of derivative evaluations (Default value: 100)
				Output	NEV(1): Actual number of function evaluations NEV(2): Actual number of derivative evaluations
6	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\operatorname{NEV}(1)>0$ (except when 0 is entered in order to set $\operatorname{NEV}(1)$ to the default value)
(b) $\operatorname{NEV}(2)>0$ (except when 0 is entered in order to set $\operatorname{NEV}(2)$ to the default value)
(c) $\mathrm{ER} \geq$ Unit for determining error
(except when 0 is entered in order to set ER to the default value)
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1500	Restriction (a), (b) or (c) was not satisfied.	Processing is performed with the default value set for NEV(1), NEV(2) or ER.
4000	The root could not be obtained.	Processing is aborted.
5000	The root could not be obtained before the maximum number of function evaluations or maximum number of derivative evalu- ations was reached.	The value of X at that time is returned.

(6) Notes
(a) The actual name in the first argument DF must be declared using an EXTERNAL statement in the user program, and a function subprograms having the actual name specified for F and DF must be created. (See Section 4.1.1) This function subprogram (in double-precision) should be created as follows.

Function subprogram creation method

```
REAL(8) FUNCTION F(X)
REAL(8) X
F=~
RETURN
END
REAL(8) FUNCTION DF(X)
REAL(8) X
DF =~
RETURN
END
```

(b) If a default value is shown for an argument in the "Contents" column of the table in the argument section, then the default value will be set if 0 is entered for an integer-type argument or if 0.0 is entered for a real-type argument.
(c) The subroutine algorithm has global convergency so that the problem can be solved even if the initial value is distant from the root.
(d) Convergence is considered to have occurred when the following relationships hold:
\mid (Root update amount) $\mid<\mathrm{ER} \times \max (1, \mid$ Root value $\mid)$ and
\mid Function value $\mid<\mathrm{ER}+64 \times($ Unit for determining error $) \times \mid$ Root value \mid

(7) Example

(a) Problem

Obtain one root of the following equation:
$\left\{\begin{array}{l}f=x^{7}+28 x^{4}-483.809683=0 \\ f^{\prime}=7 x^{6}+112 x^{3}\end{array}\right.$
(b) Input data

Function subprogram name corresponding to function $f(x)$: FLNRDS
Function subprogram name corresponding to derivative $f^{\prime}(x)$: FLNRDD
$\mathrm{X}=-1.0, \mathrm{ER}=0.0, \operatorname{NEV}(1)=0$ and $\operatorname{NEV}(2)=0$.
(c) Main program

```
PROGRAM BLNRDS
! *** EXAMPLE OF DLNRDS ***
EXMMPLE OF DLNRDS (***
    IMPLICIT INTEGER (I-N)
    EXTERNAL FLNRDS,FLNRD2
    DIMENSION NEV(2)
!
READ (5,*) (NEV (I) , I=1, 2, 1)
    READ (5,*) ER
    WRITE(6,1000)
    WRITE(6,1500) NEV(1)
    WRITE(6,2000) NEV(2)
    WRITE (6,2500) ER
    WRITE (6,2500)
    WRITE(6,3500) X
    CALL DLNRDS (FLNRDS, FLNRD2, X,ER,NEV,IERR)
    CALL DLNRDS(FL
    WRITE (6,4000) IERR
    WRITE (6,4500) IERR
    WRITE(6,5000) NEV(1)
    WRITE (6,5500)
    MRITE (6,6000) x
    WRITE
!
1000 FORMAT(' ', /,5X,'*** DLNRDSS ***',/,&
    7X,'* NONLINEAR'EQUATION *',/,&
    9X,'X**7+28*(X**4)-483.809683=0', / ,&
    7X,'* DERIVATIVE *',/,&
    9X,'7*(X**6)+112*(X**3)',/,&
    6X,'** INPUT **')
    1500 FORMAT(9X,'MAXIMUM NUMBER OF FUNCTION EVALUATIONS = ',I3)
    2000 FORMAT (9X,'MAXIMUM NUMBER OF DERIVATIVE EVALUATIONS =','I3)
    2500 FORMAT(9X,'REQUIRED ACCURACY = ',D7.1)
    3000 FORMAT(9X,',INITIAL VALUE OF ROOT')
    3500 FORMAT (9X,F4.1)
    4000 FORMAT(',',/,/,6X,'** OUTPUT **')
    4500 FORMAT (9X,'IERR =,',I4)
    5000 FORMAT (9X,',PRACTICAL NUMBER OF FUNCTION EVALUATIONS = ,,I3)
    5500 FORMAT(9X,'PRACTICAL NUMBER OF DERIVATIVE EVALUATIONS =','I3)
    6000 FORMAT(9X','ROOT')
    6000 FORMAT(9X,'ROOT')
    END
REAL(8) FUNCTION FLNRDS(X)
REAL (8) X
!
FLNRDS = X **7+(28.0D0)*(X**4)-(483.809683D0)
RETURN
END
REAL(8) FUNCTION FLNRD2(X)
REAL(8) X
\(!\)
FLNRD2 = 7.0D0*(X**6)+112.0D0*(X**3)
RETURN
END
```

(d) Output results

```
*** DLNRDS ***
    * NONLINEAR EQUATION *
        X**7+28*(X**4)-483.809683=0
    * DERIVATIVE *
        7*(X**6)+112*(X**3)
** INPUT **
    MAXIMUM NUMBER OF FUNCTION EVALUATIONS = 0
    MAXIMUM NUMBER OF DERIVATIVE EVALUATIONS = 0
```

REQUIRED ACCURACY $=0.0 \mathrm{D}+00$
INITIAL VALUE OF ROOT
-1.0
** OUTPUT **
IERR $=0$
PRACTICAL NUMBER OF FUNCTION EVALUATIONS = 36
PRACTICAL NUMBER OF DERIVATIVE EVALUATIONS = 1 ROOT
$0.1926185353 \mathrm{D}+01$

4.3.2 DLNRIS, RLNRIS

A Root of a Real Function (Initial Value Specified; Derivative Definition Not Required)

(1) Function

DLNRIS or RLNRIS obtains a root of nonlinear equation from an initial value, when the derivative of the nonlinear equation is not given.
(2) Usage

Double precision:
CALL DLNRIS (F, X, ER, NEV, IERR)
Single precision:
CALL RLNRIS (F, X, ER, NEV, IERR)
(3) Arguments

D:Double precision real R:Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	F	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	-	Input	Name F(X) of function subprogram that defines the equation
2	X	\{ D	1	Input	Initial value of root
		R R \}		Output	Root
3	ER	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Input	Required precision (Default value: (Unit for determining error) \times 64)
4	NEV	I	1	Input	Maximum number of function evaluations (Default value: 100)
				Output	Actual number of function evaluations
5	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) NEV >0 (except when 0 is entered in order to set NEV to the default value)
(b) $\mathrm{ER} \geq$ Unit for determining error (except when 0 is entered in order to set ER to the default value)
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1500	Restriction (a), (b) was not satisfied.	Processing is performed with the default value set for NEV or ER.
4000	The root could not be obtained.	Processing is aborted.
5000	The root could not be obtained before the maximum number of function evaluations or maximum number of derivative evalu- ations was reached.	The value of X at that time is returned.

(6) Notes
(a) The actual name in the first argument DF must be declared using an EXTERNAL statement in the user program, and a function subprograms having the actual name specified for F and DF must be created. (See Section 4.1.1) This function subprogram (in double-precision) should be created as follows.

Function subprogram creation method

```
REAL(8) FUNCTION F(X)
REAL(8) X
F =~
RETURN
END
```

(b) If a default value is shown for an argument in the "Contents" column of the table in the argument section, then the default value will be set if 0 is entered for an integer-type argument or if 0.0 is entered for a real-type argument.
(c) The subroutine algorithm has global convergency so that the problem can be solved even if the initial value is distant from the root.
(d) Convergence is considered to have occurred when the following relationships hold:

$$
\mid \text { (Root update amount) } \mid<\mathrm{ER} \times \max (1, \mid \text { Root value } \mid)
$$

and
\mid Function value $\mid<\mathrm{ER}+64 \times($ Unit for determining error $) \times \mid$ Root value \mid

(7) Example

(a) Problem

Obtain one root of the following equation:

$$
f=\exp (0.01 x)+3-(x-231)(x-597)=0
$$

(b) Input data

Function subprogram name corresponding to function $f(x)$: FLNRIS
$\mathrm{X}=0.0, \mathrm{ER}=0.0$ and $\mathrm{NEV}=0$.
(c) Main program

PROGRAM BLNRIS
! *** EXAMPLE OF DLNRIS ***
IMPLICIT REAL (8) (A-H, $0-Z$)
EXTERNAL FLNRIS
$!$
$\operatorname{READ}(5, *)$
$\operatorname{READ}(5, *)$
ER
READ (5,*) X
WRITE $(6,1000)$
$\operatorname{WRITE}(6,1500)$
WRITE $(6,2000)$
ER
WRITE $(6,2500)$
WRITE $(6,3000)$
CALL DLNRIS (FLNRIS, X , ER , NEV , IERR)
WRITE $(6,3500)$
WRITE $(6,4000)$ IERR
WRITE $6,4,4500)$ NEV
WRITE $(6,5000)$
WRITE $(6,5500)$ X
STOP
1000 FORMAT (, ',/,5X,'*** DLNRIS $* * * ', /, \&$
7X,'* NONLINEAR EQUATION *',/,\&
$9 \mathrm{X},{ }^{\prime}, \operatorname{EXP}(0.01 * \mathrm{X})+3-(\mathrm{X}-231) *(\mathrm{X}-597)=0$ ' , / , \&
6X,'** INPUT **')
1500 FORMAT (9X, 'MAXIMUM NUMBER OF FUNCTION EVALUATIONS = , I3)
2000 FORMAT (9X,'REQUIRED ACCURACY = , , D7.1)
2500 FORMAT (9X, 'INITIAL VALUE OF ROOT')
3000 FORMAT (9X, F3.1)
3000 FORMAT (9X,F3.1)
3500 FORMAT (', ', /,/,6X, '** OUTPUT **')
4000 FORMAT (9X,' IERR $=$, , I4)
4500 FORMAT (9X,'PRACTICAL NUMBER OF FUNCTION EVALUATIONS = , I3)
5000 FORMAT (9X, 'ROOT')
5500 FORMAT (9X,D17.10
END

REAL (8) FUNCTION FLNRIS (X)
REAL (8) X
FLNRIS $=\operatorname{EXP}((0.01 \mathrm{DO}) * \mathrm{X})+(3.0 \mathrm{DO})-(\mathrm{X}-(231.0 \mathrm{DO})) *(\mathrm{X}-(597.0 \mathrm{DO}))$
RETURN
(d) Output results

```
*** DLNRIS ***
    NONLINEAR EQUATION *
    EXP(0.01*X) +3-(X-231)*(X-597) =0
    ** INPUT **
    MAXIMUM NUMBER OF FUNCTION EVALUATIONS = 0
    REQUIRED ACCURACY = 0.0D+00
    REQUIRED ACCURACY = O
    INIT
** OUTPUT **
    IERR =
    PRACTICAL NUMBER OF FUNCTION EVALUATIONS = }1
    ROOT
        0.2309642908D+03
```


4.3.3 DLNRSS, RLNRSS

A Root of a Real Function (Interval Specified; Derivative Definition Not Required)

(1) Function

DLNRSS or RLNRSS obtains a root of a nonlinear equation within an interval in which the function sign changes.
(2) Usage

Double precision:
CALL DLNRSS (F, AX, BX, ER, X, IERR)
Single precision:
CALL RLNRSS (F, AX, BX, ER, X, IERR)
(3) Arguments

D:Double precision real R:Single precision real		Z:Double precision complex C:Single precision complex			$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	F	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	-	Input	Name of function subprogram $\mathrm{F}(\mathrm{X})$ that defines the equation
2	AX	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Left end of interval that encloses root
3	BX	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Input	Right end of interval that encloses root
4	ER	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	```Required precision (Default value:(Unit for determining error) \(\times 64\))```
5	X	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Output	Root
6	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{ER} \geq$ Unit for determining error
(except when 0.0 is entered in order to set ER to the default value)
(b) $A X \neq B X$
(c) $\mathrm{F}(\mathrm{AX}) \times \mathrm{F}(\mathrm{BX}) \leq 0.0$

(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1500	Restriction (a) was not satisfied.	Processing is performed with the default value set for ER.
3000	Restriction (b) or (c) was not satisfied.	Processing is aborted.

(6) Notes
(a) The actual name in the first argument F must be declared using an EXTERNAL statement in the user program, and a function subprogram having the actual name specified for F must be created. (See Section 4.1.1) This function subprogram (in double-precision) should be created as follows.

```
REAL(8) FUNCTION F(X)
REAL(8) X
F=~
RETURN
END
```

(b) If 0.0 is entered for argument ER, then the default value will be set.
(c) The problem can be solved even if AX is the right end of the interval and BX is the left end.
(d) Convergence is considered to have occurred when the following relationship holds:
\mid Interval that encloses root $\mid<\mathrm{ER}+2 \times$ (Unit for determining error) \times Root value

(7) Example

(a) Problem

Obtain one root of the following equation:

$$
f=\exp (0.01 x)+3-(x-231)(x-597)=0
$$

(b) Input data

Function subprogram name corresponding to function $f(x)$: FLNRSS
$\mathrm{AX}=-200.0, \mathrm{BX}=240.0$ and $\mathrm{ER}=0.0$.
(c) Main program

```
        PROGRAM BLNRSS
! *** EXAMPLE OF DLNRSS ***
    IMPLICIT REAL(8) (A-H,0-Z)
    EXTERNAL FLNRSS
    INTEGER IERR
!
    READ (5,*) ER
    READ (5;*) BX
    WRITE(6,1000)
    WRITE (6,2000) ER
    WRITE (6,3000)
    WRITE (6,4000) AX,BX
    CALL DLNRSS (FLNRSS, AX , BX , ER, X , IERR)
    CALL DLNRSS(FLNRSS,
    WRITE (6,5000) IERR
    WRITE (6,6000)
    WRITE (6,8000) X
    WRITE
!
1000 FORMAT(', ',/,5X,'*** DLNRSS ***',/,&
    7X,'* NONLINEAR'EQUATION *',/,&
    9X,''EXP(0.01*X)+3-(X-231)*(X-597)=0',/,&
    6X,''** INPUT **')
2000 FORMAT(9X,'REQUIRED ACCURACY = ',D7.1)
```

```
3 0 0 0 ~ F O R M A T ( 9 X , ' I N T E R V A L ~ I N ~ W H I C H ~ R O O T S ~ E X I S T ' ) ~
4000 FORMAT (9X,'(',F6.1, 2X,F6.1,')')
5000 FORMAT(',',/,/, 6X ','** OUTPUT **')
6000 FORMAT (9X,'IERR =', ,I4)
7000 FORMAT (9X,'RODT')
8000 FORMAT(9X,D17.10)
END
REAL(8) FUNCTION FLNRSS(X)
REAL(8) X
FLNRSS = EXP ((0.01D0)*X)+(3.0DO)-(X-(231.0D0))*(X-(597.0D0))
RETURN
RETU
```

(d) Output results

```
*** DLNRSS ***
    NONLINEAR EQUATION *
        EXP(0.01*X)+3-(X-231)*(X-597) =0
    ** INPUT **
        REQUIRED ACCURACY = 0.0D+00
        INTERVAL IN WHICH ROOTS EXIST
        (-200.0 240.0)
    ** OUTPUT **
    IERR =
    ROOT
    0.2309642908D+03
```


4.3.4 DLNRSA, RLNRSA

All Roots of a Real Function (Interval Specified; Derivative Definition Not Required)

(1) Function

DLNRSA or RLNRSA obtains all roots of a nonlinear equation within an interval.
(2) Usage

Double precision:
CALL DLNRSA (F, AX, BX, ER, NEV, X, M, IERR)
Single precision:
CALL RLNRSA (F, AX, BX, ER, NEV, X, M, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	F	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	-	Input	Name of function subprogram $\mathrm{F}(\mathrm{X})$ that defines the equation
2	AX	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Left end of interval that encloses root
3	BX	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Right end of interval that encloses root
4	ER	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Required precision (Default value:(Unit for determining error) $\times 64$)
5	NEV	I	1	Input	Maximum number of function evaluations (Default value: 100)
				Output	Actual number of function evaluation
6	X	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	M	Output	Root
7	M	I	1	Input	Maximum number of roots to be obtained
				Output	Number of roots obtained
8	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{ER} \geq$ Unit for determining error
(except when 0.0 is entered in order to set ER to the default value)
(b) NEV >0
(except when 0 is entered in order to set NEV to the default value)
(c) $\mathrm{M}>0$
(d) $\mathrm{AX} \neq \mathrm{BX}$
(e) $\mathrm{AX}<\mathrm{BX}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1200	Restriction (e) was not satisfied.	Processing is performed with AX and BX being switched.
1500	Restriction (a) or (b) was not satisfied.	Processing is performed with the default value set for ER or NEV.
2000	The maximum number of function evaluations was reached.	The M roots that were obtained are output, and processing is aborted.
2500	The number of roots exceeded the maximum number of roots M .	
3000	Restriction (c) or (d) was not satisfied.	Processing is aborted.
4000	The root could not be obtained.	

(6) Notes
(a) The actual name in the first argument F must be declared using an EXTERNAL statement in the user program, and a function subprogram having the actual name specified for F must be created. (See Section 4.1.1) This function subprogram (in double-precision) should be created as follows.

```
REAL(8) FUNCTION F(X)
REAL(8) X
F =~
RETURN
END
```

(b) If a default value is shown for an argument in the "Contents" column of the table in the argument section, then the default value will be set if 0 is entered for an integer-type argument or if 0.0 is entered for a real-type argument.
(c) Convergence is considered to have occurred when the following relationships hold:

$$
\{\mid \text { Rootupdateamount } \mid<\mathrm{ER} \times \max (1, \mid \text { Rootvalue } \mid)\}
$$

and
$\{\mid$ Functionvalue $\mid<E R+64 \times($ Unit for determining error $) \times \mid$ Rootvalue $\mid\}$
(d) Since two roots that are closer together than

$$
\begin{aligned}
& \max (2 \times(\text { Required precision }), \\
& (|\mathrm{A}|+|\mathrm{B}|) \times(\text { Unit for determining error }), \\
& \sqrt[3]{(\text { Unit for determining error })})
\end{aligned}
$$

cannot be isolated, one of these roots may not be obtained.

(7) Example

(a) Problem

Obtain all roots of the following equation:

$$
f=\exp (0.01 x)+3-(x-231)(x-597)=0
$$

(b) Input data

Function subprogram name corresponding to integrand $f(x)$: FLNRSA
$\mathrm{AX}=-200.0, \mathrm{BX}=800.0, \mathrm{ER}=0.0, \mathrm{NEV}=0$ and $\mathrm{M}=15$.
(c) Main program

```
PROGRAM BLNRSA
! *** EXAMPLE OF DLNRSA ***
IMPLICIT REAL (8) (A-H, O-Z)
EXTERNAL FLNRSA
INTEGER NEV,M, IERR, I
DIMENSION X \({ }^{(10)}\)
!
    READ (5,*) NEV
    \(\operatorname{READ}(5, *)\) ER
    \(\begin{array}{ll}\operatorname{READ}(5, *) & \mathrm{M} \\ \operatorname{READ}(5, *) & \mathrm{AX}\end{array}\)
    \(\begin{array}{ll}\operatorname{READ}(5, *) & A X \\ \operatorname{READ}(5, *) & \mathrm{BX}\end{array}\)
    WRITE \((6,1000)\)
    WRITE \((6,1500)\) NEV
    \(\operatorname{WRITE}(6,2000)\)
    WRITE \((6,2500)\)
    WRITE \((6,3000)\)
    \(\operatorname{WRITE}(6,3500)\) AX, BX
    CALL DLNRSA (FLNRSA , AX , BX , ER , NEV , X , M, IERR)
    WRITE \((6,4000)\)
    WRITE \((6,4500)\) IERR
    WRITE \((6,5000)\) NEV
    \(\operatorname{WRITE}(6,5500)\)
    WRITE \((6,6000)\)
    WRITE \((6,6500)\) (X(I), \(\mathrm{I}=1, \mathrm{M}, 1)\)
    STOP
1000 FORMAT(' ', /, /,5X,'*** DLNRSA \(* * *\) ',/,\&
    7X,'* NONLINEAR EQUATION *' \(/, \&\)
\(9 \mathrm{X}, '\), EXP \(^{\prime}(0.01 * \mathrm{X})+3-(\mathrm{X}-231) *(\mathrm{X}-597)=0\) ', /, \&
6X,',** INPUT **')
    1500 FORMAT (9X, 'MAXIMUM NUMBER OF FUNCTION EVALUATIONS \(=\) ',I3)
    2000 FORMAT (9X,', REQUIRED ACCURACY \(=\), D7.1)
    2500 FORMAT (9X,' MAXIMUM NUMBER OF ROOTS = \(=\), I2)
    2500 FORMAT (9X,', MAXIMUM NUMBER OF ROOTS = ', I2)
3000 FORMAT (9X,' INTERVAL IN WHICH ROOTS EXIST')
```



```
    4500 FORMAT (9X,'IERR =', 14 )
    5000 FORMAT (9X,' PRACTICAL NUMBER OF FUNCTION EVALUATIONS = , ,I3)
    5500 FORMAT (9X,' NUMBER OF ROOTS = , I2)
    6000 FORMAT (9X,' 'ROOTS', //)
    6500 FORMAT (9X,D17.10)
    END
        REAL (8) FUNCTION FLNRSA(X)
        REAL (8) X
        FLNRSA \(=\operatorname{EXP}((0.01 \mathrm{DO}) * \mathrm{X})+(3.0 \mathrm{DO})-(\mathrm{X}-(231.0 \mathrm{D} 0)) *(\mathrm{X}-(597.0 \mathrm{D} 0))\)
        RETURN
        END
```

(d) Output results
*** DLNRSA ***

* NONLINEAR EQUATION *
$\operatorname{EXP}(0.01 * \mathrm{X})+3-(\mathrm{X}-231) *(\mathrm{X}-597)=0$
** INPUT **
MAXIMUM NUMBER OF FUNCTION EVALUATIONS $=0$
REQUIRED ACCURACY $=0.0 \mathrm{D}+00$
MAXIMUM NUMBER OF ROOTS $=15$
INTERVAL IN WHICH ROOTS EXIST
(-200.0 800.0)
** OUTPUT **
IERR $={ }^{* *}$
PRACTICAL NUMBER OF FUNCTION EVALUATIONS $=98$
NUMBER OF ROOTS = 2
ROOTS
$0.2309642908 \mathrm{D}+03$
$0.5980863437 \mathrm{D}+03$

4.3.5 ZLNCIS, CLNCIS

A Root of a Complex Function (Initial Value Specified; Derivative Definition Not Required)
(1) Function

ZLNCIS or CLNCIS obtains a root of a complex nonlinear equation from an initial value, when the derivative of the nonlinear equation is not given.

(2) Usage

Double precision:
CALL ZLNCIS (F, CX, ER, NEV, IERR)
Single precision:
CALL CLNCIS (F, CX, ER, NEV, IERR)
(3) Arguments

D:Double precision real R:Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	F	$\left\{\begin{array}{l}\mathrm{Z} \\ \mathrm{C}\end{array}\right\}$	-	Input	Function name of complex function subprogram $\mathrm{F}(\mathrm{X})$ that defines the equation
2	CX	\{ Z	1	Input	Initial value of root
		(c)		Output	Root
3	ER	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Required precision (Default value:(Unit for determining error) $\times 64$)
4	NEV	I	1	Input	Maximum number of function evaluations (Default value: 100)
				Output	Actual number of function evaluation
5	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{NEV}>0$
(except when 0 is entered in order to set NEV to the default value)
(b) $\mathrm{ER} \geq$ Unit for determining error
(except when 0.0 is entered in order to set ER to the default value)

(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1500	Restriction (a) or (b) was not satisfied.	Processing is performed with the default value set for NEV or ER.
4000	A zero-division error occurred.	Processing is aborted.
5000	The root could not be obtained before the maximum number of function evaluations was reached.	The value of CX at that time is returned.

(6) Notes
(a) The actual name in the first argument F must be declared using an EXTERNAL statement in the user program, and a function subprogram having the actual name specified for F must be created. (See Section 4.1.1) This function subprogram (in double-precision) should be created as follows.

```
COMPLEX(8) FUNCTION F(X)
COMPLEX(8) X
F=~
RETURN
END
```

(b) If a default value is shown for an argument in the "Contents" column of the table in the argument section, then the default value will be set if 0 is entered for an integer-type argument or if 0.0 is entered for a real-type argument.
(c) Convergence is considered to have occurred when the following relationships hold:

$$
\{\mid \text { Rootupdateamount } \mid<\mathrm{ER} \times \max (1, \mid \text { Rootvalue } \mid)\}
$$

and
$\{\mid$ Functionvalue $\mid<E R+64 \times($ Unit for determining error $) \times \mid$ Rootvalue $\mid\}$

(7) Example

(a) Problem

Obtain one root of the following equation:

$$
f=x^{10}-1=0
$$

(b) Input data

Function subprogram name corresponding to integrand $f(x)$: FLNCIS
$\mathrm{CX}=(1.0,-1.0), \mathrm{ER}=1.0 \mathrm{D}-10$ and $\mathrm{NEV}=100$.
(c) Main program

```
PROGRAM ALNCIS
! *** EXAMPLE OF ZLNCIS ***
IMPLICIT COMPLEX(8) (A-D,F-H,O-Z)
IMPLICIT COMPLEX
EXTERNAL FLNCIS
REAL(8) ER
READ (5,*) NEV
```

$!$

```
        \(\operatorname{READ}(5, *)\) ER
        READ (5,*) CX
        \(\operatorname{WRITE}(6,1000)\)
        \(\operatorname{WRITE}(6,1500)\) NEV
        WRITE \((6,2000)\)
        WRITE (6,2500
        WRITE \((6,3000)\) CX
        CALL ZLNCIS (FLNCIS, CX , ER , NEV , IERR)
        WRITE \((6,3500)\)
        \(\operatorname{WRITE}(6,4000)\) IERR
        WRITE \((6,4500)\) NE
        WRITE \((6,5000)\)
        WRITE \((6,5500)\) CX
    STOP
1000 FORMAT(' ',/,/,5X,'*** ZLNCIS
    7X,'* NONLINEAR EQUATION *',/,\&
    9X, ' \(2 * * 10-1=0\) ', \(/,\}^{\&}\)
    500 FORMAT (9X,'MAXIMUM NUMBER OF FUNCTION EVALUATIONS \(=\), ,I3)
    2000 FORMAT (9X,', REQUIRED ACCURACY = ',D7.1)
    FORMAT (9X', 'INITIAL VALUE OF ROOT', l', \&
    9X, 'REAL PART', 5X,' IMAGINARY PART')
    3000 FORMAT (9X,F3.1, 11X,F3.1)
    3500 FORMAT (' \(, ', /, /, 9 \mathrm{X}\), ' \(* *\) OUTPUT **')
    4000 FORMAT (9X,' \(\operatorname{IERR}=\) = ', I4)
    4500 FORMAT (9X,'PRACTICAL NUMBER OF FUNCTION EVALUATIONS = ',I3)
    5000 FORMAT (9X,' \(\operatorname{RODT}\) ',l,\&
    9X,'REAL PART',13X,' 'IMAGINARY PART')
500 FORMAT(9X,D17.10,5X,D17.10)
    END
    COMPLEX (8) FUNCTION FLNCIS(X)
    COMPLEX (8) X
    FLNCIS \(=\mathrm{X} * * 10-(1.0 \mathrm{DO}, 0.0 \mathrm{DO})\)
    RETURN
(d) Output results
```

```
** ZLNCIS ***
```

** ZLNCIS ***
NONLINEAR EQUATION *
NONLINEAR EQUATION *
Z**10-1=0
Z**10-1=0
** INPUT **
** INPUT **
MAXIMUM NUMBER OF FUNCTION EVALUATIONS = 100
MAXIMUM NUMBER OF FUNCTION EVALUATIONS = 100
REQUIRED ACCURACY = 0.1D-09
REQUIRED ACCURACY = 0.1D-09
INITIAL VALUE OF ROOT
INITIAL VALUE OF ROOT
REAL PART IMAGINARY PART
REAL PART IMAGINARY PART
1.0 1.0
1.0 1.0
** OUTPUT **
** OUTPUT **
IERR =
IERR =
PRACTICAL NUMBER OF FUNCTION EVALUATIONS = 11
PRACTICAL NUMBER OF FUNCTION EVALUATIONS = 11
ROOT
ROOT
REAL PART IMAGINARY PART
REAL PART IMAGINARY PART
0.8090169944D+00 0.5877852523D+00

```
    0.8090169944D+00 0.5877852523D+00
```


4.4 SETS OF SIMULTANEOUS NONLINEAR EQUATIONS

4.4.1 DLSRDS, RLSRDS

A Root of a Set of Simultaneous Nonlinear Functions (Jacobian Matrix Optional)

(1) Function

DLSRDS or RLSRDS obtains a root of a set of simultaneous nonlinear equations, either when the Jacobian matrix is defined or when it is not defined.
(2) Usage

Double precision:
CALL DLSRDS (SUB, SUBJ, X, N, ER, NEV, ISW, IWK, WK, DWK, IERR)
Single precision:
CALL RLSRDS (SUB, SUBJ, X, N, ER, NEV, ISW, IWK, WK, DWK, IERR)

(3) Arguments

$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	SUB	-	-	Input	Name of subroutine $\operatorname{SUB}(X, N, F)$ that defines the N nonlinear equations.
2	SUBJ	-	-	Input	Name of subroutine $\operatorname{SUBJ}(\mathrm{X}, \mathrm{N}, \mathrm{A})$ that defines the Jacobian matrix.
3	X	\{ D	N	Input	Initial value of root
		R $\}$		Output	Root
4	N	I	1	Input	Number of simultaneous nonlinear equations
5	ER	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Input	Required precision (Default value: (Unit for determining error) \times 64)
6	NEV	I	2	Input	NEV(1): Maximum number of function evaluations (Default value: $100 \times \mathrm{N}$) NEV(2): Maximum number of Jacobian matrix evaluations (Default value: $100 \times \mathrm{N}$)
				Output	NEV(1): Actual number of function evaluations NEV(2): Actual number of Jacobian matrix evaluations
7	ISW	I	1	Input	Input switch ISW $=0:$ Jacobian matrix is automatically calculated ISW $\neq 0$: User-defined subroutine that creates Jacobian matrix is used (See Notes (b))
8	IWK	I	N	Work	Work area
9	WK	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	See Contents	Work	Work area Size: $\mathrm{N} \times(\mathrm{N}+3)$
10	DWK	D	See Contents	Work	Work area. This array is double precision real. Size: $\mathrm{N} \times(2 \times \mathrm{N}+2)$
11	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\operatorname{NEV}(1)>0$
(except when 0 is entered in order to set $\operatorname{NEV}(1)$ to the default value)
(b) $\operatorname{NEV}(2)>0$
(except when 0 is entered in order to set $\operatorname{NEV}(2)$ to the default value)
(c) $\mathrm{ER} \geq$ Unit for determining error
(except when 0 is entered in order to set ER to the default value)
(d) $\mathrm{N}>0$

(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1500	Restriction (a), (b) or (c) was not satisfied.	Processing is performed with the default value set for NEV(1), NEV(2) or ER.
3000	Restriction (d) was not satisfied.	Processing is aborted.
4000	An error occurred when solving a set of simultaneous linear equations.	
4500	The solution could not be updated be- cause nonlinearity was too strong.	
5000	The solution could not be obtained before the maximum number of function evalu- ations or maximum number of Jacobian matrix evaluations was reached.	

(6) Notes
(a) The actual names in the first argument SUB and second argument SUBJ must be declared using an EXTERNAL statement in the user program, and subroutine subprograms having the actual names specified for SUB and SUBJ must be created. (See Section 4.1.1) These subroutine subprograms should be created as follows. If the set of simultaneous nonlinear equations is as follows:

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, \cdots, x_{N}\right)=0 \\
\vdots \\
f_{N}\left(x_{1}, \cdots, x_{N}\right)=0
\end{array}\right.
$$

the subroutineSUB is written as follows for single-precision calculations:

```
SUBROUTINE SUB(X, N, F)
REAL X(N), F(N)
F(1) = f
\vdots
F(N)= f
RETURN
END
```

If the Jacobian matrix A is defined as follows:

$$
\mathrm{A}=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \cdots & \frac{\partial f_{1}}{\partial x_{N}} \\
\vdots & & & \vdots \\
\frac{\partial f_{N}}{\partial x_{1}} & \cdots & \cdots & \frac{\partial f_{N}}{\partial x_{N}}
\end{array}\right]=\left[\begin{array}{ccc}
\mathrm{A}(1,1), & \cdots, & \mathrm{A}(1, \mathrm{~N}) \\
\vdots & & \vdots \\
\vdots & & \vdots \\
\mathrm{A}(\mathrm{~N}, 1), & \cdots, & \mathrm{A}(\mathrm{~N}, \mathrm{~N})
\end{array}\right]
$$

the subroutine SUBJ is written as follows for single-precision calculations:

$$
\mathrm{A}(1,1)=\partial \mathrm{f}_{1} / \partial \mathrm{x}_{1}
$$

$$
\mathrm{A}(\mathrm{~N}, 1)=\partial \mathrm{f}_{\mathrm{N}} / \partial \mathrm{x}_{1}
$$

$$
\vdots
$$

$$
\mathrm{A}(1, \mathrm{~N})=\partial \mathrm{f}_{1} / \partial \mathrm{x}_{\mathrm{N}}
$$

$$
\mathrm{A}(\mathrm{~N}, \mathrm{~N})=\partial \mathrm{f}_{\mathrm{N}} / \partial \mathrm{x}_{\mathrm{N}}
$$

RETURN
END

Example: Assume that the set of simultaneous nonlinear equations is as follows:
$\left\{\begin{array}{l}x_{1}+x_{2}+x_{3}=0 \\ x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}=0 \\ x_{1} x_{2} x_{3}=0\end{array}\right.$
and the Jacobian matrix A is as follows:
$\mathrm{A}=\left[\begin{array}{ccc}1, & 1, & 1 \\ x_{2}+x_{3}, & x_{1}+x_{3}, & x_{1}+x_{2} \\ x_{2} x_{3}, & x_{1} x_{3}, & x_{1} x_{2}\end{array}\right]$
Then the subroutines are written as follows:

```
SUBROUTINE SUB(X, N, F)
REAL X(N), F(N)
F}(1)=\textrm{X}(1)+\textrm{X}(2)+\textrm{X}(3
F}(2)=\textrm{X}(1)*\textrm{X}(2)+\textrm{X}(2)*\textrm{X}(3)+\textrm{X}(3)*\textrm{X}(1
F}(3)=\textrm{X}(1)*\textrm{X}(2)*\textrm{X}(3
RETURN
END
```

SUBROUTINE SUBJ(X, N, A)
REAL X(N), A(N, *)
$\mathrm{A}(1,1)=1.0$
$\mathrm{A}(1,2)=1.0$
$\mathrm{A}(1,3)=1.0$
$\mathrm{A}(2,1)=\mathrm{X}(2)+\mathrm{X}(3)$
$\mathrm{A}(2,2)=\mathrm{X}(1)+\mathrm{X}(3)$
$\mathrm{A}(2,3)=\mathrm{X}(1)+\mathrm{X}(2)$
$\mathrm{A}(3,1)=\mathrm{X}(2) * \mathrm{X}(3)$
$\mathrm{A}(3,2)=\mathrm{X}(1) * \mathrm{X}(3)$

```
A(3,3)= X(1)* X(2)
RETURN
END
```

(b) If ISW $=0$, then the SUBJ argument is a dummy argument and no corresponding subroutine is required. Also, NEV(2) need not be entered.
If ISW $\neq 0$, then a subroutine having the actual name specified for SUBJ must be created and NEV (2) must be entered.
(c) If a default value is shown for an argument in the "Contents" column of the table in the argument section, then the default value will be set if 0 is entered for an integer-type argument or if 0.0 is entered for a real-type argument.
(d) Convergence is considered to have occurred for all roots or all function values when the following relationships hold:

$$
\left\{\| \text { Rootupdateamount } \|_{\infty}<\mathrm{ER} \times \max \left(1, \| \text { Rootvalue } \|_{\infty}\right)\right\}
$$

and
$\left\{\|\right.$ Functionvalue $\left\|_{\infty}<\mathrm{ER}+64 \times \varepsilon \times\right\|$ Rootvalue $\left.\|_{\infty}\right\}$

(7) Example

(a) Problem

Solve the following set of simultaneous nonlinear equations:
$\left\{\begin{array}{l}10\left(\mathrm{x}_{2}-\mathrm{x}_{1}^{2}\right)=0 \\ 1-\mathrm{x}_{1}=0\end{array}\right.$
(b) Input data

Subroutine name defining function $\boldsymbol{f}(x)$ corresponding to nonlinear equations: FLSRDS
$\mathrm{X}(1)=-1.2, \mathrm{X}(2)=1.0, \mathrm{~N}=2, \mathrm{ER}=0.0, \mathrm{NEV}(1)=200, \mathrm{NEV}(2)=200$ and $\mathrm{ISW}=0$.
(c) Main program

```
        PROGRAM BLSRDS
! *** EXAMPLE OF DLSRDS
    EXAMPLE OF DLSRDS ***
    IMPLICIT REAL(8) (A-H,
    EXTERNAL FLSRDS
    EXTERNAL FLSRDS (2),IWK (2),X (2),WK (10),DWK (12)
!
    READ (5,*) (NEV (I) , I=1, 2, 1)
    READ (5,*) N
    READ(5,*) ER ( 
    READ (5,*) ISW
    WRITE (6,1000)
    WRITE (6,1500) NEV(1)
    WRITE (6,2000) NEV (2)
    WRITE (6,2500) N
    WRITE (6,3000) ER
    WRITE (6,3500)
    WRITE(6,4000) (X (I) , I=1,N , 1)
    CALL DLSRDS(FLSRDS,NONSUB',X,N,ER,NEV,ISW,IWK,WK ,DWK ,IERR)
    WRITE (6,4500)
    WRITE (6,5000) IERR
    WRITE (6,5500) NEV(1)
    WRITE (6,6000)
    WRITE (6,7500) (X (I), I=1,N,1)
    STOP
!}1000\mathrm{ FORMAT(' ,,/,5X,'*** DLSRDS ***',/,&
    7X,'* SYSTEM OF NONLINEAR EQUATIÓNS '*',/ ,&
    9X,',10*(X2-X1*X1)=0',/,&
    9X,',1-X1 
    6X,'** INPUT **')
```

1500 FORMAT (9X, 'MAXIMUM NUMBER OF FUNCTIONS EVALUATIONS = ',I3)
2000 FORMAT (9X', 'MAXIMUM NUMBER OF JACOBIAN EVALUATIONS = , , İ3)
2500 FORMAT (9X,' 'NUMBER OF NONLINEAR EQUATIONS = ', I2)
3000 FORMAT (9X, 'REQUIRED ACCURACY $=$,, D7.1)
3500 FORMAT (9X,' INITIAL VALUE OF ROOT', $/$)
4000 FORMAT (9X,F4.1)
4500 FORMAT (, ','/, /, 6X, '** OUTPUT **')
5000 FORMAT (9 X , 'IERR $=$ ', I4)
5500 FORMAT (9X,'PRACTICAL NUMBER OF FUNCTIONS EVALUATIONS = , ,I3)
6000 FORMAT(9X,'PRACTICAL NUMBER OF JACOBIAN EVALUATIONS = ',I3)
7000 FORMAT (9X, 'ROOT', $/$)
7500 FORMAT (9X,'D17.10)
END

SUBROUTINE FLSRDS(X,N,F)
INTEGER N
REAL (8) X,F
DIMENSION' $\mathrm{X}(\mathrm{N}), \mathrm{F}(\mathrm{N})$
$\mathrm{F}(1)=10.0 \mathrm{D} 0 *(\mathrm{X}(2)-\mathrm{X}(1) * \mathrm{X}(1))$
$\mathrm{F}(2)=1.0 \mathrm{D} 0-\mathrm{X}(1)$
END
(d) Output results

```
*** DLSRDS ***
    * SYSTEM OF NONLINEAR EQUATIONS *
    10*(X2-X1*X1)=0
    INPUT **
    MAXIMUM NUMBER OF FUNCTIONS EVALUATIONS = 200
    MAXIMUM NUMBER OF JACOBIAN EVALUATIONS = 200
    NUMBER OF NONLINEAR EQUATIONS = 2
    REQUIRED ACCURACY = 0.OD+00
    INITIAL VALUE OF ROOT
    -1.2
** OUTPUT **
    IERR = 0
    PRACTICAL NUMBER OF FUNCTIONS EVALUATIONS = 66
    PRACTICAL NUMBER OF JACOBIAN EVALUATIONS = 0
    ROOT
    0.1000000000D+01
    0.1000000000D+01
```


4.4.2 DLSRIS, RLSRIS

A Root of a Set of Simultaneous Nonlinear Functions (Jacobian Matrix Definition Not Required)

(1) Function

DLSRIS or RLSRIS obtains a root of a set of simultaneous nonlinear equations, when the Jacobian matrix is not defined.
(2) Usage

Double precision:
CALL DLSRIS (SUB, X, N, ER, NEV, IWK, WK, IERR)
Single precision:
CALL RLSRIS (SUB, X, N, ER, NEV, IWK, WK, IERR)

(3) Arguments

D:Double precision real	Z:Double precision complex
R:Single precision real	C:Single precision complex

\operatorname{INTEGER}(8) as for 64 bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	SUB	-	-	Input	Name of subroutine $\operatorname{SUB}(\mathrm{X}, \mathrm{N}, \mathrm{F})$ that defines the N nonlinear equations.
2	X	$\left\{\begin{array}{l} D \\ R \end{array}\right\}$	N	Input	Initial value of root
				Output	Root
3	N	I	1	Input	Number of simultaneous nonlinear equations
4	ER	$\left\{\begin{array}{l}\text { D } \\ \text { R }\end{array}\right\}$	1	Input	Required precision (Default value: (Unit for determining error) \times 64)
5	NEV	I	1	Input	Maximum number of function evaluations (Default value: $100 \times \mathrm{N}$)
				Output	Actual number of function evaluations
6	IWK	I	$2 \times \mathrm{N}$	Work	Work area
7	WK	$\left\{\begin{array}{l}\text { D } \\ \text { R }\end{array}\right\}$	See Contents	Work	Work area Size: $\mathrm{N} \times(3 \times \mathrm{N}+7)$
8	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) NEV >0
(except when 0 is entered in order to set NEV to the default value)
(b) $\mathrm{ER} \geq$ Unit for determining error
(except when 0 is entered in order to set ER to the default value)
(c) $\mathrm{N}>0$

(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1500	Restriction (a) or (b) was not satisfied.	Processing is performed with the default value set for NEV or ER.
3000	Restriction (c) was not satisfied.	Processing is aborted.
$4000+\mathrm{i}$	The determinant of the Jacobian matrix is $0 . \quad$ That is, i indicates the first (i, i) component of the Jacobian matrix to be 0.	
4500	A zero-division error occurred during the calculation of the inverse matrix of the Jacobian matrix or during the calculation of the step size.	
5	The solution could not be obtained before the maximum number of function evalua- tions was reached.	The value of X at that time is returned.
5000		

(6) Notes

(a) The actual names in the first argument SUB must be declared using an EXTERNAL statement in the user program, and subroutine having the actual names specified for SUB must be created. (See Section 4.1.1) The subroutine should be created as follows. If the set of simultaneous nonlinear equations is as follows:

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, \cdots, x_{N}\right)=0 \\
\vdots \\
f_{N}\left(x_{1}, \cdots, x_{N}\right)=0
\end{array}\right.
$$

the subroutineSUB is written as follows for single-precision calculations:

$$
\begin{aligned}
& \operatorname{SUBROUTINE~SUB}(\mathrm{X}, \mathrm{~N}, \mathrm{~F}) \\
& \operatorname{REAL} \mathrm{X}(\mathrm{~N}), \mathrm{F}(\mathrm{~N}) \\
& \mathrm{F}(1)=\mathrm{f}_{1}\left(\mathrm{x}_{1}, \cdots, \mathrm{x}_{\mathrm{N}}\right) \\
& \quad \vdots \\
& \mathrm{F}(\mathrm{~N})=\mathrm{f}_{\mathrm{N}}\left(\mathrm{x}_{1}, \cdots, \mathrm{x}_{\mathrm{N}}\right) \\
& \operatorname{RETURN} \\
& \text { END }
\end{aligned}
$$

(b) If a default value is shown for an argument in the "Contents" column of the table in the argument section, then the default value will be set if 0 is entered for an integer-type argument or if 0.0 is entered for a real-type argument.
(c) Although a solution can be obtained even if scaling is not performed for each of the equations in the set of simultaneous nonlinear equations, scaling should be performed to increase efficiency.
(d) Convergence is considered to have occurred for all roots or all function values when the following relationships hold:
$\left\{\|\right.$ Rootupdateamount $\|_{\infty}<\mathrm{ER} \times \max \left(1, \|\right.$ Rootvalue $\left.\left.\|_{\infty}\right)\right\}$
and
$\left\{\|\right.$ Functionvalue $\left\|_{\infty}<\mathrm{ER}+64 \times \varepsilon \times\right\|$ Rootvalue $\left.\|_{\infty}\right\}$

(7) Example

(a) Problem

Solve the following set of simultaneous nonlinear equations:
$\left\{\begin{array}{l}10\left(x_{2}-x_{1}^{2}\right)=0 \\ 1-x_{1}=0\end{array}\right.$
(b) Input data

Subroutine name defining function $\boldsymbol{f}(x)$ corresponding to nonlinear equations: FLSRIS $\mathrm{X}(1)=-1.2, \mathrm{X}(2)=1.0, \mathrm{~N}=2, \mathrm{ER}=0.0$ and $\mathrm{NEV}=200$.
(c) Main program

```
    PROGRAM BLSRIS
    EXAMPLE OF DLSRIS
    IMPLICIT REAL(8) (A-H,0-Z)
    IMPLICIT INTEGER (I-N)
    EXTERNAL FLSRIS
    DIMENSION IWK(4),X(2),WK(26)
!
    READ (5,*) NEV
    READ (5,*) N
    READ (5,*) ER
    READ(5,*) (X (I), I=1,N , 1)
    WRITE (6,1000)
    WRITE (6,1500) NEV
    WRITE (6,2000) N
    WRITE(6,2500) ER
    WRITE(6,3000)
    WRITE(6,3500) (X (I), I=1,N ,1)
    CALL DLSRIS(FLSRIS,X,N,ER,NEV,IWK,WK,IERR)
    WRITE (6,4000)
    WRITE (6,4500) IERR
    WRITE (6,5000) NEV
    WRITE (6,5500)
    WRITE (6,6000) (X(I), I=1,N,1)
    STOP
1000 FORMAT(' ',/,5X,'*** DLSRIS ***',/,&
    7X,'* SYSTEM' OF'NONLINEAR EQUATIÓNS *',/,&
    9X,'10*(X2-X1*X1)=0',/,&
    9X,'1-X1 (N2-X1*X1)=0,'l'&
    1500 FORMAT(9X,'MAXIMUM NUMBER OF FUNCTIONS EVALUATIONS = ',I3)
    2000 FORMAT (9X,'NUMBER OF NONLINEAR EQUATIONS = ,,I2)
    2500 FORMAT (9X,',REQUIRED ACCURACY = , D7.1)
    3500 FORMAT (9X,'REQUIRED ACCURACY =',D7.1)
    3000 FORMAT(9X,'INITI
    3500 FORMAT(9X,F4.1)
    4000 FORMAT (' ',',',6X,'** 
    5000 FORMAT(9X,',PRACTICALL NUMBER OF FUNCTIONS EVALUATIONS = ,,I3)
    5500 FORMAT (9X,',ROOT',/)
    6000 FORMAT(9X,D17.10)
    END
        SUBROUTINE FLSRIS(X,N,F)
        INTEGER N
        REAL(8) X,F
        DIMENSION X(N),F(N)
    F(1) = 10.0D0*(X(2)-X(1)*X(1))
    F(1) = 1.ODO-X(1)
    RETURN
    RETD
```

(d) Output results
*** DLSRIS ***

* SYSTEM OF NONLINEAR EQUATIONS * $10 *(\mathrm{X} 2-\mathrm{X} 1 * \mathrm{X} 1)=0$
** INPUT
MAXIMUM NUMBER OF FUNCTIONS EVALUATIONS $=200$
MAXIMUM NUMBER OF FUNCTIONS EVALUAT
NUMBER OF NONLINEAR EQUATION
REQUIRED ACCURACY $=0.0 D+00$
REQUIRED ACCURACY $=0$
INITIAL VALUE $0 F$ ROOT
-1.2
1.0
** OUTPUT **
$\begin{array}{ll}\text { IERR }= & 0 \\ \text { PRACTICAL NUMBER OF FUNCTIONS EVALUATIONS }=34\end{array}$ ROOT
$0.1000000000 \mathrm{D}+01$
$0.1000000000 \mathrm{D}+01$

Chapter 5

EXTREMUM PROBLEMS AND OPTIMIZATION

5.1 INTRODUCTION

This chapter explains subroutines for performing minimization of a function of one variable without constraints, minimization of a function of many variables without constraints, minimization of the sum of the squares of a function without constraints, minimization of a constrained function of one variable, minimization of a constrained linear function of many variables (linear programming, mixed 0-1 programming minimal-cost flow problem, project scheduling problem and transportation problem), minimization of a quadratic function of several variables (quadratic programming), minimization of a constrained function of several variables (nonlinear programming) and distance minimization on a graph (shortest path problem).
This library provides the following subroutine for minimizing a function of one variable with no constraints.
(1) Minimization of a function of one variable

This subroutine searches for the minimum value of a function of one variable by starting from a given initial point.
This library provides the following subroutines for minimizing a function of many variables with no constraints.
(1) Minimization of a function of many variables (derivative definition unnecessary)
(2) Minimization of a function of many variables (derivative definition required)

These subroutines search for the minimum value of a function of many variables by starting from a given initial point. If the user cannot provide a subroutine that calculates the gradient vector of the function, then the user can use the subroutine for which the derivative definition is unnecessary. If the user can provide a subroutine that calculates the gradient vector of the function, then the subroutine for which the derivative definition is required will obtain better results.

This library provides the following subroutine for minimizing the sum of the squares of a function with no constraints.
(1) Nonlinear least squares method (derivative function unnecessary)

This subroutine searches for the minimum value of the sum of the squares of a function of m variables, by starting from a given initial point. The user need not provide a subroutine that calculates the Jacobian matrix of the function.

This library provides the following subroutine for minimizing a function of one variable with constraints.
(1) Minimization of a function of one variable (interval specified)

This subroutine searches for the minimum value of a function of one variable within a given interval.
This library provides the following subroutines for minimizing a constrained linear function of several variables.
(1) Minimization of a constrained linear function of several variables (linear constraints)
(2) Minimization of a constrained linear function of several variables including 0-1 variables (linear constraints)
(3) Minimization of cost for flow in a network
(4) Minimization of cost for project scheduling
(5) Minimization of cost for transportation from supply place to demand place

These subroutines searches for the minimum value of a linear function of several variables within the given linear constraints (Linear programming, mixed 0-1 programming and minimal-cost flow problem).
This library provides the following subroutines for minimizing a quadratic function of several variables.
(1) Minimization of a constrained convex quadratic function of several variables (linear constraints)
(2) Minimization of a constrained generalized convex quadratic function of several variables (linear constraints)
(3) Minimization of an unconstrained 0-1 quadratic function of several variables

These subroutines search for the minimum value of a quadratic function of several variables within the given linear constraints (Quadratic programming).

This library provides the following subroutine for minimizing a constrained function of several variables.
(1) Minimization of a constrained function of several variables (nonlinear constraints)

This subroutine searches for the minimum value of a function of several variables within the given nonlinear constraints (Nonlinear programming).
This library provides the following subroutines for distance minimization on a graph.
(1) Distance minimization for a given node to the other nodes on a graph
(2) Distance minimization for all sets of two nodes on a graph
(3) Distance minimization for two nodes on a graph

These subroutines search minimum distance for the nodes on a graph. (Shortest path problem).

5.1.1 Notes

(1) The search starting point should be located as close as possible to exact solution.
(2) An appropriate value for the required precision is on the order of the square root of the unit for determining error.
(3) When minimizing a function of many variables, scaling should be performed so that the contribution to the function value from each of the variables is on the same order. For example, if the problem is similar to $f(x)=10000 x_{1}^{2}+x_{2}^{3}$, then better results will be obtained by transforming the variables according to $y_{1}=100 x_{1}, y_{2}=x_{2}$ so that the problem becomes $h(y)=y_{1}^{2}+y_{2}^{3}$.

5.1.2 Algorithms Used

5.1.2.1 Minimization of a function of one variable

This algorithm uses a combination of the golden section search method and successive parabolic interpolation. The search begins with a golden section search and switches to successive parabolic interpolation when possible. This algorithm is based on algorithms created by Brent (1973).

(1) Golden section search

The algorithm for reducing the interval according to a golden section is described below.
Assume that the interval to be reduced is $[a, b]$ and that the function value $f(x)$ is calculated at a single point x within the interval $(a<x<b)$. If $c=\frac{a+b}{2}$ is the midpoint of the interval, then for $x<c$, the function value $f(u)$ is calculated at the point $u=x+r(b-x)$ where $r=\frac{3-\sqrt{5}}{2}$. If $f(x)<f(u)$, then $b=u$ is set; otherwise, $a=x$ and $x=u$ are set. For $x \geq c$, a similar procedure is followed. In this way, since the previously calculated function value can be used, the function should be calculated once for each reduction of the interval. If $x=a+r(b-a)$ is taken initially, then the interval will continue to be reduced at a fixed rate of $1-r$.
This algorithm converges with order 1.
(2) Successive parabolic interpolation

The algorithm for reducing the interval according to successive parabolic interpolation is described below. Assume that the interval to be reduced is $[a, b]$. If function values have been calculated at three points v, w and x, then a parabola is created that passes through the three points $(v, f(v)),(w, f(w))$ and $(x, f(x))$, and the X coordinate of its vertex is assumed to be u. For $x<u$, if $f(x)<f(u)$, then $b=u$ is set; otherwise $a=x$ and $x=u$ are set. For $x \geq u$, a similar procedure is followed.
If $f^{\prime \prime}(x)>0$ at the extremum and if the interpolation begins with a sufficiently good approximation, then it has been proven that the algorithm converges with order $1.324 \cdots$.
(3) Switch from the golden section search to successive parabolic interpolation

When a new function value is calculated, v, w and x are updated to be the three points having the smallest function values among the function values calculated up to that time. If possible, the X coordinate u of the vertex of the parabola described above is calculated, and if the following condition is satisfied, then the algorithm switches from the golden section search to sequential parabolic interpolation.

$$
\begin{aligned}
& a<u<b \\
& |x-u|<\frac{b-a}{2}
\end{aligned}
$$

(4) Convergence decision

If the required precision is e_{r}, then convergence is determined according to the following condition:

$$
\max (b-x, x-a) \leq 2 e_{r} \max (1,|x|)
$$

(5) Enclosure

Minimization without constraints is achieved by an enclosure operation that obtains an interval including the minimum point by beginning from an arbitrary starting point.
This algorithm is explained below.
(a) Obtain the direction of inclination at the starting point a.
(b) Let the enclosure point b be at a distance $D=\max \left(\sqrt{\varepsilon}|x|, 1.0,2 e_{r}|x|\right)$ in the direction of inclination.
(c) If the function value at point b is less than the function value at point a, then a decision is made that there is no minimum point, point b is assumed to be point x, and a new point b is set to enclose a wider interval extending to a width of $(3-r)(x-a)$ from point a. In this way, the ratio $b-a: x-a$ becomes the golden section ratio, that is, $b-a: x-a=1: r$. If the function value at point b is greater than the function value at point a, then since there is a minimum point in the interval $[a, b]$, the search will begin in this interval.
(d) If the function value at point b is less than the function value at point x, then point x is assumed to be point a, point b is assumed to be point x, and a new point b is taken at a distance of $(3-r)(x-a)$ from point a. The actions described in iv. are performed repeatedly in this way.
If the function value at point b is greater than the function value at point x, then the search will begin in the interval $[a, b]$. At this time, a function value obtained in the enclosure can be used by letting point x be the point where the function value is calculated in the golden section search.

5.1.2.2 Minimization of a function of many variables

Given a function $f(\boldsymbol{x})$ of n variables, the problem is to obtain a value \boldsymbol{x} for which $f(\boldsymbol{x})$ is a minimum. This value of \boldsymbol{x} will be the solution of the equation $\nabla f(\boldsymbol{x})=0$. To solve this equation, the algorithm assumes that \boldsymbol{x}_{0} is the starting point and sequentially corrects an approximate solution.
Now, the search proceeds to the solution value \boldsymbol{x} by repeatedly attempting to obtain a next corrected solution \boldsymbol{x}^{\prime}. The correction vector \boldsymbol{d} of Newton's method is given by the following equation:

$$
\boldsymbol{d}=-H \boldsymbol{g}
$$

where \boldsymbol{g} is the gradient vector $\boldsymbol{g}=\nabla^{T} f(\boldsymbol{x})$ and H is the inverse matrix of the Hessian matrix $B=\nabla^{2} f(\boldsymbol{x})$. (The notation ${ }^{T}$ indicates the transpose.) Actually, \boldsymbol{d} is taken to be the direction vector and the solution is corrected by performing a rectilinear search according to the following equation:

$$
\boldsymbol{x}^{\prime}=\boldsymbol{x}+\alpha \boldsymbol{d}
$$

This method that sequentially updates an approximate solution without directly calculating H is called a quasiNewton method. The value α is determined by the rectilinear search described in (b).
(1) Calculating the inverse matrix H of the Hessian matrix

Although various formulas for updating H have been proposed, this subroutine algorithm uses the BFGS formula proposed by Broyden, Fletcher, Goldfarb, and Shanno.
The unit matrix E is taken as the initial value of H, and this is then updated by the following formula:

$$
H^{\prime}=\left\{E-\frac{\delta \gamma^{T}}{\delta^{T} \gamma}\right\} H\left\{E-\frac{\gamma \delta^{T}}{\delta^{T} \gamma}\right\}+\frac{\delta \delta^{T}}{\delta^{T} \gamma}
$$

where:

$$
\begin{aligned}
\delta & =\boldsymbol{x}^{\prime}-\boldsymbol{x} \\
\gamma & =\nabla^{T} f\left(\boldsymbol{x}^{\prime}\right)-\nabla^{T} f(\boldsymbol{x})
\end{aligned}
$$

(2) Rectilinear search

Since a precise rectilinear search is not very efficient, Armijo's method is used. This method obtains the smallest nonnegative integer m for which the following condition is satisfied:

$$
f\left(\boldsymbol{x}+\beta^{m} \alpha_{0} \boldsymbol{d}\right)-f(\boldsymbol{x}) \leq \beta^{m} \alpha_{0} \mu \nabla f(\boldsymbol{x}) \boldsymbol{d}
$$

and sets $\alpha=\beta^{m} \alpha_{0}$, where $\alpha_{0}>0,0<\beta<1$ and $0<\mu<1$.
(3) Convergence decision

Convergence is determined according to the following condition, where \boldsymbol{x}^{\prime} is assumed to be the solution.

$$
\begin{aligned}
& \left\|\nabla^{T} f\left(\boldsymbol{x}^{\prime}\right)\right\|_{\infty} \leq \varepsilon \text { or } \\
& \left(\left\|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right\|_{\infty} \leq \varepsilon\right. \text { and a problem occurred during the previous modification) } \\
& \text { or } \\
& \left\|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right\|_{\infty} \leq e_{r} \max \left(1,\left\|\boldsymbol{x}^{\prime}\right\|_{\infty}\right) \text { and }\left\|\nabla^{T} f\left(\boldsymbol{x}^{\prime}\right)\right\|_{\infty} \leq 2 e_{r}
\end{aligned}
$$

where ε is the unit for determining error, e_{r} is the required precision, and $\|\boldsymbol{x}\|_{\infty}=\max _{i}\left|\boldsymbol{x}_{i}\right|$.

5.1.2.3 Nonlinear least square method

Given m functions $f_{1}(\boldsymbol{x}), \cdots, f_{m}(\boldsymbol{x})$ of n variables, the problem is to obtain a value \boldsymbol{x} for which the sum of the squares of the functions:

$$
S(\boldsymbol{x})=\sum_{i=1}^{m} f_{i}(\boldsymbol{x})^{2}=\|\boldsymbol{f}(\boldsymbol{x})\|^{2}
$$

is a minimum, where $\boldsymbol{f}(\boldsymbol{x})$ is a vector value function having components $f_{1}(\boldsymbol{x}), \cdots, f_{m}(\boldsymbol{x})$ and $\|\boldsymbol{x}\|=\sqrt{\boldsymbol{x}^{T} \boldsymbol{x}}$ (the notation ${ }^{T}$ indicates the transpose).
To solve this problem, it is necessary to solve the equations $\frac{\partial S}{\partial \boldsymbol{x}}=0$. To obtain a solution, a search is begun from an initial value \boldsymbol{x}_{0}, and Powell's hybrid method is used to sequentially correct the solution value.
The hybrid method blends a steepest descent solution and the Gauss-Newton solution of a linearized model depending on the nonlinearity of the function. An independence check always is performed for the correction vector so that approximate solutions do not end up being confined within a subspace. Also, function information is used to make corrections without directly calculating the Jacobian matrix.
(1) Correction vector $\Delta \boldsymbol{x}$ calculation

The model in which \boldsymbol{f} is linearized is as follows:

$$
S_{L}(\boldsymbol{x}+\Delta \boldsymbol{x})=\|\boldsymbol{f}(\boldsymbol{x})+A \Delta \boldsymbol{x}\|^{2}
$$

where A is the Jacobian matrix $\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}}$ of \boldsymbol{f}.
The steepest descent solution of this model $\Delta \boldsymbol{x}_{S}$ is given by:

$$
\Delta \boldsymbol{x}_{S}=\frac{\|\boldsymbol{b}\|^{2}}{\|A \boldsymbol{b}\|^{2}} \boldsymbol{b}
$$

where $\boldsymbol{b}=-A^{T} \boldsymbol{f}(\boldsymbol{x})$.
The Gauss-Newton solution $\Delta \boldsymbol{x}_{G}$ is obtained by solving the normal equation:

$$
A^{T} A \Delta \boldsymbol{x}=\boldsymbol{b}
$$

This subroutine uses the linear least squares method's QR decomposition algorithm to solve this equation. It has been provided that, in general, the following relationship holds:

$$
\left\|\Delta \boldsymbol{x}_{S}\right\| \leq\left\|\Delta \boldsymbol{x}_{G}\right\|
$$

These two solutions are blended as follows according to the step size d, which is determined depending to the nonlinearity of the function.
(a) If $d \leq\left\|\Delta \boldsymbol{x}_{S}\right\|$, then:

$$
\Delta \boldsymbol{x}=d \frac{\Delta \boldsymbol{x}_{S}}{\left\|\Delta \boldsymbol{x}_{S}\right\|}
$$

(b) If $\left\|\Delta \boldsymbol{x}_{S}\right\|<d<\left\|\Delta \boldsymbol{x}_{G}\right\|$, (See Figure 5-1) then:

$$
\Delta \boldsymbol{x}=\alpha \Delta \boldsymbol{x}_{S}+\beta \Delta \boldsymbol{x}_{G} \quad(\alpha>0, \beta>0,\|\Delta \boldsymbol{x}\|=d)
$$

Figure 5-1

(c) If $\left\|\Delta \boldsymbol{x}_{G}\right\| \leq d$

$$
\Delta \boldsymbol{x}=\Delta \boldsymbol{x}_{G}
$$

(2) Step size d modification

The initial value of the step size is assumed to be $d=\left\|\Delta \boldsymbol{x}_{S}\right\|$. Thereafter, if the nonlinearity of the function is strong, then the step size is decreased; if the function is nearly linear, then the step size is increased.
To measure the degree of nonlinearity, the ratio $r=\frac{\Delta S}{\Delta S_{L}}$ is used where the amount of change for the linear model is represented by:

$$
\Delta S_{L}=\Delta S_{L}(\boldsymbol{x}+\Delta \boldsymbol{x})-S_{L}(\boldsymbol{x})
$$

and the actual amount of change is represented by:

$$
\Delta S=S(\boldsymbol{x}+\Delta \boldsymbol{x})-S(\boldsymbol{x})
$$

(a) If $r<0.1$, then nonlinearity is considered to be strong and d is reduced by half.
(b) If $r \geq 0.1$, then λ, which is the rate of increase of d, is calculated as follows:

$$
\lambda^{2}=1.0-(r-0.1) \frac{\Delta S_{L}}{S_{P}+\sqrt{\left(S_{P}^{2}-S_{S}(r-0.1) \Delta S_{L}\right)}}
$$

where, for $\delta \boldsymbol{f}$ defined as:

$$
\delta \boldsymbol{f}=\boldsymbol{f}(\boldsymbol{x}+\Delta \boldsymbol{x})-(\boldsymbol{f}(\boldsymbol{x})+A \Delta \boldsymbol{x})
$$

S_{P} and S_{S} are as follows:

$$
\begin{aligned}
S_{P} & =\sum_{i=1}^{n}\left|f_{i}(\boldsymbol{x}+\Delta \boldsymbol{x}) \delta f_{i}\right| \\
S_{S} & =\|\delta \boldsymbol{f}\|^{2}
\end{aligned}
$$

Actually, to prevent the value of d from oscillating, d is increased only when an increase is required two times consecutively. Also, the rate of increase is held to at most 2. The actual rate of increase μ is calculated as follows:

$$
\begin{aligned}
\mu & =\min (2, \lambda, \tau) \\
\tau & =\frac{\lambda}{\mu}
\end{aligned}
$$

where the initial value for τ is 1 , and 1 is reset whenever a reduction of d is required.
In addition, an upper limit $d_{\max }$ and lower limit $d_{\min }$ are set for d and d is controlled so that it falls between these values.
(3) Correction vector independence check

To correct the Jacobian matrix efficiently, the correction vectors that are taken sequentially must be nearly mutually orthogonal. Therefore, an original independence concept is defined according to a hybrid method, and the correction vectors are controlled so that they are taken in directions that are as independent as possible. A vector \boldsymbol{p} is said to be independent of the i vectors $\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \cdots, \boldsymbol{p}_{i}\right)$ if \boldsymbol{p} forms an angle of at least 30 degrees with an arbitrary vector of the space defined by these i vectors. The calculation for this independence test conceived by Powell is as follows.
n mutually independent vectors from the vectors used to correct the Jacobian matrix during the past $2 \times n$ iterations are made to be orthogonal and are stored in $\Omega=\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right)$. The array \boldsymbol{j} of size n is used to store information indicating the number of iterations earlier in which ω_{i} was the correction vector. That is, this information indicates that ω_{i} is the vector that was taken j_{i} iterations earlier. Ω is initialized as the unit matrix, and \boldsymbol{j} is initialized with values $j_{i}=n-i+1$ for $(i=1, \cdots, n)$.
When a solution is corrected, the following steps are performed.
(a) When $\Delta \boldsymbol{x}=\Delta \boldsymbol{x}_{G}$

Regardless of its independence, $\Delta \boldsymbol{x}$ is taken as the correction vector.
(b) When $\Delta \boldsymbol{x}=\Delta \boldsymbol{x}_{G}$ does not occur

If $j_{1}<2 n$ or if $\Delta \boldsymbol{x}$ is independent of $\left(\omega_{2}, \omega_{3}, \cdots, \omega_{n}\right)$, then $\Delta \boldsymbol{x}$ is taken as the correction vector. Otherwise, the solution is not corrected.
(4) Calculation of Jacobian matrix A

The Jacobian matrix is obtained according to a difference only for the first iteration, and thereafter, it is sequentially updated. This method, which was devised by Broyden, calculates the Jacobian matrix according to the following equation:

$$
A^{\prime}=A+\delta \boldsymbol{f} \frac{\Delta \boldsymbol{x}^{T}}{\|\Delta \boldsymbol{x}\|^{2}}
$$

However, if $\|\Delta \boldsymbol{x}\|<d_{\min }$ or if $j_{1}=2 n$ and $\Delta \boldsymbol{x}$ is not independent of $\left(\omega_{2}, \omega_{3}, \cdots, \omega_{n}\right)$, then $\Delta \boldsymbol{x}=d_{\min } \omega_{1}$ is set.
(5) Revision of Ω and \boldsymbol{j}
Ω and \boldsymbol{j} are revised as follows.
When $\Delta \boldsymbol{x}=d_{\min } \omega_{1}$ has been set, the following values should be set:

$$
\begin{aligned}
\omega_{i} & =\omega_{i+1} \text { for }(i=1, \cdots, n-1) \\
\omega_{n} & =\omega_{1} \\
j_{i} & =j_{i+1}+1 \text { for }(i=1, \cdots, n-1) \\
j_{n} & =1
\end{aligned}
$$

Otherwise, the following is performed.
The minimum value k is obtained for which $\left(\omega_{k+1}, \omega_{k+2}, \cdots, \omega_{n}, \Delta \boldsymbol{x}\right)$ are mutually independent.
$\left(\omega_{1}, \cdots, \omega_{k-1}, \omega_{k+1}, \omega_{k+2}, \cdots, \omega_{n}, \Delta \boldsymbol{x}\right)$ are made to be orthogonal, and these are again assumed to be $\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right)$. The following values are then set:

$$
\begin{aligned}
j_{i} & =j_{i}+1 \text { for }(i=1, \cdots, k-1) \\
j_{i} & =j_{i+1}+1 \text { for }(i=k, \cdots, n-1) \\
j_{n} & =1
\end{aligned}
$$

In this way, the relationship $j_{1} \leq 2 n$ always holds.
(6) Convergence decision

Convergence is assumed to have occurred when the following relationship holds and $\boldsymbol{x}+\boldsymbol{\Delta} \boldsymbol{x}$ is assumed to be the solution:

$$
\|\Delta \boldsymbol{x}\|_{\infty} \leq e_{r} \max \left(1,\|\boldsymbol{x}+\Delta \boldsymbol{x}\|_{\infty}\right)
$$

where e_{r} is the required relative precision, and:

$$
\|\boldsymbol{x}\|_{\infty}=\max _{i}\left|x_{i}\right|
$$

5.1.2.4 Minimization of a constrained linear function of several variables (linear constraints)

When a linear function $f(\boldsymbol{x})$ of several variables related to a vector \boldsymbol{x} of dimension n is given as follows together with m linear constraints and the domain of vector \boldsymbol{x}, this algorithm deals with a problem (linear programming problem) that obtains the vector \boldsymbol{x} of dimension n that satisfies the linear constraints and minimizes $f(\boldsymbol{x})$.

$$
\begin{array}{llll}
f(\boldsymbol{x})=\boldsymbol{c}^{T} \boldsymbol{x} \rightarrow \min & & \\
\text { Linear constraints: } & \boldsymbol{a}_{i}^{T} \boldsymbol{x}=b_{i} & \text { for }\left(i=1,2, \cdots, m_{e}\right) \\
& \boldsymbol{a}_{i}^{T} \boldsymbol{x} \leq b_{i} & \text { for }\left(i=m_{e}+1, m_{e}+2, \cdots, m_{n e}\right) \quad \\
& \boldsymbol{a}_{i}^{T} \boldsymbol{x} \geq b_{i} & \text { for } \quad\left(i=m_{n e}+1, m_{n e}+2, \cdots, m\right) \quad 0 \leq m_{e} \leq m_{n e} \leq m \\
\text { Domain of } \boldsymbol{x}: & \boldsymbol{d} \leq \boldsymbol{x} \leq \boldsymbol{u} & &
\end{array}
$$

Here, $\boldsymbol{c}, \boldsymbol{a}_{i}, \boldsymbol{d}$ and \boldsymbol{u} are each constant vectors of dimension n, and $\left(b_{i}\right)$ is a constant vector of degree m. These are fixed by the problem.
Although an inequality is used for vectors such as $\boldsymbol{d} \leq \boldsymbol{x}$, this is used to mean that the inequality holds for each
element of the vector.
To solve a linear programming problem, this library provides subroutines that use the modified simplex method to handle cases in which the matrix $A=\left(a_{i j}\right)$ that assigns the constraints is a dense matrix and subroutines that use the interior point method to handle cases in which A is a sparse matrix.

First, the modified simplex method is explained. By adding new variables X_{i}, the inequality constraints $\boldsymbol{a}_{i}^{T} \boldsymbol{x} \leq b_{i}$ can be converted to $\boldsymbol{a}_{i}^{T} \boldsymbol{x}+X_{i}=b_{i}$ and $\boldsymbol{a}_{i}^{T} \boldsymbol{x} \geq b_{i}$ can be converted to $\boldsymbol{a}_{i}^{T} \boldsymbol{x}-X_{i}=b_{i}$. These variables are called a slack variables. By introducing slack variables, the constraints can all be represented by an equality as follows.

$$
\text { Linear constraints: } \quad A \boldsymbol{x}^{\prime}=\boldsymbol{b}
$$

Domain of $\boldsymbol{x}: \quad \boldsymbol{d}^{\prime} \leq \boldsymbol{x}^{\prime} \leq \boldsymbol{u}^{\prime}$
Here, A is an $n \times\left(n+m-m_{e}\right)$ matrix and $\boldsymbol{x}^{\prime}, \boldsymbol{b}, \boldsymbol{d}^{\prime}$ and \boldsymbol{u}^{\prime} are vectors of dimension $n+m-m_{e}$. Therefore, only equality constraints are considered subsequently. To simplify the notation, let's express $\boldsymbol{x}^{\prime}, \boldsymbol{d}^{\prime}$ and \boldsymbol{u}^{\prime} as $\boldsymbol{x}, \boldsymbol{d}$ and \boldsymbol{u}.
(1) Basic feasible solutions

The optimal solution exists among the basic feasible solutions. The simplex method obtains the optimal solution from among the basic feasible solutions, which are a finite set. Basic feasible solutions are explained below.
Select m linearly independent columns from the columns of matrix A and consider an $m \times m$ regular matrix B having the selected columns as elements. Determine a transformation matrix P of order $n+m-m_{e}$ so that the following are satisfied:

$$
\begin{aligned}
A P & =[B|L| U] \\
\left(P^{-1} \boldsymbol{x}\right)^{T} & =\left[\boldsymbol{x}_{B}^{T}\left|\boldsymbol{x}_{L}^{T}\right| \boldsymbol{x}_{U}^{T}\right] \\
\left(P^{-1} \boldsymbol{d}\right)^{T} & =\left[\boldsymbol{d}_{B}^{T}\left|\boldsymbol{d}_{L}^{T}\right| \boldsymbol{d}_{U}^{T}\right], \\
\left(P^{-1} \boldsymbol{u}\right)^{T} & =\left[\boldsymbol{u}_{B}^{T}\left|\boldsymbol{u}_{L}^{T}\right| \boldsymbol{u}_{U}^{T}\right]
\end{aligned}
$$

and represent the constraints in the following form:

$$
\begin{gathered}
B \boldsymbol{x}_{B}+L \boldsymbol{x}_{L}+U \boldsymbol{x}_{U}=\boldsymbol{b} \\
\boldsymbol{d}_{B} \leq \boldsymbol{x}_{B} \leq \boldsymbol{u}_{B} \\
\boldsymbol{d}_{L} \leq \boldsymbol{x}_{L} \leq \boldsymbol{u}_{L} \\
\boldsymbol{d}_{U} \leq \boldsymbol{x}_{U} \leq \boldsymbol{u}_{U}
\end{gathered}
$$

Here, $\boldsymbol{x}_{B}, \boldsymbol{d}_{B}$ and \boldsymbol{u}_{B} represent vectors of dimension m; L represents an $m \times \ell$ matrix; $\boldsymbol{x}_{L}, \boldsymbol{d}_{L}$ and \boldsymbol{u}_{L} represent vectors of dimension $\ell ; U$ represents an $m \times\left(n-m_{e}-\ell\right)$ matrix; and $\boldsymbol{x}_{U}, \boldsymbol{d}_{U}$ and \boldsymbol{u}_{U} represent vectors of dimension $n-m_{e}-\ell$. However, ℓ is an integer that satisfies $0 \leq \ell \leq n-m_{e}$. Now, when $\boldsymbol{x}_{B}, \boldsymbol{x}_{L}, \boldsymbol{x}_{U}$ satisfy the following conditions, then:

$$
\boldsymbol{x}=P\left[\begin{array}{l}
\boldsymbol{x}_{B} \\
\boldsymbol{x}_{L} \\
\boldsymbol{x}_{U}
\end{array}\right]
$$

is called the basic feasible solution.

$$
\boldsymbol{d}_{B} \leq \boldsymbol{x}_{B} \leq \boldsymbol{u}_{B}
$$

$$
\begin{aligned}
& \boldsymbol{x}_{L}=\boldsymbol{d}_{L} \\
& \boldsymbol{x}_{U}=\boldsymbol{u}_{U}
\end{aligned}
$$

B is called a basic matrix, \boldsymbol{x}_{B} is called a basic variable, L and U are called nonbasic matrices, and \boldsymbol{x}_{L} and \boldsymbol{x}_{U} are called nonbasic variables.
(2) Simplex method

The simplex method procedure is as follows.
(a) Obtain the initial feasible solution.
(b) With other nonbasic variables fixed, change a certain single variable $X_{I N}$ (element of \boldsymbol{x}_{L} or \boldsymbol{x}_{U}) until a certain variable x (element of \boldsymbol{x}_{B} or $X_{I N}$) becomes the upper or lower bound value.
(c) When \boldsymbol{x}_{B} has become the upper or lower bound value, replace the basic variable with a nonbasic variable.
(d) As long as the function value can get smaller, perform these operations repeatedly while selecting various nonbasic variables x as $X_{I N}$.

This is explained concretely below.
First, obtain the initial feasible solution.
Next, obtain the nonbasic variable to be changed, $X_{I N}$. Using basic and nonbasic variables, the function value $f(\boldsymbol{x})$ can be represented in a form that includes the constraints as follows:

$$
\begin{aligned}
f(\boldsymbol{x}) & =\boldsymbol{c}_{B}^{T} B^{-1} \boldsymbol{b}+\boldsymbol{g}_{L}^{T} \boldsymbol{x}_{L}+\boldsymbol{g}_{U}^{T} \boldsymbol{x}_{U} \\
\boldsymbol{g}_{L}^{T} & =\boldsymbol{c}_{L}^{T}-\boldsymbol{c}_{B}^{T} B^{-1} L \\
\boldsymbol{g}_{U}^{T} & =\boldsymbol{c}_{U}^{T}-\boldsymbol{c}_{B}^{T} B^{-1} U
\end{aligned}
$$

Here, in $(P \boldsymbol{c})^{T}=\left(\begin{array}{lll}\boldsymbol{c}_{B}^{T} & \boldsymbol{c}_{L}^{T} & \boldsymbol{c}_{U}^{T}\end{array}\right)$, the vectors $\boldsymbol{c}_{B}, \boldsymbol{c}_{L}$ and \boldsymbol{c}_{U} are vectors of dimension m, ℓ and $n-m_{e}-\ell$ respectively.
Since $\boldsymbol{x}_{L}=\boldsymbol{d}_{L}$ and $\boldsymbol{x}_{U}=\boldsymbol{u}_{U}$, elements of \boldsymbol{x}_{L} can only be changed in the positive direction and elements of \boldsymbol{x}_{U} can only be changed in the negative direction. Therefore, the function value $f(\boldsymbol{x})$ can be reduced only when a certain element of \boldsymbol{g}_{L} is negative or a certain element of \boldsymbol{g}_{U} is positive. When there is no such element, the current value \boldsymbol{x} is the optimal solution. The element of \boldsymbol{g}_{U} or \boldsymbol{g}_{L} that satisfies this condition and has the largest absolute value becomes the element $I N$ to be changed.
At this time, the variable x (element of \boldsymbol{x}_{B} or $X_{I N}$) to be changed to the upper or lower bound value is as follows. When the nonbasic variable $X_{I N}$ is changed, if $X_{I N}$ is assumed to be an element of X_{L}, the following relationships hold while the constraints are satisfied. Here, $\boldsymbol{a}_{I N}$ is the $I N$-th column of A (this differs from the \boldsymbol{a} mentioned earlier), and Δ is the amount of change in $X_{I N}(\Delta \geq 0)$.

$$
\begin{array}{rlcl}
\boldsymbol{d}_{B} \leq & \boldsymbol{x}_{B}-B^{-1} \boldsymbol{a}_{I N} \Delta & \leq \boldsymbol{u}_{B} \\
\boldsymbol{d}_{I N} \leq & X_{I N}+\Delta & & \leq \boldsymbol{u}_{I N}
\end{array}
$$

When Δ is changed, the first variable x (element of \boldsymbol{x}_{B} or $X_{I N}$) for which the above relationship is not satisfied becomes the variable to be changed to the upper or lower bound value. If $\boldsymbol{x}_{I N}$ is an element of \boldsymbol{x}_{U}, the following relationship holds instead of the one shown above.

$$
\begin{array}{cccc}
\boldsymbol{d}_{B} \leq & \boldsymbol{x}_{B}+B^{-1} \boldsymbol{a}_{I N} \Delta & \leq \boldsymbol{u}_{B} \\
d_{I N} \leq & X_{I N}-\Delta & & \leq \boldsymbol{u}_{I N}
\end{array}
$$

The amount of decrease of $f(\boldsymbol{x})$ at this time is as follows. Assume the updated $f(\boldsymbol{x})$ is $f\left(\boldsymbol{x}^{\prime}\right)$.

$$
\begin{array}{ll}
f\left(\boldsymbol{x}^{\prime}\right)=f(\boldsymbol{x})+g_{I N} \Delta & \left(\text { When } X_{I N} \text { is an element of } \boldsymbol{x}_{L}, \quad g_{I N}<0\right) \\
f\left(\boldsymbol{x}^{\prime}\right)=f(\boldsymbol{x})-g_{I N} \Delta & \left(\text { When } X_{I N} \text { is an element of } \boldsymbol{x}_{U}, g_{I N}>0\right)
\end{array}
$$

Finally, replace elements of B, L and U to match the change in the variable value.
If the above operations are performed repeatedly until there is no more $X_{I N}$ that can be selected, the optimal solution is obtained.
(3) Revised simplex method

The revised simplex method improves the handling of the basic matrix and the method of selecting the variable to be entered in the basis so that computations can be performed efficiently.
The greatest distinguishing feature of the revised simplex method is that uses an eta matrix E_{k}, which is defined in the following form, when updating the basic matrix B_{k-1} to B_{k}.

$$
E_{k}=\left[\begin{array}{ccccccccc}
1 & & & & B_{k-1}^{-1} & \vdots & \boldsymbol{a}_{I N} & & \\
\\
& \ddots & & & & \vdots & & & \\
& & 1 & & & \vdots & & & \\
& & & \ddots & & \vdots & & & \\
& & & & B_{k-1}^{-1} & & \boldsymbol{a}_{I N}(O U T) & & \\
& & & & & \vdots & & \ddots & \\
& & & & & \vdots & & & \\
& & & & & \vdots & & & \\
& 0 & & & & & & \ddots & \\
& & & & B_{k-1}^{-1} & \vdots & \boldsymbol{a}_{I N} & & \\
& & & 1
\end{array}\right]
$$

(OUT: Subscript of basic variable to be changed to the upper or lower bound value)
$\left(\boldsymbol{a}_{I N}(O U T)\right.$: OUT-th element of $\left.\boldsymbol{a}_{I N}\right)$
Updating is performed according to $B_{k}=B_{k-1} E_{k}$.
Next, the interior point method is explained.
(1) Form of problems handled by the interior point method

The interior point method handles problems that were formulated as follows so that the lower limit value of \boldsymbol{x} is 0 .

$$
\begin{array}{ll}
f(\boldsymbol{x})=\boldsymbol{c}^{T} \boldsymbol{x} \rightarrow \min \\
\text { Linear constraint } & A \boldsymbol{x}=\boldsymbol{b} \tag{5.1}\\
\text { Domain of } \boldsymbol{x} & \mathbf{0} \leq \boldsymbol{x} \leq \boldsymbol{u}
\end{array}
$$

Here, A is an $m \times n$ matrix that assigns m constraints for the n-dimensional vector $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\mathrm{T}}$. The general linear programming problem that was handled by the modified simplex method can be expressed in the form shown in (5.1) by a translation in the \boldsymbol{x} space and the introduction of slack variables. Although there are numerous types of algorithms that are classified as interior point methods, this library uses a method in which an affine transformation is performed.
(2) Optimal solution search in the interior point method

While the simplex method searches for an optimal solution from within the basic feasible solutions corresponding to the vertices of the feasible region S, the interior point method starts from the interior of the feasible region and searches for an optimal solution while varying the solution in the direction that reduces the objective function.
When $\boldsymbol{x}^{(k)}$ is a feasible solution, the interior point method searches in the direction of the direction vector $\boldsymbol{d}^{(k)}$ for which the reduction rate of the objective vector is the greatest among the vectors $\boldsymbol{d}^{(k)}$ for which $\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+t \boldsymbol{d}^{(k)}$ is feasible and $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^{(k+1)}<\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^{(k)}$ is satisfied. Here, t is called the step size. If the constraint is not taken into account, the direction that reduces the objective function value $\boldsymbol{c} \cdot \boldsymbol{x}$ the most is the $-\boldsymbol{c}$ direction. Actually, since the constraint $A \boldsymbol{x}^{(k+1)}=A\left(\boldsymbol{x}^{(k)}+t \boldsymbol{d}^{(k)}\right)=\boldsymbol{b}$ must be satisfied, the direction for which $-\boldsymbol{c}$ is projected onto the subspace $\{x \mid A \boldsymbol{x}=\mathbf{0}\}$ of S should be taken as the $\boldsymbol{d}^{(k)}$ direction.

(3) Big-M method

To search for the optimal solution according to the interior point method, an interior point of the feasible region, that is, an initial solution $\boldsymbol{x}^{(0)}$ which is inside the feasible region and not on the boundary, is required as the search starting point. However, the method of obtaining this kind of initial solution is not self-evident. Therefore, this library uses a method called the Big-M method to calculate the feasible solutions and optimal solution simultaneously. First, introduce m artificial variables as the vector

$$
\boldsymbol{x}^{\prime}=\left(x_{n+1}, x_{n+2}, \ldots, x_{n+m}\right)^{\mathrm{T}}
$$

and formulate a linear programming problem of $n+m$ variables as follows.

$$
\begin{array}{ll}
\bar{f}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\boldsymbol{c}^{T} \boldsymbol{x}+M \boldsymbol{x}^{\prime} \rightarrow \min \\
\text { Linear constraint } & A \boldsymbol{x}+\bar{A} \boldsymbol{x}^{\prime}=\boldsymbol{b} \\
\text { Domain of } \boldsymbol{x} & \mathbf{0} \leq \boldsymbol{x} \leq \boldsymbol{u} \tag{5.2}\\
\text { Domain of } \boldsymbol{x}^{\prime} & \mathbf{0} \leq \boldsymbol{x}^{\prime}
\end{array}
$$

If we define the $m \times m$ matrix $\bar{A}=\left(\bar{a}_{i j}\right)(1 \leq i, j \leq m)$ for an arbitrary $\boldsymbol{x}^{(0)}=\left(x_{1}^{(0)}, x_{2}^{(0)}, \ldots, x_{n}^{(0)}\right)^{\mathrm{T}}$ by

$$
\bar{a}_{i j}=\left\{\begin{array}{cc}
\sum_{k=1}^{n} a_{i k} x_{k}^{(0)} & (\text { when } i=j) \\
0 & (\text { when } i \neq j)
\end{array}\right.
$$

then

$$
\left[\begin{array}{c}
\boldsymbol{x} \\
\boldsymbol{x}^{\prime}
\end{array}\right]=\left(x_{1}^{(0)}, x_{2}^{(0)}, \ldots, x_{n}^{(0)}, 1,1, \ldots, 1\right)^{\mathrm{T}}
$$

clearly is a feasible solution of (5.2). If a sufficiently large positive number is taken for the parameter M, then as the objective function $\bar{f}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$ of (5.2) with the artificial variables $x^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{m}\right)^{\mathrm{T}}$ is reduced according to the interior method, the artificial variable term $M \boldsymbol{x}^{\prime}$ quickly approaches zero. This means that each artificial variable rapidly approaches zero. When the various artificial variables are sufficiently close to zero, the portion of the feasible solution of (5.2) excluding the artificial variables is viewed as a feasible solution of (5.1). As the objective function $\bar{f}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$ is further reduced, the $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}$ term will be reduced. Therefore, the portion of the optimal solution of (5.2) excluding the artificial variables ultimately will be an optimal feasible solution of (5.1). If the artificial variables do not become sufficiently close to zero in the optimal solution of (5.2), that is if the following relationship holds for a given small positive number ϵ_{A},

$$
\max _{1 \leq j \leq m}\left\{\left|x_{n+j}^{\prime}\right|\right\}>\epsilon_{A}
$$

the problem in (5.1) is considered to be infeasible.
In the following explanations, artificial variables are considered to already have been incorporated in (5.1).
(4) Determining the search direction according to an affine transformation

In the method of determining the search direction of the optimal solution described above, when $\boldsymbol{x}^{(k)}$ is near the center of S, since the step size t is taken sufficiently large, the value of the objective function can be significantly reduced. However, when $\boldsymbol{x}^{(k)}$ is near the boundary of S , since a large step size cannot be taken, the objective function is not sufficiently reduced. Therefore, a transformation is performed for the variable \boldsymbol{x} so that the current solution $\boldsymbol{x}^{(k)}$ becomes sufficiently distant from the boundary of the feasible region S^{\prime} in the post-transformation space. Then, the solution is updated so that the objective function is significantly reduced, and the inverse transformation is performed for the new solution in the pre-transformation space that was obtained to get $\boldsymbol{x}^{(k+1)}$. For this purpose, the affine transformation

$$
y=\left(D^{(k)}\right)^{-1} x
$$

is performed according to the following diagonal matrix that is defined for the current solution $\boldsymbol{x}^{(k)}$.

$$
D^{(k)}=\left[\begin{array}{cccc}
x_{1}^{(k)} & & & 0 \\
& x_{2}^{(k)} & & \\
& & \ddots & \\
0 & & & x_{n}^{(k)}
\end{array}\right]
$$

It is clear that $\boldsymbol{x}^{(k)}$ in the pre-transformation space is shifted to $(1,1, \ldots, 1)^{T}$. The original linear programming problem is expressed as follows in the \boldsymbol{y} space.

$$
\begin{array}{ll}
f(\boldsymbol{y})=\hat{\boldsymbol{c}}^{(k) \mathrm{T}} \boldsymbol{y} \rightarrow \min \\
\text { Linear constraint } & \hat{A}^{(k)} \boldsymbol{y}=\boldsymbol{b} \\
\text { Domain of } \boldsymbol{y} & \mathbf{0} \leq \boldsymbol{y} \leq \hat{\boldsymbol{u}}^{(k)}
\end{array}
$$

Here,

$$
\hat{A}^{(k)}=A D^{(k)}
$$

and

$$
\hat{\boldsymbol{c}}^{(k)}=D^{(k)} \boldsymbol{c}
$$

The direction $\hat{\boldsymbol{d}}^{(k)}$ that maximizes the reduction rate of the objective function in this problem is the direction for which $-\hat{\boldsymbol{c}}^{(k)}$ is projected onto the subspace $\left\{\boldsymbol{y} \mid \hat{A}^{(k)} \boldsymbol{y}=\mathbf{0}\right\}$. Since this projection is given by the transformation matrix expressed as follows

$$
\hat{P}^{(k)}=I-\left(\hat{A}^{(k)}\right)^{\mathrm{T}}\left(\hat{A}^{(k)}\left(\hat{A}^{(k)}\right)^{\mathrm{T}}\right)^{-1} \hat{A}^{(k)}
$$

the search direction will be

$$
\hat{\boldsymbol{d}}^{(k)}=-\hat{P}^{(k)} \hat{\boldsymbol{c}}^{(k)}
$$

However, since this search direction has the following relationship with the search direction $\boldsymbol{d}^{(k)}$ for the original variable

$$
\boldsymbol{d}^{(k)}=D^{(k)} \hat{\boldsymbol{d}}^{(k)}
$$

the search direction in the original space is given by

$$
\boldsymbol{d}^{(k)}=-D^{(k)} \hat{P}^{(k)} \hat{\boldsymbol{c}}^{(k)}=-\left(D^{(k)}\right)^{2}\left(I-A^{\mathrm{T}}\left(A\left(D^{(k)}\right)^{2} A^{\mathrm{T}}\right)^{-1} A\left(D^{(k)}\right)^{2}\right) \boldsymbol{c}
$$

Although the inverse matrix calculation is included in this formula, the actual calculations first solve the following simultaneous linear equations to obtain $\boldsymbol{w}^{(k)}$

$$
\left(A\left(D^{(k)}\right)^{2} A^{\mathrm{T}}\right) \boldsymbol{w}^{(k)}=A\left(D^{(k)}\right)^{2} \boldsymbol{c}
$$

and the search direction $\boldsymbol{d}^{(k)}$ can be determined as

$$
\boldsymbol{d}^{(k)}=-\left(D^{(k)}\right)^{2}\left(\boldsymbol{c}-A^{\mathrm{T}} \boldsymbol{w}^{(k)}\right)
$$

(5) Determining the step size

Points on the straight line $\boldsymbol{x}^{(k)}+t \boldsymbol{d}^{(k)}(t \geq 0)$ given by the search direction $\boldsymbol{d}^{(k)}$ that was determined as described above will satisfy the constraint,

$$
A x=b
$$

and the objective function will decrease monotonically for increases in the step size t. However, since the variable \boldsymbol{x} is not permitted to leave the variable domain $\mathbf{0} \leq \boldsymbol{x} \leq \boldsymbol{u}$, the maximum value that can be taken for the step size t will be as follows.

$$
t_{\max }=\min \left\{\min \left\{\left.\frac{x_{j}^{(k)}}{-d_{j}^{(k)}} \right\rvert\, d_{j}^{(k)}<0\right\}, \min \left\{\left.\frac{u_{j}-x_{j}^{(k)}}{d_{j}^{(k)}} \right\rvert\, d_{j}^{(k)}>0\right\}\right\}
$$

Actually, since the search cannot continue if the boundary of the feasible region is reached, the value $t^{(k)}$ given by where the parameter α satisfying $0<\alpha<1$ will be the step size for $\boldsymbol{x}^{(k)}$, and the new solution $\boldsymbol{x}^{(k+1)}$ will be given by

$$
\boldsymbol{x}^{(k+1)}=\boldsymbol{x}^{(k)}+t^{(k)} \boldsymbol{d}^{(k)}
$$

(6) Replacing the upper and lower limits of the variable

If any variable approaches the lower limit during the search for the optimal solution, the affine transformation described earlier is effective. However, if the variable approaches the upper limit, the same method cannot be used. Therefore, if the variable x_{j} approaches its upper limit u_{j}, this subroutine replaces the upper and lower limits of the variable by performing the following transformations.

$$
\begin{array}{rlcl}
x_{j} & \leftarrow & u_{j}-x_{j} & \\
u_{j} & \leftarrow & u_{j} & \\
c_{j} & \leftarrow & -c_{j} & \\
b_{i} & \leftarrow & b_{i}-a_{i j} u_{j} & (i=1,2, \ldots, m) \\
a_{i j} & \leftarrow & -a_{i j} & (i=1,2, \ldots, m)
\end{array}
$$

(7) Checking the residual for the constraint

While repeating the iterative calculations for finding the optimal solution, the residual $\|A \boldsymbol{x}-\boldsymbol{b}\|$ for the constraint may become large because of calculation error. Once the residual becomes large, subsequent
calculations are meaningless. To prevent this, a check is performed every ℓ-th iteration to determine if the following relationship is satisfied

$$
\left\|A \boldsymbol{x}^{(k)}-\boldsymbol{b}\right\| \leq \epsilon_{r}
$$

for a given positive number ϵ_{r}. If it is not satisfied, the search for the optimal solution is started over again from the beginning by recalculating the matrix \bar{A} of problem (5.2) with

$$
\left[\begin{array}{c}
\boldsymbol{x} \\
\boldsymbol{x}^{\prime}
\end{array}\right]=\left(x_{1}^{(k-\ell)}, x_{2}^{(k-\ell)}, \ldots, x_{n}^{(k-\ell)}, 1,1, \ldots, 1\right)^{\mathrm{T}}
$$

as the initial solution.
(8) Determining convergence

When the following relationship is satisfied

$$
\frac{\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^{(k-1)}-\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^{(k)}}{1+\left\|\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}^{(k)}\right\|} \leq \epsilon_{C}
$$

the $\boldsymbol{x}^{(k)}$ values are considered to converge to the optimal solution. ϵ_{C} is the parameter for determining convergence.

5.1.2.5 Minimization of a constrained linear function of several variables including $0-1$ variables

This section deals with a linear programming problem having the added condition that several of the variables are $0-1$ variables, that is, variables that take only 0 or 1 as the value (mixed $0-1$ programming problem).

$$
\begin{array}{llll}
\text { Objective function } & : & f(\boldsymbol{x}) \quad= & \boldsymbol{c}^{T} \boldsymbol{x} \rightarrow \min \\
\text { Linear constraints } & : a_{i j} x_{j}= & b_{i} \quad(i=1, \cdots, m ; j=1, \cdots, n) \\
\text { Domain of } \boldsymbol{x} & : d_{j} \leq x_{j} \leq u_{j} & \left(j=n_{01}+1, \cdots, n\right) \\
\text { 0-1 variable condition } & : & x_{j}=0 \text { or } 1 & \left(j=1, \cdots, n_{01}\right) \\
& & \left(1 \leq n_{01} \leq n\right)
\end{array}
$$

The explanation below assumes that the required number of slack variables have been introduced in advance so that only equality constraints are included as constraints.
This library uses the branch-and-bound method to solve the mixed $0-1$ programming problem. he branch-andbound method decomposes the original problem into several partial problems and obtains the solutions of the original problem by solving all of these partial problems. A partial problem of a mixed 0-1 programming problem is one in which the values of several $0-1$ variables are fixed at 0 or 1 . This is represented as follows.

$$
\begin{array}{llll}
\text { Objective function } & : & f(\boldsymbol{x}) \quad= & \boldsymbol{c}^{T} \boldsymbol{x} \rightarrow \min \\
\text { Linear constraints } & : & a_{i j} x_{j} \quad= & b_{i} \quad(i=1, \cdots, m ; j=1, \cdots, n) \\
\text { Domain of } \boldsymbol{x} & : & d_{j} \leq x_{j} \leq u_{j} & \left(j \notin S^{0} \cup S^{1} \cup F\right) \\
\text { 0-1 variable condition } & : x_{j}=0 & \left(j \in S^{0}\right) \\
& x_{j}=1 & \left(j \in S^{1}\right) \\
& x_{j}=0 \text { or } 1 & (j \in F)
\end{array}
$$

Here, S^{0}, S^{1}, and F are the set of subscripts of $0-1$ variables having values fixed at 0 , the set of subscripts of $0-1$ variables having values fixed at 1 , and the set of subscripts of $0-1$ variables having values that are not fixed, respectively, in partial problem P_{k}. Now, 0-1 variables having values fixed at 0 or 1 are called fixed variables, and
other 0-1 variables are called free variables. A partial problem is a mixed 0-1 programming problem in itself. In particular, the partial problem having $S^{0} \cup S^{1}=\phi$, that is, not having fixed variables, is the original mixed 0-1 programming problem (hereafter called P_{1}) itself. Also, the linear programming problem represented as follows is called the relaxation problem for the original partial problem.

$$
\begin{array}{llll}
\text { Objective function } & : & f(\boldsymbol{x}) \quad \boldsymbol{c}^{T} \boldsymbol{x} \rightarrow \text { min } \\
\text { Linear constraints } & : & a_{i j} x_{j}= & b_{i} \quad(i=1, \cdots, m ; j=1, \cdots, n) \\
\text { Domain of } \boldsymbol{x} & : & d_{j} \leq x_{j} \leq u_{j} & \left(j \notin S^{0} \cup S^{1} \cup F\right) \\
\text { 0-1 variable condition } & : x_{j}=0 & \left(j \in S^{0}\right) \\
& x_{j}=1 & \left(j \in S^{1}\right) \\
& 0 \leq x_{j} \leq 1 & (j \in F)
\end{array}
$$

The method of obtaining the solutions of P_{1} by the branch-and-bound method is explained below.
(1) Initial settings
(a) Partial problem list

The branch-and-bound method uses the partial problem list PLIST. In the initial state, the members of PLIST consist only of P_{1}, and the number of members of PLIST L is $1 . L$ increases and decreases as the branch-and-bound method calculations proceed.
(b) Incumbent

In the initial state, since not even one feasible solution of P_{1} is found, the incumbent \boldsymbol{x}^{*} is indeterminate, and a sufficiently large positive value is set in advance as the objective function value z^{*} for the incumbent \boldsymbol{x}^{*}.
(c) Pseudo cost

The initial values of the pseudo costs $h_{\text {up }}(j)$ and $h_{\text {down }}(j)(j \in F)$ to be used for updating PLIST are set as follows. First, the revised simplex method is used to solve the relaxation problem for P_{1}. At this time, if the optimal solution that was obtained is represented by $\overline{\boldsymbol{x}}$, the set of subscripts of basic variables within the optimal solution is represented by B, the set of subscripts of nonbasic variables that take the upper bound of the domain of definition is represented by $N_{u p}$, and the set of subscripts of nonbasic variables that take the lower bound of the domain of definition is represented by $N_{\text {down }}$, the various basic variables $\bar{x}_{B_{i}}$ and the objective function value $f(\overline{\boldsymbol{x}})$ are represented as follows, using the nonbasic variables.

$$
\begin{aligned}
f(\overline{\boldsymbol{x}}) & =\bar{z}_{0}+\sum_{j \in N_{\text {down }}} \bar{c}_{j} \bar{x}_{j}-\sum_{j \in N_{u p}} \bar{c}_{j} \bar{x}_{j} \\
\bar{x}_{B_{i}} & =\bar{b}_{i}-\sum_{j \in N_{\text {down }}} y_{i j} \bar{x}_{j}-\sum_{j \in N_{u p}} y_{i j} \bar{x}_{j} \quad\left(B_{i} \in B\right)
\end{aligned}
$$

Here, $\bar{z}_{0}, \bar{b}_{i}, \bar{c}_{j}$ and $y_{i j}$ are quantities obtained by the revised simplex method calculation process when obtaining the optimal solution of the relaxation problem of P_{1}, and the following relationship is satisfied.

$$
\bar{c}_{j} \geq 0 \quad\left(j \in N_{u p} \cup N_{\text {down }}\right)
$$

These quantities are used to set the initial values of $h_{u p}(p)$ and $h_{\text {down }}(p)$.
When $p \in N_{u p}$:

$$
\begin{aligned}
h_{u p}(p) & =0 \\
h_{\text {down }}(p) & =-\bar{c}_{p}
\end{aligned}
$$

When $p \in N_{\text {down }}$:

$$
\begin{aligned}
h_{u p}(p) & =\bar{c}_{p} \\
h_{\text {down }}(p) & =0
\end{aligned}
$$

When $p=B_{i} \in B$:

$$
\begin{aligned}
h_{u p}(p) & =\min \left\{-\bar{c}_{j} / y_{i j} \mid y_{i j}<0, j \in N_{\text {down }}-F \text { or } y_{i j}>0, j \in N_{u p}-F\right\} \\
h_{\text {down }}(p) & =\min \left\{\bar{c}_{j} / y_{i j} \mid y_{i j}>0, j \in N_{\text {down }}-F \text { or } y_{i j}<0, j \in N_{u p}-F\right\}
\end{aligned}
$$

However, when $p=B_{i} \in B$, if there is no j that satisfies the condition on the right-hand side for either $h_{u p}(p)$ or $h_{\text {down }}(p)$ (but not both), a sufficiently large positive number is set as the value. If there is no j that satisfies the condition on the right-hand side for both $h_{u p}(p)$ and $h_{d o w n}(p)$, then $h_{u p}(p)$ and $h_{\text {down }}(p)$ are as follows:

$$
\begin{aligned}
h_{u p}(p) & =\frac{\sum_{j \in N_{u p}}-\bar{c}_{j} / y_{i j}}{\left|M_{u p}\right|} \\
h_{\text {down }}(p) & =\frac{\sum_{j \in N_{u p}} \bar{c}_{j} / y_{i j}}{\left|M_{\text {down }}\right|}
\end{aligned}
$$

where, $M_{u p}(p)$ and $M_{\text {down }}(p)$ are defined as follows.

$$
\begin{aligned}
M_{u p}(p) & =\left\{j \mid y_{i j}<0, j \in N_{\text {down }} \cap F \text { or } y_{i j}>0, j \in N_{u p} \cap F\right\} \\
M_{\text {down }}(p) & =\left\{j \mid y_{i j}>0, j \in N_{\text {down }} \cap F \text { or } y_{i j}<0, j \in N_{u p} \cap F\right\}
\end{aligned}
$$

(2) Relaxation problem

If any relaxation problem corresponding to a partial problem included in PLIST has not been solved, the revised simplex method is used to solve it. If the optimal value $g\left(P_{i}\right)$ for the solutions of the relaxation problem corresponding to partial problem P_{i} satisfies $g\left(P_{i}\right)>z^{*}, P_{i}$ is removed from PLIST and $L \leftarrow L-1$ is performed. Also, when the optimal solution is represented by $\overline{\boldsymbol{x}}$, if the value of $\overline{\boldsymbol{x}}_{j}$ is 0 or 1 for all $j \in F$, the solutions of the relaxation problem are solutions of the original partial problem, and the optimal value of the partial problem is equal to the optimal value $g\left(P_{i}\right)$ of the relaxation problem. At this time, if $f\left(P_{i}\right)<z^{*}$, \boldsymbol{x}^{*} and z^{*} are replaced by $\overline{\boldsymbol{x}}$ and $f\left(P_{i}\right)$.
Now, a new relaxation problem must be solved when the initial settings described above are made and when L is increased by a branching operation, which is described later. In the latter case, the last two partial problems in PLIST are the pair of partial problems $P_{i 0}$, for which the branching variable $x_{j_{0}}$ is fixed at 0 , and $P_{i 1}$, for which it is fixed at 1. At this time, the pseudo costs are updated as follows by using the optimal values of the relaxation problems obtained as described above $g\left(P_{i 0}\right)$ and $g\left(P_{i 1}\right)$, the optimal value of the partial problem P_{i} before the branching operation $g\left(P_{i}\right)$, and the optimal solution value $\bar{x}_{j_{0}}$.

$$
\begin{aligned}
h_{u p}\left(j_{0}\right) & =\left(g\left(P_{i 1}\right)-g\left(P_{i}\right)\right) /\left(1-\bar{x}_{j_{0}}\right) \\
h_{d o w n}\left(j_{0}\right) & =\left(g\left(P_{i 0}\right)-g\left(P_{i}\right)\right) / \bar{x}_{j_{0}}
\end{aligned}
$$

(3) Optimal value estimate

If the branching operation, which is described later, has been performed, let $K^{\prime}=\min \{K+1, L\}$. Otherwise, let $K^{\prime}=\min \{K, L\}$. Here, K, which is called the depth of search in the branch-and-bound method, is a positive integer parameter that has been assigned in advance. For the last K^{\prime} partial problems P_{i} in PLIST, the optimal value of the relaxation problem $g\left(P_{i}\right)$, the optimal solution $\overline{\boldsymbol{x}}$, and the pseudo costs $h_{u p}(j)$
and $h_{\text {down }}(j)$ are used to calculate the estimate $h\left(P_{i}\right)$ of the optimal value $f\left(P_{k}\right)$ of the partial problem as follows:

$$
h\left(P_{i}\right)=g\left(P_{i}\right)+\sum_{j \in F} \min \left\{h_{u p}(j)\left(1-\bar{x}_{j}\right), h_{\text {down }}(j) \bar{x}_{j}\right\}
$$

and the last K^{\prime} entries of PLIST are rearranged in descending order of $h\left(P_{i}\right)$.
(4) Partial problem test

For the last partial problem P_{k} in PLIST, if the basic variables $\bar{x}_{B_{i}}\left(B_{i} \in B\right)$ of the optimal solution of its relaxation problem are represented by the nonbasic variables $\bar{x}_{j}\left(j \in N_{u p} \cup N_{d o w n}\right)$, quantities are obtained that correspond to the quantities $\bar{z}_{0}, y_{i j}, \bar{c}_{j}$, and \bar{b}_{i}, which were obtained earlier when calculating the initial values of the pseudo costs. These quantities are used to defined $Z_{\max }(i)$ and $Z_{\min }(i)$ as follows:

$$
\begin{aligned}
& Z_{\max }(i)=\bar{b}_{i}-\sum_{j \in N_{\text {down }}-S^{0}} \min \left\{0, y_{i j}\right\}\left(u_{j}-d_{j}\right)+\sum_{j \in N_{u p}-S^{1}} \max \left\{0, y_{i j}\right\}\left(u_{j}-d_{j}\right) \\
& Z_{\min }(i)=\bar{b}_{i}-\sum_{j \in N_{\text {down }}-S^{0}} \max \left\{0, y_{i j}\right\}\left(u_{j}-d_{j}\right)+\sum_{j \in N_{u p}-S^{1}} \min \left\{0, y_{i j}\right\}\left(u_{j}-d_{j}\right)
\end{aligned}
$$

and the following eight rules can be used to fix several of the free variables $x_{j}(j \in F)$ at 0 or 1 .

- $Z_{\text {max }}(i)<1$ and $B_{i} \in F$, then $x_{B_{i}}=0$
- $Z_{\text {min }}(i)>0$ and $B_{i} \in F$, then $x_{B_{i}}=1$
- $Z_{\text {max }}(i)-\max \left\{0, y_{i j}\right\}<d_{B_{i}}$ and $j \in N_{\text {down }} \cap F$, then $x_{j}=0$
- $Z_{\text {max }}(i)+\min \left\{0, y_{i j}\right\}<d_{B_{i}}$ and $j \in N_{u p} \cap F$, then $x_{j}=1$
- $Z_{\min }(i)-\min \left\{0, y_{i j}\right\}>u_{B_{i}}$ and $j \in N_{\text {down }} \cap F$, then $x_{j}=0$
- $Z_{\text {min }}(i)+\max \left\{0, y_{i j}\right\}>u_{B_{i}}$ and $j \in N_{u p} \cap F$, then $x_{j}=1$
- $\left|\bar{c}_{j}\right| \geq z^{*}-g\left(P_{k}\right)$ and $j \in N_{\text {down }} \cap F$, then $x_{j}=0$
- $\left|\bar{c}_{j}\right| \geq z^{*}-g\left(P_{k}\right)$ and $j \in N_{u p} \cap F$, then $x_{j}=1$

Now, F, S^{0}, and S^{1} are updated each time a variable is fixed. When all free variables have been fixed, the partial problem P_{k} is solved, P_{k} is removed from PLIST, and $L \leftarrow L-1$ is performed. At this time, if $f\left(P_{k}\right)<z^{*}, \boldsymbol{x}^{*}$ and z^{*} are replaced by the solution of P_{k} and $f\left(P_{k}\right)$. Then, processing proceeds with step (6) according to the updated PLIST. If there are any remaining free variables that have not been fixed, processing proceeds with the next branching operation.
(5) Branching operation
P_{k} is removed from PLIST. Then, one branching variable $x_{j_{0}}$ is selected from the free variables that have not been fixed by the partial problem test described above, the partial problems $P_{k 0}$, for which j_{0} was added to S^{0}, and $P_{k 1}$, for which j_{0} was added to S^{1}, are added at the end of PLIST, and $L \leftarrow L+1$ is performed. The branching variable $x_{j_{0}}$ is determined here as follows.
When incumbent \boldsymbol{x}^{*} has not been obtained:
For j_{0}, set the $j \in F \cap B$ that maximizes the value of $\left|h_{u p}(j)\left(1-\bar{x}_{j}\right)-h_{\text {down }}(j) \bar{x}_{j}\right|$. Here, $\overline{\boldsymbol{x}}$ is the optimal solution of relaxation problem of the partial problem P_{k}.
When incumbent \boldsymbol{x}^{*} has been obtained:
For j_{0}, set the $j \in F \cap B$ that maximizes the value of $\min \left\{h_{u p}(j)\left(1-\bar{x}_{j}\right), h_{\text {down }}(j) \bar{x}_{j}\right\}$.
(6) Termination condition

If $L=0$, processing for the branch-and-bound method terminates, and the incumbent at that time x^{*} is the solution of P_{1}, that is, of the original mixed 0-1 programming problem. Otherwise, processing returns to step (2).

5.1.2.6 Minimization of cost for flow in a network

Consider a network having n vertices and m edges in which it is assumed that no loops (edges for which the tail of the edge and head of the edge are the same vertex) exist. Directed edge k, which is represented by its tail $\operatorname{tail}(k)$ and head $\operatorname{head}(k)$, has a nonnegative capacity u_{k} and cost coefficient per unit flow c_{k}. The minimal-cost

Figure 5-2 Edge k and its Capacity u_{k} and Cost Coefficient c_{k}

flow problem obtains the nonnegative flows $x_{k}(k=1, \cdots, m)$ that satisfy the vertex i inflow/outflow amount b_{i} and edge k capacity u_{k} constraints and minimize the sum of the costs of all edges in this kind of network.

$$
\begin{aligned}
\text { Objective function }: & \sum_{k=1}^{m} c_{k} x_{k} \longrightarrow \min \\
\text { Constraints }: & \sum_{\operatorname{tail}(k)=i} x_{k}-\sum_{\operatorname{head}(k)=i} x_{k}=b_{i}, \quad(i=1, \cdots, n) \\
& 0 \leq x_{k} \leq u_{k}, \quad(k=1, \cdots, m) \\
& \sum_{i=1}^{n} b_{i}=0
\end{aligned}
$$

Although this is a linear programming problem to which the simplex method can be applied, a data structure representing the tableau graphically can be created by taking advantage of the characteristics of the constraints, and calculations involving pivoting arithmetic can be executed more efficiently.

Figure 5-3 Network Example

(1) Initial feasible solution

Add vertex $n+1$ to the network to create edge $k=(i, n+1)$ from vertex i if $b_{i} \geq 0$ or edge $k=(n+1, i)$ to vertex i if $b_{i}<0$. Here, a sufficiently large positive value L is set for the cost coefficient of the added edge, ∞ (specifically, a sufficiently large positive value U) is set for the capacity, and b_{n+1} is set equal to zero. At this time, the modified minimal-cost flow problem is as follows.

$$
\begin{aligned}
\text { Objectivefunction }: & \sum_{k=1}^{m^{\prime}} c_{k} x_{k} \longrightarrow \min \\
\text { Constraints }: & \sum_{\operatorname{tail}(k)=i} x_{k}-\sum_{\operatorname{head}(k)=i} x_{k}+\operatorname{sign}\left(b_{i}\right) \cdot x_{m+i}=b_{i}, \quad(i=1, \cdots, n) \\
& 0 \leq x_{k} \leq u_{k}, \quad\left(k=1, \cdots, m^{\prime}(=m+n)\right) \\
& \sum_{i=1}^{n} b_{i}=0
\end{aligned}
$$

where,

$$
\begin{aligned}
c_{k} & =L \\
u_{k} & =U \quad, k=m+1, \cdots, m^{\prime} \\
\operatorname{sign}\left(b_{i}\right) & =\left\{\begin{aligned}
1, & b_{i} \geq 0 \\
-1, & b_{i}<0
\end{aligned}\right.
\end{aligned}
$$

From this, the initial feasible solution should be as follows:

$$
x_{k}= \begin{cases}0 & (k=1, \cdots, m) \\ \operatorname{sign}\left(b_{k-m}\right) \cdot b_{k-m} & \left(k=m+1, \cdots, m^{\prime}\right)\end{cases}
$$

(2) Selection of a column as the pivoting column and pivoting arithmetic

If A_{k} is the k-th column of the coefficient matrix of the constraints and B is a basic matrix determined by selecting an appropriate $n \times n$ regular submatrix from the coefficient matrix, then $\overline{c_{k}}$ defined as follows:

$$
\overline{c_{k}}=c_{k}-c_{B}^{T} B^{-1} A_{k}
$$

is obtained for nonbasic variable x_{k}, and the column that satisfies the following condition:

$$
\begin{array}{ll}
\overline{c_{k}}<0, & \text { for } x_{k}=0 \\
\overline{c_{k}}>0, & \text { for } x_{k}=u_{k} \tag{5.3}
\end{array}
$$

is selected for one pivot column. When the pivot column k is determined, the upper bound Δ of the variation of x_{k} is equal to the maximum possible flow when flowing along the circuit $j \longrightarrow i \longrightarrow p \longrightarrow j$ passing through vertex p, which is the vertex having the maximum depth among the common ancestors of end vertices i and j of edge k. The minimum value among the Δ_{ℓ}, which are determined as follows for each

Figure 5-4 Circulation of Flow Δ

(a) When $x_{k}=0$

(b) When $x_{k}=u_{k}$
edge ℓ within this circuit, should be set for Δ.

- On edge $k, \Delta_{k}=u_{k}$
- If the direction of edge ℓ on the path from i to p is downward, $\Delta_{\ell}=u_{\ell}-x_{\ell}$; if it is upward, $\Delta_{\ell}=x_{\ell}$
- If the direction of edge ℓ on the path from j to p is downward, $\Delta_{\ell}=x_{\ell}$; if it is upward, $\Delta_{\ell}=u_{\ell}-x_{\ell}$

Next, make flow amount Δ flow along this circuit. That is, for each edge ℓ within the circuit, perform the following:

$$
x_{\ell}:= \begin{cases}x_{\ell}+\Delta, & \text { when directions of edge } \ell \text { and circuit match } \\ x_{\ell}-\Delta, & \text { when directions of edge } \ell \text { and circuit are opposite }\end{cases}
$$

and do not change the flow amount of edges not on the circuit. This is pivoting arithmetic. Also, let the new flow amount x_{ℓ} of edge ℓ for which $\Delta_{\ell}=\Delta$ had been satisfied within the circuit be zero or let u_{ℓ} be a new nonbasic variable x_{r} (if multiple nonbasic variables exist, select any one of them). Repeat the processing described. Processing terminates when there are no columns left that satisfy condition (5.3)).

5.1.2.7 Minimization of cost for project scheduling

The project which consists of two or more tasks is considered. Each task has some of the precedence tasks, and if they all are not completed, it cannot start it. A project network expresses each task with an effective branch, and a precedence relation is shown by minding a node.

Each task k has a normal task time $t_{N}(k)$ and a crash task time $t_{C}(k), t_{N}(k)$ and $t_{C}(k)$ are related as follows.

$$
t_{N}(k) \geq t_{C}(k)
$$

Also, the normal task $\operatorname{cost} c_{N}(k)$ and crash task $\operatorname{cost} c_{C}(k)$ for accomplishing task k are related as follows.

$$
c_{N}(k) \leq c_{C}(k)
$$

When $t_{N}(k) \geq t_{C}(k)$, the cost $c(k)$ to accomplish task k according to an intermediate task time $t(k)$ can be given by the equation:

$$
c(k)=a(k)-b(k) \times t(k)
$$

where,

$$
a(k)=\frac{c_{C}(k) \times t_{N}(k)-c_{N}(k) \times t_{C}(k)}{t_{N}(k)-t_{C}(k)}, \quad b(k)=\frac{c_{C}(k)-c_{N}(k)}{t_{N}(k)-t_{C}(k)}
$$

Now, when each task k is done by task time $t(k)$, for each node i, the time for which all tasks that enter i are completed and the tasks for branches leaving i can start at any time $E(i)$, which is called the earliest node time, is obtained by the following equations:

$$
\begin{aligned}
& E(1)=0 \\
& E(i)=\max \{E(\operatorname{tail}(k))+t(k) \mid \text { head }(k)=i\}, \quad i=2,3, \cdots, n
\end{aligned}
$$

Since n represents the number of nodes, $\operatorname{tail}(k)$ represents the starting point of each task k and head (k) represented the endpoint. Also, the project completion time T is obtained by the following equation:

$$
T=E(n)
$$

And the time for which to complete the project at time T, by what time must the tasks that enter each node i be completed even if they are delayed $L(i)$, which is called the latest node time, is obtained by the following equations:

$$
\begin{aligned}
& L(n)=T \\
& L(i)=\min \{L(\text { head }(k))-t(k) \mid \operatorname{tail}(k)=i\}, \quad i=n-1, n-2, \cdots, 1
\end{aligned}
$$

To devise a concrete scheduling plan, first, set the scheduled completion time $T_{S} . T_{S}$ is normally set in the following range:

$$
T_{C} \leq T_{S} \leq T_{N}
$$

The problem of completing a project within the scheduled completion time T_{S} according to a minimum cost can be formulated as the following linear programming problem by setting the required time for task k as the variable $t(k)$ and the node time of node i as the variable $\tau(i)$.

$$
\begin{aligned}
\text { Objective function }: & \sum_{k=1}^{n}(a(k)-b(k) \times t(k)) \rightarrow \min \\
\text { Constraints }: & t(k)+\tau(\operatorname{tail}(k))-\tau(\text { head }(k)) \leq 0, \quad k=1,2, \cdots, n \\
& \tau(1)=0 \\
& \tau(n) \leq T_{S} \\
& t(k) \leq t_{N}(k), \quad k=1,2, \cdots, n \\
& -t(k) \leq-t_{C}(k), \quad k=1,2, \cdots, n
\end{aligned}
$$

When the node time $\tau(i)$ is obtained, the required time $t(k)$ of task k can be obtained. $t(k)$ should be set as follows.

$$
t(k)=\min \left\{t_{N}(k), \tau(h e a d(k))-\tau(\operatorname{tail}(k))\right\}
$$

Furthermore, the earliest node time $E(i)$ and latest node time $L(i)$ of each node i can be obtained.
At this time, the earliest time $E S(k)$ that work can begin for task k, which is called the earliest start time of task k, and the last possible time $L S(k)$ by which work for task k must begin, even if it is delayed, in order for the project to be completed by T_{S}, which is called the latest start time of task k are given as follows:

$$
\begin{aligned}
& E S(k)=E(\operatorname{tail}(k)) \\
& L S(k)=L(\operatorname{head}(k))-t(k)
\end{aligned}
$$

Also, if the start of task k is delayed within a range $T F(k)$, the project can be completed within T_{S} as long as the schedule of the remaining tasks is properly adjusted, which is called the total float of task k, and within the total float, even if the start of task k is delayed in a range $F F(k)$, the subsequent work plan is not affected at all, which is called the free float of task k are given as follows:

$$
\begin{aligned}
& T F(k)=L S(k)-E S(k) \\
& F F(k)=E(\operatorname{head}(k))-E(\operatorname{tail}(k))-t(k)
\end{aligned}
$$

5.1.2.8 Minimization of cost for transportation from supply place to demand place

The transportation problem is a special problem among linear programming problems. This problem requires us to find a route by which an article, which is a problem caused along with moving goods, is transported from a supply site to a demand site at minimum transportation costs, and also requires us to find out the expense to be presumed in that case. To solve this problem, settle on an initial plan in the first approximate solution and then improve it to get to the final plan (optimal solution). This library provides the northwestern corner rule and Houthakker's Method as first approximate solution, and Revised Simplex Method as method of improvement. (See "Algorithms Used" (5.1.2.4).) Here, supply quantity of supply place i is a_{i}, demand quantity of demand place j is b_{j} and $x_{i j}$ is the volume transported from supply place i to demand place j.

Constraint

$$
\begin{aligned}
& \sum_{j=1}^{n} x_{i j}=a_{i} \quad(i=1, \cdots, m) \\
& \sum_{i=1}^{m} x_{i j}=b_{i} \quad(j=1, \cdots, n) \\
& x_{i j} \geq 0 \quad(\text { For all } i \text { and } j \text { numbers })
\end{aligned}
$$

Therefore, the total transportation cost is obtained by finding $x_{i j}$ that minimizes the following function.

$$
Z=\sum_{j=1}^{n} \sum_{i=1}^{m} c_{i j} x_{i j}
$$

(1) First Approximate Solution(The Northwest Corner Rule, Houthakker's Method)

The northwest corner rule distributes a minimum of resources one by one after comparing the transportation cost, supply quantity, and demand quantity for a given unit quantity with one another from upper left of the matrix. Houthakker's Method distributes resources in a multiple way to a minimum of a unit transportation cost that extends from each supply place to each demand place.
(2) Unbalanced Transportation Problem

The total supply volume $\sum a_{i}$ is sometimes less than the total demand volume $\sum b_{j}$ because of a transportation problem. In this case, even if all demand volumes cannot be satisfied, a certain amount of the volume can be distributed from supply places to demand places by a method that minimizes the total handling cost. In this case, assume that we have a fictitious supply places that handles a total volume of $\sum b_{j}$ - $\sum a_{i}$. Assume that the cost that covers delivering one unit from the fictitious supply places to a destination is zero. If the original shape problem is the NS \times ND problem, this problem, therefore, is supposed to be solved in the same way as a transportation problem that handles the $(N S+1) \times N D$ problem. If the total supply volume of the problem is larger than the total demand volume, set up a fictitious problem in the same way. In this case, assume a fictitious destination that satisfies $\sum a_{i}-\sum b_{j}$. Assume that this delivery cost is zero. Then, the following NS \times ND problem is supposed to be solved for a $\mathrm{NS} \times(\mathrm{ND}+1)$ problem.

5.1.2.9 Minimization of a constrained quadratic function of several variables (linear constraints)

This algorithm deals with a problem (quadratic programming problem) that minimizes the n variable objective function:

$$
M(\boldsymbol{x})=\boldsymbol{c}^{T} \boldsymbol{x}+\frac{1}{2} \boldsymbol{x}^{T} G \boldsymbol{x}
$$

under the constraints:

$$
\begin{array}{ll}
\boldsymbol{a}_{i}^{T} \boldsymbol{x}=b_{i} & \text { for } \quad\left(i=1,2, \cdots, m_{e}\right) \\
\boldsymbol{a}_{i}^{T} \boldsymbol{x} \geq b_{i} & \text { for } \quad\left(i=m_{e}+1, \cdots, m\right)
\end{array}
$$

Here, \boldsymbol{a}_{i} and \boldsymbol{c} are n dimensional column vectors, b_{i} are constants, and G is an $n \times n$ positive symmetric matrix. This library uses the GI method to solve this problem. This method was proposed by D. Goldfarb and A. Idnani. Let J be a set consisting of several of the constraint subscripts, let the solution \boldsymbol{x} that minimizes the objective function $M(\boldsymbol{x})$ under all of the constraints corresponding to elements of J be called the J-optimal solution, and let the solution of the original problem be called simply the optimal solution. Also, denote the number of elements of J by $|J|$ and denote the $n \times|J|$ matrix having $\boldsymbol{a}_{i}(i \in J)$ as columns by A_{J}. Furthermore, let K be the set of all subscripts of inequality constraints and E be the set of all subscripts of equality constraints. Therefore, when $J=E \cup K$, the J-optimal solution is the optimal solution itself. As the procedure for obtaining the optimal solution, first let $J=E \cup K$ and let the J-optimal solution at this time be the initial solution. Add inequality constraints that must be satisfied one at a time to J and continue to revise the J-optimal solution so that the added constraint is satisfied. Repeatedly revise the solution until finally $J=E \cup K$.
(1) Calculate the initial solution

Obtain the J-optimal solution when $J=E$. When the object function is convex, the problem the obtains the optimal solution is equivalent to obtaining \boldsymbol{x} and \boldsymbol{v}_{J} satisfying the Kuhn-Tucker condition:

$$
\begin{aligned}
G \boldsymbol{x}-A_{J} \boldsymbol{v}_{J} & =-\boldsymbol{c} \\
A_{J}^{T} \boldsymbol{x} & =\boldsymbol{b}_{J} \\
\boldsymbol{v}_{i} & \geq 0 \quad(i \in J)
\end{aligned}
$$

Here, \boldsymbol{v}_{J} and \boldsymbol{b}_{J} are $|J|$ dimensional vectors having $v_{i}(i \in J)$ and $b_{i}(i \in J)$ as components, respectively. Now, if we let:

$$
\begin{aligned}
A_{J}^{\dagger} & =\left(A_{J}^{T} G^{-1} A_{J}\right)^{-1} A_{J}^{T} G^{-1} \\
H_{J} & =G^{-1}\left(I-A_{J} A_{J}^{\dagger}\right)
\end{aligned}
$$

then \boldsymbol{x} and \boldsymbol{v}_{J} are calculates as follows:

$$
\begin{aligned}
\boldsymbol{x} & =\left(A_{J}^{\dagger}\right)^{T} b_{J}-H_{J} \boldsymbol{c} \\
\boldsymbol{v}_{J} & =\left(A_{J}^{T} G^{-1} A_{J}\right)^{-1} \boldsymbol{b}_{J}+A_{J}^{\dagger} \boldsymbol{c}
\end{aligned}
$$

(2) Update J

If the J-optimal solution has been obtained for a certain $J \subset K$ and that solution is not the optimal solution, determine the constraint to be added to J as follows. First, if we let:

$$
c_{i}(x)=\boldsymbol{a}_{i}^{T} \boldsymbol{x}-\boldsymbol{b}_{i}
$$

then there exists at least one $s \notin J$ for which $\boldsymbol{c}_{s}(x)<0$ is satisfied. Therefore, determine s according to:

$$
c_{s}(x)=\min \left\{c_{i}(x) \mid i \notin J\right\}<0
$$

Then, if \boldsymbol{a}_{s} is independent of the $\boldsymbol{a}_{i} \quad(i \in J)$ that form the columns of A_{J}, let $J \cup\{s\}$ be the new J. Otherwise, recalculate the J-optimal solution by eliminating one element from J.
(3) Update the J-optimal solution

After updating J by adding the following inequality constraint determined in step (b) to J :

$$
\boldsymbol{a}_{s}^{T} \boldsymbol{x}-\boldsymbol{b}_{s} \geq 0
$$

obtain the J-optimal solution as follows. Let \boldsymbol{x} be the J-optimal solution before J was updated and let $c_{i}=0(i \in J)$. At this time, if we set:

$$
\overline{\boldsymbol{x}}=\boldsymbol{x}+t H_{J} \boldsymbol{a}_{s}
$$

then the following relationships hold for the $c_{i}(i \in J)$ and c_{s} defined in (b) and for $v_{i}(i \in J)$:

$$
\begin{aligned}
c_{i}(\overline{\boldsymbol{x}}) & =c_{i}(\boldsymbol{x})=0 \quad(i \in J) \\
c_{s}(\overline{\boldsymbol{x}}) & =c_{s}(\boldsymbol{x})+t \boldsymbol{a}_{s}^{T} H_{J} \boldsymbol{a}_{s} \\
v_{i}(\overline{\boldsymbol{x}}) & =v_{i}(\boldsymbol{x})-t \cdot r_{i}
\end{aligned}
$$

where, $r_{i}(i \in J)$ is the i-th component of:

$$
\boldsymbol{r}=A_{J}^{\dagger} \boldsymbol{a}_{s}
$$

now, if we let:

$$
\begin{aligned}
t_{1} & =\min \left\{\left.\frac{v_{i}(\boldsymbol{x})}{r_{i}} \right\rvert\, r_{i}>0, \quad i \in J \cap K\right\} \\
t_{2} & =-\frac{c_{s}(\boldsymbol{x})}{\boldsymbol{a}_{s}^{T} H_{J} \boldsymbol{a}_{s}}
\end{aligned}
$$

then in the range $0 \leq t \leq t_{1}$:

$$
v_{i}(\overline{\boldsymbol{x}}) \geq 0 \quad(i \in \bar{J} \cap K)
$$

and when $t=t_{2}$:

$$
c_{s}(\overline{\boldsymbol{x}})=0
$$

Therefore, if $t_{1} \geq t_{2}$, the $\overline{\boldsymbol{x}}$ when $t=t_{2}$ satisfies the Kuhn-Tucker condition used in (a) for constraints corresponding to $J \cup\{s\}$, and this becomes the J-optimal solution after J is updated. On the other hand, if $t_{1} \geq t_{2}$, one element is removed from J and the J-optimal solution is recalculated.
(4) Termination condition

If the J-optimal solution \boldsymbol{x} satisfies:

$$
c_{i}(\boldsymbol{x}) \geq 0
$$

for all $i \in \bar{J} \cap K$, the optimal solution is assumed to be \boldsymbol{x}, and the calculation ends.

5.1.2.10 Minimization of a generalized convex quadratic function of several variables (linear constraints)

Here we will deal with the problem of obtaining \boldsymbol{x}^{*} that minimizes the generalized convex quadratic function of n variables

$$
f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} G \boldsymbol{x}+\boldsymbol{c}^{T} \boldsymbol{x} \quad(G: \text { positive semi-definite symmetric matrix })
$$

which is the objective function under the constraints

$$
\begin{aligned}
\sum_{j=1}^{n}\left(a_{i j} x_{j}\right) & =b_{i} \text { for }\left(i=1, \cdots, m_{e}\right) \\
\sum_{j=1}^{n}\left(a_{i j} x_{j}\right) & \geq b_{i} \text { for }\left(i=m_{e}+1, \cdots, m\right) \\
x_{i} & \geq 0 \text { for }(i=1, \cdots, n)
\end{aligned}
$$

and to obtain the function value $f\left(\boldsymbol{x}^{*}\right)$ at that time. To solve this problem, the subroutines in this library convert the given problem to an equivalent linear complementarity problem and solve that problem by using the Lemke method.
The actual procedure is shown below.
(1) Creation of linear complementarity problem

First, eliminate m_{e} variables by using the equality constraints and convert the original quadratic programming problem to a quadratic programming problem for the remaining variables. Then, create an equivalent linear complementarity problem for the new quadratic programming problem. From $\boldsymbol{x}=\left[x_{1}, x_{2}, \cdots, x_{n}\right]$, use the equality constraints to represent $x_{1}, x_{2}, \cdots, x_{m_{e}}$ in terms of $x_{m_{e}+1}, \cdots, x_{n}$ as follows.

$$
x_{i}=\sum_{j=m_{e}+1}^{n}\left(p_{i j} x_{j}\right)+r_{i} \text { for }\left(i=1, \cdots, m_{e}\right)
$$

Using this expression, convert the given quadratic programming problem to a quadratic programming problem for $\left(n-m_{e}\right)$ variables $\boldsymbol{x}^{\prime}=\left[x_{m_{e}+1}, \cdots, x_{n}\right]=\left[x_{1}^{\prime}, \cdots, x_{n-m_{e}}^{\prime}\right]$

$$
\begin{aligned}
\text { Constraints } & : \sum_{j=1}^{n-m_{e}}\left(a_{i j}^{\prime} x_{j}^{\prime}\right) \geq b_{i}^{\prime} \text { for } \quad\left(i=1, \cdots, n-m_{e}\right) \\
& x_{i}^{\prime} \geq 0 \text { for }\left(i=1, \cdots, n-m_{e}\right) \\
\text { Objective function } & : \quad f\left(\boldsymbol{x}^{\prime}\right)=\frac{1}{2}\left(\boldsymbol{x}^{\prime}\right)^{T} G^{\prime} \boldsymbol{x}^{\prime}+\boldsymbol{c}^{\prime T} \boldsymbol{x}^{\prime}
\end{aligned}
$$

For

$$
\begin{aligned}
& G_{i-m_{e}, j-m_{e}}^{\prime}=G_{i, j}+\sum_{k=1}^{m_{e}}\left(G_{i, k} p_{k, j}\right)+\sum_{k=1}^{m_{e}}\left(G_{k, j} p_{k, i}\right)+\sum_{s=1}^{m_{e}} \sum_{t=1}^{m_{e}}\left(p_{s, i} G_{s, t} p_{t, j}\right) \\
& c_{i-m_{e}}^{\prime}=c_{i}+\sum_{j=1}^{m_{e}}\left(c_{j} p_{j, i}\right)+\sum_{k=1}^{m_{e}}\left(G_{i, k} r_{k}\right)+\sum_{s=1}^{m_{e}} \sum_{t=1}^{m_{e}}\left(G_{s, t} p_{s, i} r_{t}\right) \\
& a_{i j-m_{e}}^{\prime}= \begin{cases}p_{i, j} & \text { for }\left(i=1, \cdots, m_{e} ; j=m_{e}+1, \cdots, n\right) \\
a_{i, j}+\sum_{k=1}^{m_{e}}\left(a_{i, k} p_{k, j}\right) & \text { for }\left(i=m_{e}+1, \cdots, m ; j=m_{e}+1, \cdots, n\right)\end{cases} \\
& b_{i}^{\prime}= \begin{cases}-r_{i} & \text { for }\left(i=1, \cdots, m_{e}\right) \\
b_{i}-\sum_{k=1}^{m_{e}}\left(a_{i, k} r_{k}\right) & \text { for }\left(i=m_{e}+1, \cdots, m\right)\end{cases}
\end{aligned}
$$

let $A^{\prime}=\left(a_{i, j}^{\prime}\right), G^{\prime}=\left(G_{i, j}^{\prime}\right),\left(\boldsymbol{c}^{\prime}\right)^{T}=\left[c_{1}^{\prime}, \cdots, c_{n-m_{e}}^{\prime}\right]$ and $\left(\boldsymbol{b}^{\prime}\right)^{T}=\left[b_{1}^{\prime}, \cdots, b_{n-m_{e}}^{\prime}\right]$ to create the following linear complementarity problem where, \boldsymbol{v} is the Lagrange multiplier vector for the inequality constraints.

$$
\begin{aligned}
{\left[\begin{array}{c}
\boldsymbol{y} \\
\boldsymbol{w}
\end{array}\right] } & =\left[\begin{array}{cc}
G^{\prime} & -A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{v}
\end{array}\right]+\left[\begin{array}{c}
\boldsymbol{c}^{\prime} \\
-\boldsymbol{b}^{\prime}
\end{array}\right] \\
y_{i} & \geq 0 \text { for }\left(i=1, \cdots, n-m_{e}\right) \\
w_{i} & \geq 0 \text { for }(i=1, \cdots, m) \\
x_{i} & \geq 0 \text { for }\left(i=1, \cdots, n-m_{e}\right) \\
v_{i} & \geq 0 \text { for }(i=1, \cdots, m) \\
{\left[\boldsymbol{y}^{T} \boldsymbol{w}^{T}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{v}
\end{array}\right] } & =0
\end{aligned}
$$

(2) Linear complementarity problem

Solve the linear complementarity problem to obtain solutions of the new quadratic programming problem obtained by eliminating the equality constraints.
For the given $n \times n$ matrix

$$
T=\left[\begin{array}{cc}
G^{\prime} & -A^{T} \\
A & 0
\end{array}\right]
$$

obtain the n-dimensional vectors \boldsymbol{x} and \boldsymbol{y} satisfying

$$
\begin{align*}
\boldsymbol{y} & =T \boldsymbol{x}+\boldsymbol{q} \tag{5.4}\\
x_{i} & \geq 0 \text { for }(i=1, \cdots, n) \tag{5.5}\\
y_{i} & \geq 0 \text { for }(i=1, \cdots, n) \tag{5.6}
\end{align*}
$$

First, for the linear complementarity problem in (5.4), (5.5) and (5.6), define the following equation for the $(2 n+1)$ variables $(\boldsymbol{y}, \boldsymbol{x}, \xi)$

$$
\boldsymbol{y}-T \boldsymbol{x}-\boldsymbol{d} \xi=\boldsymbol{q}
$$

where, \boldsymbol{d} is an n-dimensional constant vector for which all components are positive. Within $(\boldsymbol{y}, \boldsymbol{x}, \xi)$, the nonzero components are called basic variables and the others are called nonbasic variables.

Next, let the initial solution for the equation in (5.4) be $(\boldsymbol{y}, \boldsymbol{x}, \xi)=\left(\boldsymbol{q}+\boldsymbol{d} \xi_{0}, 0, \xi_{0}\right)$, where,

$$
\begin{aligned}
\xi_{0} & =\max \left\{\left.-\frac{q_{i}}{d_{i}} \right\rvert\, i=1,2, \cdots, n\right\} \\
\eta & =\max \left\{\left.-\frac{q_{i}}{d_{i}} \right\rvert\, i=1,2, \cdots, n\right\}
\end{aligned}
$$

When the value of a certain basic variable becomes 0 , if the basic variable at this time is y_{s} remove y_{s} from the basis, insert η in the basis, and let $\eta=x_{s}$. If x_{s} is a basis variable, remove x_{s} from the basis, insert η in the basis, and let $\eta=y_{s}$. Repeat this processing, and terminate the calculation when that basis variable becomes ξ.
Also, if the value of η for which the expressions in (5.5) and (5.6) are satisfied can get infinitely large, terminate the calculation with no solution existing.
(3) Transformation of the solution

The solution that was obtained is transformed to a solution of the original quadratic programming problem before the equality constraints were removed.

5.1.2.11 Minimization of anconstrained $\mathbf{0 - 1}$ quadratic function of several variables

This section describes the problem of minimizing quadratic functions (unconstrained 0-1 quadratic programming problem) where every variables assumes a $0-1$ variables, namely, only 0 or 1 , as the value.

$$
\begin{array}{lll}
\text { Objective function } & : f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} G \boldsymbol{x}+\boldsymbol{c}^{T} \boldsymbol{x} \quad \rightarrow \min \\
0-1 \text { condition } & : x_{j}=0 \text { or } 1 \quad(j=1, \cdots, n)
\end{array}
$$

This library uses the branch-and-bound method to solve the unconstrained 0-1 quadratic programming problem.
For an unconstrained 0-1 quadratic programming problem, we use a following partial problem.

$$
\begin{array}{lll}
\text { The objective function } & : f(\boldsymbol{x}) \quad=\quad \frac{1}{2} \boldsymbol{x}^{T} G \boldsymbol{x}+\boldsymbol{c}^{T} \boldsymbol{x} \quad \rightarrow \text { min } \\
\text { The 0-1 condition } & : & x_{j}=0 \\
& x_{j}=1 & \left(j \in S^{0}\right) \\
& x_{j}=0 \text { or } 1 \quad\left(j \in S^{1}\right) \\
& (j \in F)
\end{array}
$$

Here, S^{0}, S^{1}, and F are the set of subscripts of 0-1 variables having values fixed at 0 , the set of subscripts of $0-1$ variables having values fixed at 1 , and the set of subscripts of $0-1$ variables having values that are not fixed, respectively, in partial problem P_{k}. Now, $0-1$ variables having values fixed at 0 or 1 are called fixed variables, and other 0-1 variables are called free variables. A partial problem is an unconstrained $0-1$ quadratic programming problem in itself. In particular, the partial problem having $S^{0} \cup S^{1}=\phi$, that is, not having fixed variables, is the original mixed 0-1 programming problem (hereafter called P_{1}) itself.

In addition, the relaxation problem for partial problems is defined as follows:

$$
\begin{array}{llll}
\text { The objective function } & : & f(\boldsymbol{x})= & \frac{1}{2} \boldsymbol{x}^{T} G \boldsymbol{x}+\boldsymbol{c}^{T} \boldsymbol{x} \\
\text { The } 0-1 \text { condition } & : & x_{j}=0 & \left(j \in S^{0}\right) \\
& x_{j}=1 & \left(j \in S^{1}\right) \\
& 0 \leq x_{j} \leq 1 & (j \in F)
\end{array}
$$

The method of obtaining the solutions of P_{1} by the branch-and-bound method is explained below.
(1) Initial setting
(a) Preconditioning for coefficient matrix

To successfully solve the relaxation problem described bellow, the coefficient matrix of an objective function must be a positive definite matrix. Using the characteristic of $0-1$ variable having

$$
x_{i}^{2}=x_{i} \quad(i=1, \ldots, n)
$$

in the unconstrained 0-1 quadratic programming problem, the objective function can be rewritten into a quadratic function with symmetric matrix in its coefficient as follows:

$$
f(x)=\frac{1}{2} x^{T} G^{\prime} x
$$

Where, G^{\prime} is as follows:

$$
G^{\prime}=\frac{1}{2}\left(G+G^{T}\right)+2 \operatorname{diag}\left(c_{1}, \ldots, c_{n}\right)
$$

If G^{\prime} is a positive semi-definite matrix, P_{1} has a self-evident optimal solution, as in the following.

$$
x^{*}=(0,0, \ldots, 0)^{T}
$$

If G^{\prime} is not a positive semi-definite matrix, namely, G^{\prime} has a negative eigen value, the objective function can be rewritten into a quadratic function with a positive definite matrix $G^{\prime \prime}$ as the coefficient, as in the following,

$$
f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} G^{\prime \prime} \boldsymbol{x}+\left(\boldsymbol{c}^{\prime \prime}\right)^{T} \boldsymbol{x}
$$

by defining the following with the minimal eigen value $\lambda_{\text {min }}$ of G^{\prime} and positive number parameter $\beta(>0)$:

$$
\begin{aligned}
G^{\prime \prime} & =G^{\prime}+\left(\left|\lambda_{\min }\right|+\beta\right) \operatorname{diag}(1,1, \ldots, 1) \\
\boldsymbol{c}^{\prime \prime} & =-\frac{1}{2}\left(\left|\lambda_{\min }\right|+\beta\right)(1,1, \ldots, 1)^{T}
\end{aligned}
$$

where, β is a minimal eigen value of matrix $G^{\prime \prime}$. In the following explanation, the coefficient matrix G is assumed to have been converted into a positive definite matrix in advance through this kind of preconditioning.
(b) Partial problem list

The branch-and-bound method uses the partial problem list PLIST. In the initial state, the members of PLIST consist only of P_{1}, and the number of members of PLIST L is $1 . L$ increases and decreases as the branch-and-bound method calculations proceed.
(c) Incumbent solution

In contrast to the case of a mixed 0-1 programming problem, the way to use a solution whose objective function is as small as possible is more efficient in searching the optimal solution by the branch-andbound method, although the existence of an executable solution is self-evident. In this library, we use a solution obtained by two heuristic search methods, simulated annealing and tabu search, as an initial incumbent solution.
(d) Simulated annealing method
(1) Select an initial solution $\boldsymbol{x}=\boldsymbol{x}_{0}$ at random.
(2) Set the initial temperature to $T=T_{0}$.
(3) Assume $z \leftarrow f\left(\boldsymbol{x}_{0}\right)$.
(4) Assume $y \leftarrow f(\boldsymbol{x})$.
(5) Assume $T \leftarrow \alpha \times T(0<\alpha \leq 1)$.
(6) Select one subscript $i(1 \leq i \leq n)$ at random.
(7) Assume $x_{i} \leftarrow 1-x_{i}$.
(8) If $y<f(\boldsymbol{x})$, select a real number $r \in[0,1]$ randomly. If $r>\exp (-1 / T)$, assume $x_{i} \leftarrow 1-x_{i}$.
(9) Assume $z \leftarrow \min \{y, z\}$.
(10) Repeat processing from (4) to (9) for the specified count. Assume that z, which is ultimately obtained, is the objective function value of the initial incumbent solution by the branch-and-bound method.
(e) Tabu search method
(1) Select an initial solution $\boldsymbol{x}=\boldsymbol{x}_{0}$ at random.
(2) Assume $K=\phi$ tabu list.
(3) Assume $z \leftarrow f\left(\boldsymbol{x}_{0}\right)$.
(4) Assume $U(\boldsymbol{x})=\left\{\boldsymbol{u}^{(1)}, \boldsymbol{u}^{(2)}, \ldots, \boldsymbol{u}^{(n)}\right\}$ where $\boldsymbol{u}^{(i)}=\left(x_{1}, \ldots, x_{i-1}, 1-x_{i}, x_{i+1}, \ldots, x_{n}\right)^{T}$.
(5) Assume $\boldsymbol{x} \leftarrow \min _{U \backslash K} \boldsymbol{u}_{i}$.
(6) Assume $K \leftarrow K \cup\{\boldsymbol{x}\}$. If the number of K 's elements exceeds the specified number, remove the element the most previously added to K.
(7) Assume $z \leftarrow \min \{f(\boldsymbol{x}), z\}$.
(8) Repeat processing from (4) to (7) for the specified count. Assume that z, which is ultimately obtained, is the objective function value of the initial incumbent solution by the branch-and-bound method.

By the tabu search method, you can obtain a workable solution, although considerable time is needed. The computation time by the simulated annealing method is relatively short. In addition to those search methods, this library supports a method by which a primary solution obtained by the simulated annealing method is improved by the tabu search. If n, the number of variables, is relatively large, it is hard to obtain an exact optimal solution by the branch-and-bound method described later. However, in most cases, a solution obtained by a heuristic search has ample approximate accuracy. Therefore, this library also supports a method by which any branch-and-bound method calculation is omitted because a solution obtained by a heuristic search is used as an approximate solution as is.
(2) Lower bound value calculation

Calculate the lower bound value of an optimal value using the corresponding relaxation problem as follows:
(a) Assume that the eigen values of coefficient matrix G are $\lambda_{1}, \ldots, \lambda_{n}$ and the corresponding orthonormalized eigen vectors $\boldsymbol{u}^{(1)}, \ldots, \boldsymbol{u}^{(n)}$.
(b) Solve the convex quadratic programming problem, which is a relaxation problem, using the G-I method, and assume that its optimal solution is $\overline{\boldsymbol{x}}$.
(c) If free variable $x_{i}(i \in F)$ satisfies the following, x_{i} is fixed as zero.

$$
f(\overline{\boldsymbol{x}})+\frac{1}{2}\left|\frac{\bar{x}_{i}^{2}}{\sum_{k=1}^{n} \frac{\left(u_{i}^{(k)}\right)^{2}}{\lambda_{k}}}\right| \leq z^{*}<f(\overline{\boldsymbol{x}})+\frac{1}{2}\left|\frac{\left(1-\bar{x}_{i}\right)^{2}}{\sum_{k=1}^{n} \frac{\left(u_{i}^{(k)}\right)^{2}}{\lambda_{k}}}\right|
$$

Then, assume $S_{0} \leftarrow S_{0} \cup\{i\}, F \leftarrow F-\{i\}$.
(d) If free variable $x_{i}(i \in F)$ satisfies the following, x_{i} is fixed as one.

$$
f(\overline{\boldsymbol{x}})+\frac{1}{2}\left|\frac{\left(1-\bar{x}_{i}\right)^{2}}{\sum_{k=1}^{n} \frac{\left(u_{i}^{(k)}\right)^{2}}{\lambda_{k}}}\right| \leq z^{*}<f(\overline{\boldsymbol{x}})+\frac{1}{2}\left|\frac{\bar{x}_{i}^{2}}{\sum_{k=1}^{n} \frac{\left(u_{i}^{(k)}\right)^{2}}{\lambda_{k}}}\right|
$$

Then, assume $S_{1} \leftarrow S_{1} \cup\{i\}, F \leftarrow F-\{i\}$.
If some free variables are fixed by the above operation, solve the relaxation problem again and repeat it until there are no more free variables to be newly fixed.
(e) Coordinate transformation

Define the U_{i}^{0} and U_{i}^{1} sub sets of the space of variable $\hat{\boldsymbol{x}}$ defined with

$$
x_{i}-\bar{x}_{i} \leftarrow \sum_{j=1}^{n} \frac{u_{i}^{(j)}}{\sqrt{\lambda_{j}}} \hat{x}_{j}
$$

as follows:

$$
\begin{aligned}
& U_{i}^{0}=\left\{\hat{\boldsymbol{x}} \left\lvert\, \sum_{j=1}^{n} \frac{u_{i}^{(j)}}{\sqrt{\lambda_{j}}} \hat{x}_{j}=0\right.\right\} \\
& U_{i}^{1}=\left\{\hat{\boldsymbol{x}} \left\lvert\, \sum_{j=1}^{n} \frac{u_{i}^{(j)}}{\sqrt{\lambda_{j}}} \hat{x}_{j}=1\right.\right\}
\end{aligned}
$$

As for the set of subscripts for an arbitrary free variable $\left\{i_{1}, i_{2}, \ldots, i_{r}\right\}$, if

$$
D=\min \left\{\mid \hat{\boldsymbol{x}} \| \boldsymbol{x} \in \cap_{k=1}^{r}\left(U_{i_{k}}^{0} \cup U_{i_{k}}^{1}\right)\right\}
$$

is assumed,

$$
g(\overline{\boldsymbol{x}})=f(\overline{\boldsymbol{x}})+\frac{D^{2}}{2}
$$

provides the lower bound value of a partial problem. In this library, r portions from a larger one of those among free variables obtained form the following formula are used to calculate D.

$$
\frac{\min \left\{\bar{x}_{i}, 1-\bar{x}_{i}\right\}^{2}}{\sum_{k=1}^{n} \frac{\left(u_{i}^{(k)}\right)^{2}}{\lambda_{k}}}
$$

If the optimal value $g\left(P_{i}\right)$ for the solutions of the relaxation problem corresponding to partial problem P_{i} satisfies $g\left(P_{i}\right)>z^{*}, P_{i}$ is removed from PLIST and $L \leftarrow L-1$ is performed. Also, when the optimal solution is represented by $\overline{\boldsymbol{x}}$, if the value of $\overline{\boldsymbol{x}}_{j}$ is 0 or 1 for all $j \in F$, the solutions of the relaxation problem are solutions of the original partial problem, and the optimal value of the partial problem is equal to the optimal value $g\left(P_{i}\right)$ of the relaxation problem. At this time, if $f\left(P_{i}\right)<z^{*}, \boldsymbol{x}^{*}$ and z^{*} are replaced by $\overline{\boldsymbol{x}}$ and $f\left(P_{i}\right)$.
Now, a new relaxation problem must be solved when the initial settings described above are made and when L is increased by a branching operation, which is described later. In the latter case, the last two partial problems in PLIST are the pair of partial problems $P_{i 0}$, for which the branching variable $x_{j_{0}}$ is fixed at 0 , and $P_{i 1}$, for which it is fixed at 1 .
(3) Branching operation
P_{k} is removed from PLIST. Then, one branching variable $x_{j_{0}}$ is selected from the free variables that have not been fixed by the partial problem test described above, the partial problems $P_{k 0}$, for which j_{0} was added to S^{0}, and $P_{k 1}$, for which j_{0} was added to S^{1}, are added at the end of PLIST, and $L \leftarrow L+1$ is performed. The branching variable $x_{j_{0}}$ is determined here as follows.

$$
j_{0}=\operatorname{argmin}_{j \in F}\left|\bar{x}_{j}-\frac{1}{2}\right|
$$

After the branching operation, calculate the lower bound of the optimal value of each partial problem for $P_{k 0}$ and $P_{k 1}$.
(4) PLIST sorting

Assume $K^{\prime}=\min \{K, L\}$. Here, K is called the "search depth in the branch-and-bound method" and is a positive integer parameter. The last K^{\prime} portions of partial problems P_{i} in PLIST are sorted in descending order of the lower bound value $g\left(P_{i}\right)$.
(5) Partial problem test

For the last partial problem P_{k} in PLIST, when all free variables have been fixed, the partial problem is solved, P_{k} is removed from PLIST, and $L \leftarrow L-1$ is performed. At this time, if $f\left(P_{k}\right)<z^{*}, \boldsymbol{x}^{*}$ and z^{*} are replaced by the solution of P_{k} and $f\left(P_{k}\right)$. Then, processing proceeds with step (6) according to the updated PLIST. If there are any remaining free variables that have not been fixed, processing proceeds with the next branching operation.
(6) Termination condition

If $L=0$, processing for the branch-and-bound method terminates, and the incumbent at that time x^{*} is the solution of P_{1}, that is, of the original mixed $0-1$ programming problem. Otherwise, processing returns to step (2).

5.1.2.12 Minimization of a constrained function of several variables

Here, given a function $f(\boldsymbol{x})$ of n variables, we will deal with the problem of obtaining the point \boldsymbol{x}^{*} (optimal solution) that minimizes it based on the ($m+\ell$) given constraints

$$
\left\{\begin{array}{l}
g_{i}(\boldsymbol{x}) \leq 0 \quad \text { for } \quad(i=1, \cdots, m) \tag{5.7}\\
h_{j}(\boldsymbol{x})=0 \quad \text { for } \quad(j=1, \cdots, \ell)
\end{array}\right.
$$

Global minimization generally is difficult to achieve. This library deals only with local minimization. Therefore, in the explanation below, the term "minimization" is used only in the local sense. Similarly, the local optimal solution \boldsymbol{x}^{*} is referred to simply as the optimal solution.
Now, if we define the penalty function $\theta_{\delta}(\boldsymbol{x})$ as

$$
\theta_{\delta}(\boldsymbol{x})=f(\boldsymbol{x})+\delta \max \left(0, g_{1}(\boldsymbol{x}), \cdots, g_{m}(\boldsymbol{x}),\left|h_{1}(\boldsymbol{x})\right|, \cdots,\left|h_{\ell}(\boldsymbol{x})\right|\right) \text { for }(\delta>0)
$$

then the following holds for an arbitrary \boldsymbol{x}

$$
\theta_{\delta}(\boldsymbol{x}) \geq f(\boldsymbol{x})
$$

and, in particular, when \boldsymbol{x} is a point that satisfies the constraints given above, the following relationship holds

$$
\theta_{\delta}(\boldsymbol{x})=f(\boldsymbol{x})
$$

Therefore, the problem of minimizing $f(\boldsymbol{x})$ under constraints (5.7) is reduced to the problem of minimizing $\theta_{\delta}(\boldsymbol{x})$ without constraints.
$\theta_{\delta}(\boldsymbol{x})$ is a strict penalty function, and if the quasi-Newton method is applied to it, the optimal solution can be obtained theoretically. However, since $\theta_{\delta}(\boldsymbol{x})$ mathematically has unstable properties, this library uses an algorithm called the sequential quadratic programming method to perform iterative improvement of a solution, which resembles the quasi-Newton method for the Lagrange function

$$
L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})=f(\boldsymbol{x})+\sum_{i=1}^{m}\left(\lambda_{i} g_{i}(\boldsymbol{x})\right)+\sum_{j=1}^{\ell}\left(\mu_{j} h_{j}(\boldsymbol{x})\right)
$$

$\theta_{\delta}(\boldsymbol{x})$ is used as the linear search evaluation function. The computation procedure is as follows.
(1) Partial quadratic programming problem
when the k-th approximation \boldsymbol{x}_{k} of optimal solution \boldsymbol{x}^{*} is obtained, the following quadratic programming problem

$$
\begin{array}{lll}
\text { Objective function } & : \frac{1}{2} \boldsymbol{d}^{T} B_{k} \boldsymbol{d}+\nabla f\left(\boldsymbol{x}_{k}\right)^{T} \boldsymbol{d} & \\
\text { Inequality constraints } & : g_{i}\left(\boldsymbol{x}_{k}\right)+\nabla g_{i}\left(\boldsymbol{x}_{k}\right)^{T} \boldsymbol{d} \leq 0 & \text { for }(i=1, \cdots, m) \\
\text { Equality constraints } & : h_{j}\left(\boldsymbol{x}_{k}\right)+\nabla h_{j}\left(\boldsymbol{x}_{k}\right)^{T} \boldsymbol{d}=0 & \text { for }(j=1, \cdots, \ell)
\end{array}
$$

which is obtained by expanding the objective function and constraints around \boldsymbol{x}_{k} is solved, and that solution is denoted as \boldsymbol{d}_{k}. However, since calculating the Hessian $\nabla^{2} f\left(\boldsymbol{x}_{k}\right)$ is difficult mathematically, it is replaced by its approximation matrix B_{k} in a similar manner as in the quasi-Newton method.
The Goldfarb-Idnani method is used as the algorithm for solving this quadratic programming problem.
If $\boldsymbol{d}_{k}=0$, the calculation terminates with $\boldsymbol{x}^{*}=\boldsymbol{x}_{k}$. The Lagrange multiplier vectors obtained here are set to $\boldsymbol{\lambda}_{k+1}$ and $\boldsymbol{\mu}_{k+1}$.
(2) Linear search

Search for \boldsymbol{x}_{k+1} with \boldsymbol{d}_{k} as the search direction. Start with $\alpha_{k}=1$, and if the following condition is satisfied

$$
\theta_{\delta}\left(\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{d}_{k}\right) \leq \theta_{\delta}\left(\boldsymbol{x}_{k}\right)-\omega \alpha_{k} \boldsymbol{d}_{k}^{T} B_{k} \boldsymbol{d}_{k}
$$

proceed to the processing in (c). If the condition is not satisfied, repeatedly replace α_{k} so that $\tau \alpha_{k} \rightarrow \alpha_{k}$ until the condition is satisfied.
(3) Updating of \boldsymbol{x}_{k}

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{d}_{k}
$$

(4) Updating of B_{k}

Since the positive definite property of B_{k} is not maintained in the original BFGS formula, B_{k} is updated by the modified BFGS formula as shown below.

$$
B_{k+1}=B_{k}-\frac{B_{k} \boldsymbol{s}_{k} \boldsymbol{s}_{k}^{T} B_{k}}{\boldsymbol{s}_{k}^{T} B_{k} \boldsymbol{s}_{k}}+\frac{\boldsymbol{\eta}_{k} \boldsymbol{\eta}_{k}^{T}}{\boldsymbol{s}_{k}^{T} \eta_{k}}
$$

where,

$$
\begin{aligned}
\boldsymbol{s}_{k} & =\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k} \\
\boldsymbol{y}_{k} & =\nabla \boldsymbol{x} L\left(\boldsymbol{x}_{k+1}, \boldsymbol{\lambda}_{k+1}, \boldsymbol{\mu}_{k+1}\right)-\nabla \boldsymbol{x} L\left(\boldsymbol{x}_{k}, \boldsymbol{\lambda}_{k+1}, \boldsymbol{\mu}_{k+1}\right) \\
\phi & = \begin{cases}1 & \text { for } \boldsymbol{s}_{k}^{T} \boldsymbol{y}_{k} \geq 0.2 \boldsymbol{s}_{k}^{T} \\
\frac{0.8 \boldsymbol{s}_{k}^{T} B_{k} \boldsymbol{s}_{k}}{\boldsymbol{s}_{k}^{T}\left(B_{k} \boldsymbol{s}_{k}-\boldsymbol{y}_{k}\right)} & \text { otherwise }\end{cases} \\
\boldsymbol{\eta}_{k} & =\phi \boldsymbol{y}_{k}+(1-\phi) B_{k} \boldsymbol{s}_{k}
\end{aligned}
$$

(5) Termination of updating

The updating of \boldsymbol{x}_{k} is repeated until the Karush-Kuhn-Tucker condition

$$
\begin{aligned}
\nabla f(\boldsymbol{x})+\sum_{i=1}^{m}\left(\lambda_{i} \nabla g_{i}(\boldsymbol{x})\right)+\sum_{j=1}^{\ell}\left(\mu_{j} \nabla h_{j}(\boldsymbol{x})\right) & =0 \\
g_{i}(\boldsymbol{x}) & =0 \text { for }(i=1, \cdots, m)
\end{aligned}
$$

$$
\begin{aligned}
h_{j}(\boldsymbol{x}) & =0 \text { for }(j=1, \cdots, \ell) \\
\sum_{i=1}^{m}\left(\lambda_{i} g_{i}(\boldsymbol{x})\right) & =0 \\
\lambda_{i} & \geq 0 \text { for }(i=1, \cdots, m)
\end{aligned}
$$

is satisfied.

5.1.2.13 Minimization of the distance between two nodes in a network

(1) Calculating the shortest path from a given node to all other nodes

The Dijkstra's method is used to obtain the shortest path from a given specified node init on graph $G=$ (V, E) to all other nodes and the corresponding distance. However, the branch weights are assumed to be nonnegative.
(a) For each vertex $i \in V$, let Distance $(i)=\infty, \operatorname{Path}(i)=$ init, and $P=\phi$. For the starting point init, let Distance $($ init $)=0$. Also, let next $=$ init.
(b) Let $P=P \cup\{n e x t\}$. For each node j that is connected to node next, if $\operatorname{Distance}(j)>\operatorname{Distance}($ next $)+$ Weight $($ next,$j)$, update Distance $(j)=\operatorname{Distance}($ next $)+\operatorname{Weight}(n e x t, j)$ and Path $(j)=$ next.
(c) For each vertex $i \in P$, select node v for which Distance (i) is the minimum. Let next $=v$ for that node.
(d) Repeat steps (ii) and (iii) until $P=V$.
(2) Calculating the shortest path between all sets of two nodes The Floyd's method is used to obtain the shortest path between all sets of two nodes on graph $G=(V, E)$ and the corresponding distance.
For undirected graphs:Assume that no negative weighted branches are included.
(a) For each pair of nodes $i, j \in V$, let $\operatorname{Distance}(i, j)=\infty$ and $\operatorname{Path}(i, j)=i$.
(b) For each pair of nodes i, j, if $\operatorname{Distance}(i, j)>\operatorname{Distance}(i, k)+\operatorname{Distance}(k, j)$, update Distance $(i, j)=$ Distance $(i, k)+\operatorname{Distance}(k, j)$ and $\operatorname{Path}(i, j)=k$.
(c) Repeat step (ii) for $k=1, \ldots, n$.

For directed graphs:Assume that negative weighted branches are included but cycles with negative lengths are not included.
(a) For each pair of nodes $i, j \in V$, let Distance $(i, j)=\infty$ and $\operatorname{Path}(i, j)=0$.
(b) For each pair of nodes $i, j \in V$, if $\operatorname{Distance}(i, j)>\operatorname{Distance}(i, k)+\operatorname{Distance}(k, j)$, update Distance $(i, j)=$ $\operatorname{Distance}(i, k)+\operatorname{Distance}(k, j)$ and $\operatorname{Path}(i, j)=k$.
(c) If Distance (i, i) is negative, interrupt processing since no solution exists. Otherwise, repeat step (ii) for $k=1, \ldots, n$.
(3) Calculating the shortest path between two nodes

The Dijkstra's method described above is applied to obtain the shortest path between two nodes on graph $G=(V, E)$ and the corresponding distance. However, the branch weights are assumed to be nonnegative.
(a) For each vertex $i \in V$, let $\operatorname{Distance}(i)=\infty, \operatorname{Path}(i)=0$, and $P=j$. For the starting point init, let Distance $($ init $)=0$. Also, let next $=$ init.
(b) Let $P=P \cup$ next. For each node j that is connected to node next, if Distance $(j)>D($ next $)+$ Weight $($ next,$j)$, update $\operatorname{Distance}(j)=D(n e x t)+W e i g h t(n e x t, j)$ and $\operatorname{Path}(j)=n e x t$.
(c) For each vertex $i \in P$, select node v for which Distance (i) is the minimum. Let next $=v$ for that node.
(d) Repeat steps (ii) and (iii) until next $=$ end.

5.1.3 Reference Bibliography

(1) Forsythe, G. E. , Malcolm, M. A. and Moler, C. B. , "Computer method for mathematical computations", Prentice-Hall Inc. , (1978).
(2) Brent, R. P. , "Algorithms for minimization without derivatives", Englewood Cliffs, N. J. , Prent-Hall, (1973).
(3) Powell, M. J. D. , "A Hybrid Method for Nonlinear Equations", Numerical Methods for Nonlinear Algebraic Equations, P. Rabinowits, ed. , Gordon and Breach, pp.87-161, (1970).

5.2 MINIMIZATION OF A FUNCTION OF ONE VARIABLE WITHOUT CONSTRAINTS

5.2.1 DMUUSN, RMUUSN
 Minimization of a Function of One Variable

(1) Function

DMUUSN or RMUUSN searches for the minimum value of a function $f(x)$ of one variable.
(2) Usage

Double precision:
CALL DMUUSN (F, X, ER, NEV, Y, IERR)
Single precision:
CALL RMUUSN (F, X, ER, NEV, Y, IERR)
(3) Arguments

D:Double precision real | Z:Double precision complex |
| :--- |
| R:Single precision real |\quad C:Single precision complex \(\quad\left\{\begin{array}{l}INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer\end{array}\right\}\)
(4) Restrictions
(a) $\mathrm{ER} \geq$ Unit for determining error
(except when 0.0 is entered in order to set ER to the default value)
(b) NEV > 3
(except when 0.0 is entered in order to set NEV to the default value)

(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1500	Restriction (a) or (b) was not satisfied.	Processing is performed with the default value set for NEV or ER.
4000	The enclosure operation failed.	Processing is aborted.
5000	The root could not be obtained before maximum number of function evaluations was reached.	The values of X and Y at that time are output and processing is aborted.

(6) Notes
(a) The actual name in the first argument F must be declared using an EXTERNAL statement in the user program, and a function subprogram having the actual name specified for F must be created. This function subprogram (in double-precision) should be created as follows.

- Function subprogram creation method:

```
REAL(8) FUNCTION F (X)
REAL(8) X
```

$$
\mathrm{F}=\mathrm{f}(\mathrm{x})
$$

RETURN

END
(b) If the search interval becomes $[a, b]$ due to interval reduction, then convergence is determined according to the following condition:

$$
\max (b-x, x-a) \leq 2 \times \mathrm{ER} \times \max (1,|x|)
$$

A value on the order of the default value should be taken for ER.
(c) If a default value is shown for an argument in the "Contents" column of the table in the argument section, then the default value will be set if 0 is entered for an integer-type argument or if 0.0 is entered for a real-type argument.
(d) If there are multiple minimum values, you cannot guarantee to which minimum value the subroutine will converge.
(e) The function must continuously first-order differentiable.
(f) To search for a maximum value, set the function value $f(x)$ so that the sign will be reverse. At this time, the value of the fifth argument Y will be output with the sign reversed.

(7) Example

(a) Problem

Search for the minimum value of the function:

$$
f(x)=x\left(x^{2}-2\right)-5
$$

(b) Input data

Function subprogram name corresponding to function $f(x)$: FMUUSN
$\mathrm{X}=1.0, \mathrm{ER}=0.0$ and $\mathrm{NEV}=0$.
(c) Main program

PROGRAM BMUUSN
EXAMPLE OF DMUUSN ***
IMPLICIT REAL (8) (A-H, O-Z) EXTERNAL FMUUSN
$!\quad \operatorname{WRITE}(6,1000)$
$\operatorname{READ}(5, *)$ NEV
$\operatorname{READ}(5, *)$
$\operatorname{READ}(5, *)$
ER
$\operatorname{READ}(5, *)$
$\operatorname{READ}(5, *)$
X
$\operatorname{READ}(5, *) \mathrm{X}$
$\operatorname{WRITE}(6,1100)$
$\operatorname{NEV}, E R, X$
CALL DMUUSN (FMUUSN, X, ER , NEV , Y , IERR)
$\underset{\operatorname{STOP}}{\operatorname{WRITE}}(6,1200)$ IERR,NEV,X,Y
STOP
1000 FORMAT(' ', /,' *** DMUUSN ***')
1100 FORMAT (,$\quad * *$ INPUT $* *$, /, \&

$$
5 \mathrm{X}, \mathrm{NEV}=, \mathrm{I},{ }^{\prime}, \&
$$

$$
\begin{aligned}
& \text { 5X,'NEV =, }=\text {, D18., } 10, /, \& \\
& \text { 5X,', (}
\end{aligned}
$$

5X', 'NEV =', I5', /,\&

5X,' ((FUNCTION VALUE))', /,\& 5X,',($\underset{\mathrm{Y}=,, \mathrm{D} 18.10)}{\text { FUNCTION }}))^{\prime}, /, \&$
END

REAL (8) FUNCTION FMUUSN(X)
REAL (8) X
! FMUUSN $=\mathrm{X} *(\mathrm{X} * \mathrm{X}-2.0 \mathrm{DO})-5.0 \mathrm{DO}$ RETURN
END
(d) Output results
*** DMUUSN ***
** INPUT **
NEV $=0$
ER $=0.0000000000 \mathrm{D}+00$
((INITIAL VALUE))
$\mathrm{X}=1.0$
** OUTPUT ${ }^{\text {TERR }}={ }^{* *}$
IERR $=0$
$\mathrm{NEV}=23$
(SOLUTION)
$\mathrm{X}=0.8090169944 \mathrm{D}+00$
((FUNCTION VALUE))
$\mathrm{Y}=-0.6088525492 \mathrm{D}+01$

5.3 MINIMIZATION OF A FUNCTION OF MANY VARIABLES WITHOUT CONSTRAINTS

5.3.1 DMUMQN, RMUMQN

Minimization of a Function of Many Variables (Derivative Definition Unnecessary)
(1) Function

DMUMQN or RMUMQN searches for the minimum value of a function $f(\boldsymbol{x})$ of n variables.
(2) Usage

Double precision:
CALL DMUMQN (F, X, N, ER, NEV, Y, WK, IERR)
Single precision:
CALL RMUMQN (F, X, N, ER, NEV, Y, WK, IERR)
(3) Arguments
$\left.\begin{array}{l}\text { D:Double precision real } \begin{array}{l}\text { Z:Double precision complex } \\ \text { R:Single precision real }\end{array} \quad \text { C:Single precision complex }\end{array} \quad \begin{array}{|c|c|c|c|l|}\hline \text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}$
(4) Restrictions
(a) $\mathrm{N}>0$
(b) $\mathrm{ER} \geq$ Unit for determining error
(except when 0.0 is entered in order to set ER to the default value)
(c) $\mathrm{NEV}>0$
(except when 0.0 is entered in order to set NEV to the default value)
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1500	Restriction (b) or (c) was not satisfied.	Processing is performed with the default value set for NEV or ER
3000	Restriction (a) was not satisfied.	Processing is aborted.
5000	The root could not be obtained before maximum number of function evaluations was reached.	The values of X and Y at that time are output and processing is aborted.

(6) Notes
(a) The actual name in the first argument F must be declared using an EXTERNAL statement in the user program, and a function subprogram having the actual name specified for F must be created. This function subprogram (in double-precision) should be created as follows.

```
REAL(8) FUNCTION F (X)
REAL(8) X
    F}=\textrm{f}(\boldsymbol{x}
RETURN
END
```

(b) Convergence is determined according to the following condition, and the solution is assumed to be $\boldsymbol{x}+\Delta \boldsymbol{x}$:

$$
\|\Delta \boldsymbol{x}\| \leq \mathrm{ER} \times \max (1,\|\boldsymbol{x}+\Delta \boldsymbol{x}\|)
$$

and

$$
\|\nabla f(\boldsymbol{x})\| \leq 2 \times \mathrm{ER}
$$

or
$\|\nabla f(\boldsymbol{x})\| \leq$ Unit for determining error
where $\Delta \boldsymbol{x}$ is the correction vector for \boldsymbol{x} and $\|\boldsymbol{x}\|=\max _{i}\left|x_{i}\right|$. Also, $\nabla f(\boldsymbol{x})$, which is the gradient vector of $f(\boldsymbol{x})$, has components $\partial f(\boldsymbol{x}) / \partial x_{i}$. A value on the order of the default value should be taken for ER.
(c) If a default value is shown for an argument in the "Contents" column of the table in the argument section, then the default value will be set if 0 is entered for an integer-type argument or if 0.0 is entered for a real-type argument.
(d) If the gradient vector can be calculated analytically, then it is more efficient to use the subroutine 5.3.2 $\left\{\begin{array}{l}\text { DMUMQG } \\ \text { RMUMQG }\end{array}\right\}$.
(e) Scaling should be performed so that the contribution to the function value from each of the variables is on the same order. (See Section 5.1.1)
(f) If the gradient vector is 0 at the initial point, then that point is output as the solution.
(g) If there is no minimum value, then processing will be continued until the maximum number of function evaluations is reached and $\operatorname{IERR}=5000$ will be output.
(h) If there are multiple minimum values, you cannot guarantee to which minimum value the subroutine will converge.
(i) The function must continuously second-order differentiable.
(j) To search for a maximum value, set the function value $f(\boldsymbol{x})$ so that the sign will be reversed. At this time, the value of the sixth argument Y will be output with the sign reversed.

(7) Example

(a) Problem

Search for the minimum value of the function

$$
f(\boldsymbol{x})=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2},
$$

using $\boldsymbol{x}=[-1.2,1.0]^{T}$ as the initial value.
(b) Input data

Function subprogram name corresponding to function $f(\boldsymbol{x})$: FMUMQN

$$
\mathrm{X}(1)=-1.2, \mathrm{X}(2)=1.0, \mathrm{ER}=0.0 \text { and } \mathrm{NEV}=0 .
$$

(c) Main program

```
    PROGRAM BMUMQN
! *** EXAMPLE OF DMUMQN ***
    IMPLICIT REAL(8) (A-H,0-Z)
    PARAMETER (N = 2)
    DIMENSION X(N),WK(N* (3*N+7))
    EXTERNAL FMUMQQN
! WRITE (6,1000)
    READ (5,*) NEV
    READ(5,*) NEV
    READ (5,*) ER
    READ(5,** X NTTE(6,1100) N,NEV,ER,(I,X (I),I=1,N)
    CALL DMUMQN (FMUMQN,X,N,ER,NEV,Y,WK, IERR)
    WRITE (6,1200) IERR,NEV
    WRITE (6,1300) (I,X(I),I=1,N)
    WRITE (6,1400) Y
    STOP
!
    1000 FORMAT(', ',/,'*** DMUMQN ***')
    1100 FORMAT(, *** INPUT **',l,&&
        ll
                5X,'(( INITIAL VALUE ))',/,&
        1200 FORMAT((, ', ** OUTPUUT **',/,&&
            5X,'NEV =,',I5)
1300 FORMAT(5X,',(( SOLUTION ))',,/,&
1400 FORMAT(5X,',(( ( FUNCTIONN VALUE ) ) ', ',/,&
    END
        REAL (8) FUNCTION FMUMQN (X)
        REAL (8) W, X,Y
        DIMENSION X(*),Y(2)
!
    Y(1) = 10.0D0*(X(2)-X(1)*X(1))
```

```
Y(2) = 1.0DO-X(1)
W = 0.0DO
DO 100 I=1,2
W = W=Y',
100 CONTINU
FMUMQN = W
RETURN
END
```

(d) Output results
*** DMUMQN ***
** INPUT **
$\begin{array}{lll}\mathrm{N} & = & 2 \\ \mathrm{NEV} & = & 0\end{array}$
$\mathrm{ER}=0.0000000000 \mathrm{D}+00$
((INITIAL VALUE))
$\mathrm{X}(1)=-1.2$
** OUTPUT **
$\begin{array}{ll}\text { IERR } & =0 \\ \text { NEV } & =140\end{array}$
((SOLUTION))
$\mathrm{X}(1)=0.1000000000 \mathrm{D}+01$
(FUNCT $=0.1000000000 \mathrm{D}+01$
(F FUNCTION VALUE))
$=0.5453357277 \mathrm{D}-23$

5.3.2 DMUMQG, RMUMQG

Minimization of a Function of Many Variables (Derivative Definition Required)
(1) Function

DMUMQG or RMUMQG searches for the minimum of a function $f(\boldsymbol{x})$ of n variables.
(2) Usage

Double precision:
CALL DMUMQG (F, SUBG, X, N, ER, NEV, Y, WK, IERR)
Single precision:
CALL RMUMQG (F, SUBG, X, N, ER, NEV, Y, WK, IERR)
(3) Arguments

D:Double precision real R:Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	F	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	-	Input	Name of function subprogram F (X) that defines the function $f(\boldsymbol{x})$. (See Notes (a))
2	SUBG	-	-	Input	Name of subroutine $\operatorname{SUBG}(X, G)$ that calculates the gradient vector $\nabla f(\boldsymbol{x})$. (See Notes (b))
3	X	(D)	N	Input	Search starting point \boldsymbol{x}_{0}
		R		Output	Search point final destination \boldsymbol{x}^{*}
4	N	I	1	Input	Number of components n of independent variable \boldsymbol{x}
5	ER	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Required precision (Default value: $2 \times \sqrt{(\text { Unit for determining error })})$
6	NEV	I	2	Input	NEV(1): Maximum number of evaluations of function F (Default value: $100 \times \mathrm{N}$) $\operatorname{NEV}(2)$: Maximum number of evaluations of subroutineSUBG (Default value: $100 \times \mathrm{N}$)
				Output	Actual number of function evaluations
7	Y	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Output	Function value $y=f\left(\boldsymbol{x}^{*}\right)$ at final destination \boldsymbol{x}^{*}
8	WK	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	See Contents	Work	Work area Size: $\mathrm{N} \times(3 \times \mathrm{N}+7)$
9	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{N}>0$
(b) $\mathrm{ER} \geq$ Unit for determining error
(except when 0.0 is entered in order to set ER to the default value)
(c) $\operatorname{NEV}(\mathrm{i})>0 \quad(\mathrm{i}=1,2)$
(except when 0.0 is entered in order to set $\operatorname{NEV}(\mathrm{i}) \quad(\mathrm{i}=1,2)$ to the default value)
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1500	Restriction (b) or (c) was not satisfied.	Processing is performed with the default value set for NEV(1), NEV(2) or ER
3000	Restriction (a) was not satisfied.	Processing is aborted.
5000	The root could not be obtained before maximum number of function evaluations was reached.	The values of X and Y at that time are output and processing is aborted.

(6) Notes

(a) The actual name in the first argument F must be declared using an EXTERNAL statement in the user program, and a function subprogram having the actual name specified for F must be created. This function subprogram (in double-precision) should be created as follows.

```
REAL(8) FUNCTION F (X)
REAL(8) X
DIMENSION X(*)
```

$$
\mathrm{F}=\mathrm{f}(\boldsymbol{x})
$$

RETURN
 END

(b) The actual name in the second argument SUBG must be declared using an EXTERNAL statement in the user program, and a function subprogram having the actual name specified for SUBG must be created. This function subprogram (in double-precision) should be created as follows.

```
SUBROUTINE SUBG (X, G)
REAL(8) X, G
DIMENSION X (*),G(*)
```

$$
\begin{aligned}
\mathrm{G}(1) & =1 \text { st component of } \nabla f(\boldsymbol{x})=\partial f(\boldsymbol{x}) \partial x_{i} \\
& \vdots \\
\mathrm{G}(\mathrm{~N}) & =\text { n-th component of } \nabla f(\boldsymbol{x})=\partial f(\boldsymbol{x}) \partial x_{n}
\end{aligned}
$$

RETURN

END
(c) Convergence is determined according to the following condition, and the solution is assumed to be $\boldsymbol{x}+\Delta \boldsymbol{x}$:
$\|\Delta \boldsymbol{x}\| \leq \mathrm{ER} \times \max (1,\|\boldsymbol{x}+\Delta \boldsymbol{x}\|)$ and $\|\nabla f(\boldsymbol{x})\| \leq 2 \times \mathrm{ER}$ or $\|\nabla f(\boldsymbol{x})\| \leq$ Unit for determining error where $\Delta \boldsymbol{x}$ is the correction vector for \boldsymbol{x} and $\|\boldsymbol{x}\|=\max _{i}\left|x_{i}\right|$. A value on the order of the default value should be taken for ER.
(d) If a default value is shown for an argument in the "Contents" column of the table in the argument section, then the default value will be set if 0 is entered for an integer-type argument or if 0.0 is entered for a real-type argument.
(e) Scaling should be performed so that the contribution to the function value from each of the variables is on the same order. (See Section 5.1.1)
(f) If the gradient vector is 0 at the initial point, then that point is output as the solution.
(g) If there is no minimum value, then processing will be continued until the maximum number of function evaluations is reached and $\operatorname{IERR}=5000$ will be output.
(h) If there are multiple minimum values, you cannot guarantee to which minimum value the subroutine will converge.
(i) The function must continuously second-order differentiable.
(j) To search for a maximum value, set the function value $f(\boldsymbol{x})$ so that the sign will be reversed. At this time, the value of the seventh argument Y will be output with the sign reversed.

(7) Example

(a) Problem

Search for the minimum value of the function.

$$
f(\boldsymbol{x})=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

using $\boldsymbol{x}=[-1.2,1.0]^{T}$ as the initial value.
(b) Input data

Function subprogram name corresponding to function $f(\boldsymbol{x})$: FMUMQG
Name of subroutine which calculates the gradient vector $\nabla f(\boldsymbol{x})$: GMUMQG
$\mathrm{X}(1)=-1.2, \mathrm{X}(2)=1.0, \mathrm{~N}=2, \mathrm{ER}=0.0, \mathrm{NEV}(1)=0$ and $\mathrm{NEV}(2)=0$.
(c) Main program

PROGRAM BMUMQG
! *** EXAMPLE OF DMUMQG ***
IMPLICIT REAL (8) (A-H, $0-\mathrm{Z}$)
PARAMETER $(\mathrm{N}=2)$
DIMENSION NEV (2), X (N), WK ($\mathrm{N} *(3 * \mathrm{~N}+7)$)
EXTERNAL FMUMQG,FMUMQ2
$!$

$\operatorname{WRITE}(6,1000)$

$\operatorname{READ}(5, *)(\operatorname{NEV}(I), I=1,2)$
$\operatorname{READ}(5, *)$
$\operatorname{READ}(5, *)$
X
WRITE (6, 1100) $N, N E V(1), N E V(2), E R,(I, X(I), I=1, N)$
CALL DMUMQG (FMUMQG,FMUMQ2, X,N,ER,NEV,Y,WK, IERR)
$\operatorname{WRITE}(6,1200) \operatorname{IERR}, \operatorname{NEV}(1), \operatorname{NEV}(2)$
WRITE $(6,1300)(I, X(I), I=1, N)$
WRITE $(6,1400)$ Y
STOP
1000 FORMAT(, ',/,' *** DMUMQG ***')
1100 FORMAT (, ** INPUT **', /, \&
$5 X, ', N E V(1)=,, I 5, l, \&$
$5 X$,
$5 \mathrm{X},{ }^{\prime}, \mathrm{NEV}(2)=,, I 5, /, \&$
5X,' ER =', D18.10,/, \&
5X,'((INITIAL VALUE)),
5X,',($(($ INITIAL VALUE $)) ', /, \& ~$
1200 FORMAT (, $\quad * * \operatorname{OUTPUT} * * ', /, \&$

```
                                    5X,'NEV(1)=',I5,/,&
    1300 FORMAT(5X,',(( SOLUTION ))',/,&
    (5X,', X(',I2,') =,',D18.10))
    1400 FORMAT(5X,','(( ( FUNCTIONN VALUE ) )',/,&
        END
        REAL(8) FUNCTION FMUMQG(X)
        REAL(8) W,X,Y
        DIMENSION'X'(*),Y(2)
        Y(1) = 10.0D0*(X(2)-X(1)*X(1))
        Y(2) = 1.0D0-X(1)
        W = 0.0D0
        DO 100 I=1,2
    W = W+Y'(I) *Y(I)
    100 CONTINUE
        FMUMQG = W
        FMUMQG
        END
        SUBROUTINE FMUMQ2(X,G)
        REAL(8) G,X,Y
        DIMENSION 'X(*),G(*),Y(2)
!
    Y(1) = 10.ODO*(X(2)-X(1)**2)
    Y(2) = 1.0D0-X(1)
    G(1) =-2.0DO*(20.0DO*X(1)*Y(1)+Y(2))
    G(2) = 20.0DO*Y(1)
    RETURN
    END
(d) Output results
```

```
*** DMUMQG ***
```

*** DMUMQG ***
** INPUT **
** INPUT **
N}=1
N}=1
NEV(2)= 0
NEV(2)= 0
ER = 0.0000000000D+00
ER = 0.0000000000D+00
((INITIAL VALUE))
((INITIAL VALUE))
X (1) = -1.2
X (1) = -1.2
** OUTPUT **
** OUTPUT **
IERR = 0
IERR = 0
NEV(1)= 55
NEV(1)= 55
NEV(2)= 36
NEV(2)= 36
((SOLUTION))
((SOLUTION))
X(1) = 0.1000000000D+01
X(1) = 0.1000000000D+01
x (2) = 0.10000000000D+01
x (2) = 0.10000000000D+01
((FUNCTION VALUE))
((FUNCTION VALUE))
Y = 0.7664560722D-24

```
        Y = 0.7664560722D-24
```


5.4 MINIMIZATION OF THE SUM OF THE SQUARES OF A FUNCTION WITHOUT CONSTRAINTS

5.4.1 DMUSSN, RMUSSN

Nonlinear Least Squares Method (Derivative Definition Unnecessary)
(1) Function

DMUSSN or RMUSSN searches for the minimum value of the sum of the squares $s=\sum_{i=1}^{m} f_{i}(\boldsymbol{x})^{2}$ of a function of n variables, where $f_{i}(\boldsymbol{x})$ is the i-th component of the vector function $\boldsymbol{f}(\boldsymbol{x})$ of n variables $(i=1, \cdots, m)$.
(2) Usage

Double precision:
CALL DMUSSN (SUB, X, N, ER, NEV, Y, M, S, IWK, WK, IERR)
Single precision:
CALL RMUSSN (SUB, X, N, ER, NEV, Y, M, S, IWK, WK, IERR)

(3) Arguments

$\begin{array}{l}\text { D:Double precision real } \begin{array}{l}\text { Z:Double precision complex } \\ \text { R:Single precision real }\end{array} \quad \text { C:Single precision complex }\end{array}$ I: $\left.\begin{array}{l}\text { INTEGER(4) as for 32bit Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}$
(4) Restrictions
(a) $0<\mathrm{N} \leq \mathrm{M}$
(b) $\mathrm{ER} \geq$ Unit for determining error
(except when 0.0 is entered in order to set ER to the default value)
(c) $\mathrm{NEV}>0$
(except when 0.0 is entered in order to set NEV to the default value)

(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1500	Restriction (b) or (c) was not satisfied.	Processing is performed with the default value set for NEV or ER.
3000	Restriction (a) was not satisfied.	Processing is aborted.
4000	The linear least squares method could not be solved.	The value of X, Y, and S at that time are output and processing is aborted.
4100	The steepest descent could not be calculated.	
4200	The solution could not be corrected $2 \times \mathrm{N}$ times consecutively.	
5000	The values did not converge before the given maximum number of evaluations was reached.	

(6) Notes
(a) The actual name in the first argument SUB must be declared using an EXTERNAL statement in the user program, and a function subprogram having the actual name specified for SUB must be created. This function subprogram (in double-precision) should be created as follows.

```
SUBROUTINE SUB(X, Y)
REAL(8) X, Y
DIMENSION X (*), Y(*)
```

$$
\begin{aligned}
\mathrm{Y}(1) & =f_{1}(\boldsymbol{x}) \\
& \vdots \\
\mathrm{Y}(\mathrm{M}) & =f_{m}(\boldsymbol{x})
\end{aligned}
$$

RETURN
 END

(b) Convergence is determined according to the following condition, and the solution is assumed to be $\boldsymbol{x}+\Delta \boldsymbol{x}$:

$$
\|\Delta \boldsymbol{x}\| \leq \operatorname{ER} \times \max (1,\|\boldsymbol{x}+\Delta \boldsymbol{x}\|)
$$

where $\Delta \boldsymbol{x}$ is the correction vector for \boldsymbol{x} and $\|\boldsymbol{x}\|=\max _{i}\left|x_{i}\right|$. A value on the order of the default value should be taken for ER.
(c) If a default value is shown for an argument in the "Contents" column of the table in the argument section, then the default value will be set if 0 is entered for an integer-type argument or if 0.0 is entered for a real-type argument.
(d) Scaling should be performed so that the contribution to the function value from each of the variables is on the same order. (See Section 5.1.1)
(e) If there are multiple minimum values, you cannot guarantee to which minimum value the subroutine will converge.
(f) The function must continuously first-order differentiable.
(7) Example
(a) Problem

Minimize $s=f_{1}(\boldsymbol{x})^{2}+f_{2}(\boldsymbol{x})^{2}$ for the functions:

$$
\boldsymbol{f}(\boldsymbol{x})=\left[\begin{array}{c}
f_{1}(\boldsymbol{x}) \\
f_{2}(\boldsymbol{x})
\end{array}\right]=\left[\begin{array}{c}
10\left(x_{2}-x_{1}^{2}\right) \\
1-x_{2}
\end{array}\right]
$$

using $\boldsymbol{x}=[-1.2,1.0]^{T}$ as the initial value.
(b) Input data

Name of subroutine that calculates the function: FMUSSN
$\mathrm{X}(1)=-1.2, \mathrm{X}(2)=1.0, \mathrm{~N}=2, \mathrm{ER}=0.0, \mathrm{NEV}=0$ and $\mathrm{M}=2$.
(c) Main program

```
PROGRAM BMUSS
EXAMPLE OF DMUSSN ***
PARAMETER (N = 2,M = 2)
DIMENSION IWK(3*N)
DIMENSION X(N),Y(M),WK(M*(2*N+1)+N*(N+4))
EXTERNAL FMUSSN
    WRITE (6,1000)
    READ (5,*) NEV
    READ (5,*) ER
    READ (5,*) X
    WRITE (6,1100) N,M,NEV,ER
    WRITE(6,1200) (I,X (I),I=1,N)
    CALL DMUSSN(FMUSSN, X,N, ER ,NEV ,Y ,M,SY , IWK , WK , IERR)
    WRITE (6,1300) IERR,NEV
    WRITE(6,1400) (I,X(I),I=1,N)
    WRITE(6,1500) SY
    WRITE (6,1600) (I,Y(I) , I=1,M)
    STOP
!}100
    1000 FORMAT(', ',/,' *** DMUSSN ***')
    1100 FORMAT(', **, ** INPUT = **',l,&
                        5X,'N =',I5,,,&
                5X,'NEV =,','5,/,&
                5x,NEV
                =,,15,/,&
1200 FORMAT(5X,'(( INITIAL VALUE ))',/,&
300 FORMAT (5X,' X(',I2,') =',F5.1))
    1300 FORMAT(', ** OUTPUT **',',',
                5X,'NEV =,'I5)
    1400 FORMAT(5X,'(( SOLUTİON ))',/,&
    500 FOPMAT (5X,', (( X(',I2,'') =',D18.10))
    500 FORMAT(5X,',( LEAST SQQUARES ))',l,&
    1600 FORMAT(5X,',(( FUNCTION'VALUE ))',/,&
            END
            SUBROUTINE FMUSSN(X,Y)
            REAL(8) X,Y
            DIMENSION X (*),Y(*)
!
Y(1) = 10.ODO*(X(2)-X(1)*X(1))
Y(2) = 1.0D0-X(1)
RETURN
END
```

(d) Output results

```
*** DMUSSN ***
    * INPUT **
    ll
    ER = 0.0000000000D+00
    (( INITIAL VALUE ))
        X( 1) = -1.2
X(2) = 1.0
    ** OUTPUT **
    IERR = 0
    ((SOLUTION ))
        X(1)= 0.1000000000D+01
```

$\mathrm{X}(2)=0.1000000000 \mathrm{D}+01$
((LEAST SQUARES))
($\underset{\text { FUNCTION }}{\text { S }}=0.0000000000 \mathrm{D}+00$
((FUNCTION VALUE))
$\mathrm{Y}(1)=0.0000000000 \mathrm{D}+00$
$\mathrm{Y}(2)=0.0000000000 \mathrm{D}+00$

5.5 MINIMIZATION OF A FUNCTION OF ONE VARIABLE WITH CONSTRAINTS

5.5.1 DMCUSN, RMCUSN
 Minimization of a Function of One Variable (Interval Specified)

(1) Function

DMCUSN or RMCUSN searches for the minimum value of a function $f(x)$ of one variable, within the interval $[a, b]$.
(2) Usage

Double precision:
CALL DMCUSN (F, AX, BX, ER, NEV, X, Y, IERR)
Single precision:
CALL RMCUSN (F, AX, BX, ER, NEV, X, Y, IERR)

(3) Arguments

D:Double precision real R:Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	F	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	-	Input	Name of function subprogram that defines the function $f(x)$ (See Notes (a))
2	AX	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Input	Initial value a of left end of search interval
3	BX	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Initial value b of right end of search interval
4	ER	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Required precision (Default value: $2 \times \sqrt{(\text { Unit for determining error })})$
5	NEV	I	1	Input	Maximum number of evaluations of function $\boldsymbol{f}(\boldsymbol{x})$ (Default value: $100 \times \mathrm{N}$)
				Output	Actual number of function evaluations
6	X	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Output	Final destination x^{*}
7	Y	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Output	Function value $y=f\left(x^{*}\right)$ at final destination x^{*}
8	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{AX}<\mathrm{BX}$
(b) $A X \neq B X$
(c) ER \geq Unit for determining error
(except when 0.0 is entered in order to set ER to the default value)
(d) $\mathrm{NEV}>0$
(except when 0.0 is entered in order to set NEV to the default value)
(5) Error indicator

IERR value	Meaning	Processing		
0	Normal termination.	Processing is performed with AX and BX switched.		
1200	Restriction (a) was not satisfied.	Processing is performed with the default value set for NEV or ER.		
1500	Restriction (c) or (d) was not satisfied.	Processing is aborted.		
3000	Restriction (b) was not satisfied.	The value did not converge before the given maximum number of function eval- uations was reached.		The value of X and Y at that time are
:---				
output and processing is aborted.				

(6) Notes
(a) The actual name in the first argument F must be declared using an EXTERNAL statement in the user program, and a function subprogram having the actual name specified for F must be created. This function subprogram (in double-precision) should be created as follows.

```
REAL(8) FUNCTION F(X)
REAL(8) X
```

$$
\mathrm{F}=f(x)
$$

RETURN

END

(b) If the search interval becomes $[a, b]$ due to interval reduction, then convergence is determined according to the following condition:

$$
\max (b-a, x-a) \leq 2 \times \mathrm{ER} \times \max (1,|x|)
$$

A value on the order of the default value should be taken for ER.
(c) If a default value is shown for an argument in the "Contents" column of the table in the section, then the default value will be set if 0 is entered for an integer-type argument or if 0.0 is entered for a real-type argument.
(d) If there is no minimum value, then the end point is assumed to be the solution and 0 is output for IERR.
(e) If there are multiple minimum values, you cannot guarantee to which minimum value the subroutine will converge.
(f) The function must continuously first-order differentiable.
(g) To search for a maximum value, set the function value $f(x)$ so that sign will be reversed. At this time, the value of the seventh argument Y will be output with the sign reversed.

(7) Example

(a) Problem

Search for the minimum value of the function

$$
f(x)=x\left(x^{2}-2\right)-5
$$

in the interval $[0,1]$.
(b) Input data

Function subprogram name corresponding to function $f(x)$: FMCUSN
$\mathrm{AX}=0.0, \mathrm{BX}=1.0, \mathrm{ER}=0.0$ and $\mathrm{NEV}=0$.
(c) Main program

```
            PROGRAM BMCUSN
    ! *** EXAMPLE OF DMCUSN ***
    IMPLICIT REAL (8) (A-H, \(0-Z\) )
    EXTERNAL FMCUSN
\(!\quad \operatorname{WRITE}(6,1000)\)
    READ (5,*) NEV
    READ (5,*) ER
    \(\operatorname{READ}(5, *) \quad \mathrm{AX}, \mathrm{BX}\)
    WRITE ( 6,1100 ) NEV , ER, AX , BX
    CALL DMCUSN (FMCUSN, AX,BX,ER,NEV, X,Y,IERR)
    \(\operatorname{WRITE}(6,1200)\) IERR,NEV, X, Y
    STOP
    1000 FORMAT(' , ,/,' *** DMCUSN ***')
    1100 FORMAT ( \(, \quad, \quad\) ** INPUT,\(* *\),, , \&
                5X,'NEV =', I5, /\&
5X,', \(\mathrm{ER}=, ' \mathrm{D} 18.10, /, \&\)
```



```
                5X,', ( SEARCH AX \(=\),F5.1,/,\&
    1200 FORMAT
```



```
            5X,' \(\quad Y=\prime, D 18.10)\)
        END
```

 REAL (8) FUNCTION FMCUSN(X)
 REAL (8) X
 FMCUSN \(=X *(X * X-2.0 D 0)-5.0 D 0\)
 RETURN
 (d) Output results

```
*** DMCUSN ***
    ** INPUT **
        NEV = 0
        ER = 0.0000000000D+00
            (( SEARCH SECTION ))
            AX = 0.0
    * BX = 1.0
    ** OUTPUT **
    IERR = 0
    (( SOLUTION )
    X = 0 8164965811D+00
    (( FUNCTION VALUE ))
        Y = -0.6088662108D+01
```


5.6 MINIMIZATION OF A CONSTRAINED LINEAR FUNCTION OF SEVERAL VARIABLES (LINEAR PROGRAMMING)

5.6.1 DMCLSN, RMCLSN

Minimization of a Linear Function of Several Variables (Linear Constraints)
(1) Function

DMCLSN or RMCLSN obtains the \boldsymbol{x} that minimized a linear function of several variables $f(\boldsymbol{x})$ of the n dimensional vector $\boldsymbol{x}=\left[x_{1}, \cdots, x_{n}\right]^{T}$.

$$
f(\boldsymbol{x})=\boldsymbol{c}^{T} \boldsymbol{x}
$$

m constraints: Any of the following for $i=1,2, \cdots, m$

- $\boldsymbol{a}_{i}^{T} \boldsymbol{x}=b_{i}$
- $\boldsymbol{a}_{i}^{T} \boldsymbol{x} \leq b_{i}$
- $\boldsymbol{a}_{i}^{T} \boldsymbol{x} \geq b_{i}$

Domain of x :

$$
d_{j} \leq x_{j} \leq u_{j} \quad(j=1,2, \cdots, n)
$$

where $\boldsymbol{c}^{T}=\left[c_{1}, c_{2}, \cdots, c_{n}\right]$ and $\boldsymbol{a}_{i}^{T}=\left[a_{i, 1}, a_{i, 2}, \cdots, a_{i, n}\right]$ are vectors of dimension n and $b_{i}, d j$ and u_{j} are constants $(i=1,2, \cdots, m ; \quad j=1,2, \cdots, n)$.
(2) Usage

Double precision:
CALL DMCLSN (A, LMA, NM, B, M, XUP, XLOW, C, ITYPE, ER, NEV, X, Y, ISW, IWK, WK, IERR)
Single precision:
CALL RMCLSN (A, LMA, NM, B, M, XUP, XLOW, C, ITYPE, ER, NEV, X, Y, ISW, IWK, WK, IERR)
(3) Arguments

D:Double precision real R :Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	LMA, NM	Input	When ISW=0, Matrix $A=\left(a_{i, j}\right)$ ($i=1,2, \cdots, m ; j=1,2, \cdots, n$) corresponding to the constant coefficients of constraints. (See Notes (a) and (f))
				Output	Matrix corresponding to the constant coefficients of constraints modified by using slack variables.
2	LMA	I	1	Input	Adjustable dimension of array A

No.	Argument	Type	Size	Input/ Output	Contents
3	NM	I	1	Input	When ISW=0: $n+2 \times m$, where n is the number of variables and m is the number of constraints. (See Notes (f))
				Output	Working variable.
4	B	$\left\{\begin{array}{l} \mathrm{D} \\ \mathrm{R} \end{array}\right\}$	M	Input	When ISW $=0$, right-hand side of constraints $\boldsymbol{b}=\left(b_{i}\right) \quad(i=1,2, \cdots, m)$ (See Notes (f))
				Output	Right-hand side of constraints modified by using slack variables.
5	M	I	1	Input	Number of constraints m
6	XUP	$\left\{\begin{array}{l} \mathrm{D} \\ \mathrm{R} \end{array}\right\}$	NM	Input	When ISW $=0$, variable upper bounds $\boldsymbol{u}=\left(u_{j}\right) \quad(j=1,2, \cdots, n)$ (See Notes (c) and (f))
				Output	variable upper bounds modified by using slack variables.
7	XLOW	$\left\{\begin{array}{l} \mathrm{D} \\ \mathrm{R} \end{array}\right\}$	NM	Input	When ISW $=0$, variable lower bounds $\boldsymbol{d}=\left(d_{j}\right) \quad(j=1,2, \cdots, n)$ (See Notes (c) and (f))
				Output	variable lower bounds modified by using slack variables.
8	C	$\left\{\begin{array}{l} \mathrm{D} \\ \mathrm{R} \end{array}\right\}$	NM	Input	When ISW=0, function coefficients $\boldsymbol{c}=\left(c_{j}\right) \quad(j=1,2, \cdots, n)($ See Notes (f))
				Output	function coefficients modified by using slack variables.
9	ITYPE	I	M	Input	Distinction between equality and inequality constraints $\begin{aligned} & \text { 0: } \boldsymbol{a}_{i}^{T} \boldsymbol{x}=b_{i} \\ & 1: \boldsymbol{a}_{i}^{T} \boldsymbol{x} \leq b_{i} \\ & -1: \boldsymbol{a}_{i}^{T} \boldsymbol{x} \geq b_{i} \\ & \hline \end{aligned}$
10	ER	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Required precision (Default value : $2 \times \sqrt{(\text { Unit for determining error })})$
11	NEV	I	1	Input	Maximum number of evaluations of function $f(\boldsymbol{x})$ (Default value: $10 \times \mathrm{M}$)
				Output	Actual number of function evaluations
12	X	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	NM	Output	Final destination \boldsymbol{x} (See Notes (b))
13	Y	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Output	Function value $f(\boldsymbol{x})$ at final destination \boldsymbol{x}

No.	Argument	Type	Size	Input/ Output	Contents
14	ISW	I	1	Input	Processing switch (See Notes (i)) $0:$ First processing $1:$ Continuation processing
15	IWK	I	NM +M	Work	Work area
16	WK	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	See Contents	Work	Work area Size: $2 \times \mathrm{M}^{2}+\mathrm{NM} \times(7+\mathrm{M})$
17	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{NM}, 0<\mathrm{M} \leq \mathrm{LMA}$
(b) $\mathrm{ISW}=0$ or $\mathrm{ISW}=1$
(c) $\mathrm{ER} \geq$ Unit for determining error (except when 0.0 is entered in order to set ER to the default value)
(d) NEV >0 (except when 0 is entered in order to set NEV to the default value)

(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1500	Restriction (c) or (d) was not satisfied.	Processing is performed with the default value set for NEV or ER.
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.
4000	A basic feasible solution was not obtained.	
5000	The values did not converge before the given maximum number of function eval- uations was reached.	The values of X and Y at that time are output and processing is aborted. (See Notes (h) and (i))

(6) Notes

(a) When ISW $=0$, coefficients $a_{i, j}(i=1,2, \cdots, m ; j=1,2, \cdots, n)$ corresponding to the constants of constraints must be set in array A as follows. Where, n is number of variables and m is number of constraints.
(b) Values of final destination \boldsymbol{x} are set in $\mathrm{X}(1)$ through $\mathrm{X}(n)$. The remainder of array X is filled with slack variable values and so on.
(c) If the variable upper and lower bounds have not been specifically determined, positive or negative numbers having appropriately large absolute values must be set for the upper and lower bounds, respectively. Since the optimal solution may not be obtained when the value of variable at destination matches a value of upper or lower bounds set here, numbers having even larger absolute values may have to be set for the upper and lower bounds and the calculation must be performed again.
(d) If a default value is shown for an argument in the "Contents" column of the table in the arguments section, then the default value will be set if 0 is entered for an integer-type argument or if 0.0 is entered for a real-type argument.
(e) Scaling should be performed so that the contribution to the function value from each variable is of the same order. For example, if $f(\boldsymbol{x})=100 x_{1}+x_{2}$ with the constraint $200 x_{1}+5 x_{2}=3$, the best result

Remarks

a. $\quad \mathrm{NM}=n+2 \times m$ must hold.

Figure 5-5
is obtained by performing the variable transformations $y_{1}=100 x_{1}, y_{2}=x_{2}$ to set $h(\boldsymbol{y})=y_{1}+y_{2}$ with the constraint $2 y_{1}+5 y_{2}=3$.
(f) Value after the constraints have been transformed are entered in A, B, XUP, XLOW, C and NM for output.
(g) To search for the maximum value, perform a search for the minimum value of $-f(\boldsymbol{x})$. At this time, the value of Y is the maximum value with the sign reversed.
(h) Although the value of \boldsymbol{x} when $\operatorname{IERR}=5000$ is not the optimal solution, the constraint is satisfied.
(i) If $\operatorname{IERR}=5000$ is returned and the number of iterations is less than the specified convergence count, the calculation can be continued using the information calculated up to the intermediate point. To perform this processing set 1 for the ISW value, set a sufficient value for the NEV value, and use the output values of the previous execution for all other input values. Also, use the work information from the previous execution. (See the example)

(7) Example

(a) Problem

Minimize the function:

$$
f(\boldsymbol{x})=-x_{1}-3 x_{2}+2 x_{3}+3 x_{4}-4 x_{5}-2 x_{6}
$$

based on:

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3}-3 x_{4}-2 x_{5}-x_{6} & \leq 20 \\
2 x_{1}-3 x_{2}-x_{3}+2 x_{4}+4 x_{5}+x_{6} & \geq 28 \\
-3 x_{1}+2 x_{2}+2 x_{3}+x_{4}+5 x_{5}+2 x_{6} & =40 \\
5 x_{1}-x_{2}+3 x_{3}+3 x_{4}-2 x_{5}+4 x_{6} & =50 \\
0.0 \leq x_{i} \leq 1000.0(i=1,2,3,4,5,6) &
\end{aligned}
$$

In this example, to illustrate the continuation processing described in Note (i), the maximum number of evaluations $\mathrm{NEV}=6$ is set small enough so that $\mathrm{IERR}=5000$ is output.
(b) Input data
(First time): $\mathrm{NM}=14, \mathrm{M}=4, \mathrm{ER}=0.0, \mathrm{NEV}=6, \mathrm{ISW}=0, \mathrm{LMA}=11$, arrays $\mathrm{A}, \mathrm{B}, \mathrm{XUP}, \mathrm{XLOW}, \mathrm{C}$ and ITYPE.
(Second and subsequent times): NEV=6 and ISW=1.
(For other arguments, the value obtained after the previous calculation is used directly as the input value.)
(c) Main program

PROGRAM BMCLSN
! *** EXAMPLE OF DMCLSN ***
IMPLICIT REAL (8) (A-H, O-Z)
PARAMETER (NMO $=14$)
PARAMETER $\quad\left(\begin{array}{l}\text { MO }=4) \\ \text { PARAMETER }\end{array}(\mathrm{LMA}=11\right.$
PARAMETER
PARAMETER $(\mathrm{LMWK}=2 * \mathrm{MO} * \mathrm{MO}+\mathrm{NMO} *(7+\mathrm{MO}))$
PARAMETER (NIWK = NMO + MO)
DIMENSION A(LMA,NMO), B(MO), XUP (NMO), XLOW(NMO) , C(NMO), X(NMO)
DIMENSION WK (NWK), ITYPE (MO),IWK (NIWK)
$!$
$\operatorname{WRITE}(6,1000)$
READ (5,*) NM, M, ER, NEV, ISW
WRITE (6,1100) NM , M
$\mathrm{NN}=\mathrm{NM}-2 * \mathrm{M}$
WRITE $(6,1300)$
DO $10 \mathrm{I}=1$, M
$\operatorname{READ}(5, *)(\mathrm{A}(\mathrm{I}, \mathrm{J}), \mathrm{J}=1, \mathrm{NN})$
$\operatorname{WRITE}(6,1200)(\mathrm{A}(\mathrm{I}, \mathrm{J}), \mathrm{J}=1$, NN $)$
10 CONTINUE
$\operatorname{WRITE}(6,1400)$
$\operatorname{READ}(5, *)(\mathrm{B}(\mathrm{I}), \mathrm{I}=1, \mathrm{M})$
$\operatorname{WRITE}(6,1200)(B(I), I=1, M)$
$\operatorname{WRITE}(6,1500)$
$\operatorname{READ}(5, *)$ (XUP (I) , $I=1$, NN)
$\operatorname{WRITE}(6,1200)$ (XUP (I), $\mathrm{I}=1$, NN $)$
$\operatorname{WRITE}(6,1600)$
$\operatorname{READ}(5, *)$ ($\operatorname{XLOW}(I), I=1$, NN)
$\operatorname{WRITE}(6,1200)$ (XLOW(I), $\mathrm{I}=1, \mathrm{NN})$
$\operatorname{WRITE}(6,1700)$
READ ($5, *)$ (C(I) , $I=1$, NN)
$\operatorname{WRITE}(6,1200)(\mathrm{C}(\mathrm{I}), \mathrm{I}=1$, NN $)$
$\operatorname{WRITE}(6,1800)$
$\operatorname{READ}(5, *)$ ($\operatorname{ITYPE}(I), I=1, M)$
$\operatorname{WRITE}(6,1250)(\operatorname{ITYPE}(I), I=1, M)$
CALL DMCLSN\&
(A, LMA , NM , B , M , XUP , XLOW , C , ITYPE , ER , NEV , X , Y , ISW , IWK , WK , IERR)
WRITE $(6,1900)$
WRITE $(6,2000)$ IERR
WRITE $(6,2100)$
$\operatorname{WRITE}(6,2400)$ ($\mathrm{I}, \mathrm{X}(\mathrm{I}), \mathrm{I}=1, \mathrm{NN})$
$\operatorname{WRITE}(6,2200)$ Y
! $20 \operatorname{READ}(5, *)$ NEV,ISW
CALL DMCLSN\&
(A , LMA , NM , B , M , XUP , XLOW , C , ITYPE, ER , NEV , X , Y , ISW , IWK , WK , IERR)
WRITE (6,2300)
WRITE $(6,2000)$ IERR
WRITE $(6,2100)$
$\operatorname{WRITE}(6,2400)$ ($\mathrm{I}, \mathrm{X}(\mathrm{I}), \mathrm{I}=1, \mathrm{NN})$
WRITE(6,2200) Y
IF (IERR.EQ.5000) GOTO 20
STOP
!
1000 FORMAT(' ',/,6X,',*** DMCLSN $* * *$ ', /, \&

1200 FORMAT(8X,6(F7.1))
1250 FORMAT (8X,4I4)
1300 FORMAT(8X,'** MATRIX A **')
1400 FORMAT ($8 \mathrm{X},{ }^{\prime}, * *$ VECTOR B **')
1500 FORMAT (8X', '** VECTOR XUP **')
1700 FORMAT (8X,' '** VECTOR C **',
1800 FORMAT (8X,', ** VECTOR ITYPE **')
1900 FORMAT (7X,' $* *$ OUTPUT **',l,\&
8X,'** FIRST RESULT (ISW.EQ.O) **')
2000 FORMAT (9X, ', IERR =', I5)
2100 FORMAT (8X,',**
2200 FORMAT (9X, Y = ,D18.10)
2300 FORMAT (7X,',** OUTPUT **',/,\&
(8X,'** IMPROVED RESSULT (ISW.NE.0) **')
2400 FORMAT (8X,' $X(,, I 2, ')=$ ',D18.10)
END
(d) Output results

```
*** DMCLSN ***
    ** INPUT **
    NM = 14
    ** MATPIX A ** 4
\begin{tabular}{lrrrrr} 
MATRIX & A & \(* *\) & & & \\
1.0 & 2.0 & 3.0 & -3.0 & -2.0 & -1.0 \\
2.0 & -3.0 & -1.0 & 2.0 & 4.0 & 1.0 \\
-3.0 & 2.0 & 2.0 & 1.0 & 5.0 & 2.0 \\
5.0 & -1.0 & 3.0 & 3.0 & -2.0 & 4.0 \\
VECTOR & B & ** & & & \\
20.0 & 28.0 & 40.0 & 50.0 & &
\end{tabular}
```

VECTOR B **
** VECTOR XUP **
$1000.0 \quad 1000.0 \quad 1000.0 \quad 1000.0 \quad 1000.0 \quad 1000.0$
$\begin{array}{cccccc}* * \text { VECTOR XLOW } \\ \text { O.0 } & 0.0 & 0.0 & 0.0 & 0.0 & 0.0\end{array}$
$\begin{array}{llllll}\text { * VECTOR C } \mathrm{C} & * * \\ -1.0 & -3.0 & 2.0 & 3.0 & -4.0 & -2.0\end{array}$
$\begin{array}{llllll}-1.0 & -3.0 & 2.0 & 3.0 & -4.0 & -2.0\end{array}$
** VECTOR ITYPE **
** FIRST RESULT (ISW.EQ.0) **
IERR $=5000$
** VECTOR X **
$\mathrm{X}(1)=0.5162689805 \mathrm{D}+01$
$X(2)=0.0000000000 \mathrm{D}+00$
$\mathrm{X}(3)=0.9843817787 \mathrm{D}+01$
$X(4)=0.0000000000 \mathrm{D}+00$
$X(5)=0.6412147505 D+01$
$X(6)=0.1869848156 \mathrm{D}+01$
$\mathrm{Y}=-0.1486334056 \mathrm{D}+02$
** OUTPUT **
** IMPROVED RESULT (ISW.NE.0) ** IERR =
** VECTOR X **
$\mathrm{X}(1)=0.1811320755 \mathrm{D}+02$
$X(2)=0.1415094340 \mathrm{D}+02$
$X(3)=0.0000000000 \mathrm{D}+00$
$X(4)=0.0000000000 \mathrm{D}+00$
$\mathrm{X}(5)=0.1320754717 \mathrm{D}+02$
$X(6)=0.0000000000 \mathrm{D}+00$
$\mathrm{Y}=-0.1133962264 \mathrm{D}+03$

5.6.2 DMCLAF, RMCLAF

Minimization of a Function of Many Variables (Linear Constraint Given by a Real Irregular Sparse Matrix)
(1) Function

DMCLAF or RMCLAF subroutine obtains the value \boldsymbol{x} that minimizes the function of many variables

$$
f(\boldsymbol{x})=\boldsymbol{c}^{T} \boldsymbol{x}
$$

of the n-dimensional vector $\boldsymbol{x}=\left[x_{1}, \cdots, x_{n}\right]^{T}$. There are m constraints, which are given by one of the following for $i=1,2, \cdots, m$.

- $\boldsymbol{a}_{i}^{T} \boldsymbol{x}=b_{i}$
- $\boldsymbol{a}_{i}^{T} \boldsymbol{x} \leq b_{i}$
- $\boldsymbol{a}_{i}^{T} \boldsymbol{x} \geq b_{i}$

Also, the domain of \boldsymbol{x} is defined as

$$
d_{j} \leq x_{j} \leq u_{j} \quad(j=1,2, \cdots, n)
$$

Here, $\boldsymbol{c}^{T}=\left[c_{1}, c_{2}, \cdots, c_{n}\right], \boldsymbol{a}_{i}^{T}=\left[a_{i, 1}, a_{i, 2}, \cdots, a_{i, n}\right]$ are n-dimensional vectors, and $b_{i}, d j$ and u_{j} are constants $(i=1,2, \cdots, m ; \quad j=1,2, \cdots, n)$.
(2) Usage

Double precision:
CALL DMCLAF (AVAL, NA, JCN, IA, NM, B, M, XUP, XLOW, C, ITYPE, ETB, AP, BM, NCK, NEV, X, Y, ISW1, ISW2, IW, W, NW, IERR)
Single precision:
CALL RMCLAF (AVAL, NA, JCN, IA, NM, B, M, XUP, XLOW, C, ITYPE, ETB, AP, BM, NCK, NEV, X, Y, ISW1, ISW2, IW, W, NW, IERR)

(3) Arguments

D:Double precision real R:Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	AVAL	$\left\{\begin{array}{l} \mathrm{D} \\ \mathrm{R} \end{array}\right\}$	NA $+2 \times \mathrm{M}$	Input	When ISW $=0$, Matrix $A=\left(a_{i, j}\right)$ ($i=1,2, \cdots, m ; j=1,2, \cdots, n)$ corresponding to coefficients of constraints (See Note (e))
				Output	Matrix corresponding to coefficients of constraints that were modified by using slack variables
2	NA	I	1	Input	Number of nonzero elements of matrix A
3	JCN	I	NA $+2 \times \mathrm{M}$	Input	Column numbers of nonzero elements of matrix A (See Notes (e) and (f))
4	IA	I	M+1	Input	Information about nonzero elements of matrix A (See Notes (e) and (f))
5	NM	I	1	Input	Value of $n+2 \times m$ when ISW2 $=0$, where n the number of variables and m is the number of constraints (See Note (f))
				Output	Work variable
6	B	$\left\{\begin{array}{l} \mathrm{D} \\ \mathrm{R} \end{array}\right\}$	M	Input	Right-hand side $\boldsymbol{b}=\left(b_{i}\right)(i=1,2, \cdots, m)$ of constraints when ISW2=0 (See Note (f))
				Output	Right-hand side of constraints that were modified by using slack variables
7	M	I	1	Input	Number of constraints m
8	XUP	$\left\{\begin{array}{l} \mathrm{D} \\ \mathrm{R} \end{array}\right\}$	NM	Input	Upper limit values $\boldsymbol{u}=\left(u_{j}\right)(j=1,2, \cdots, n)$ of variables when ISW2 $=0$ (See Notes (b) and (f).)
				Output	Upper limit values of variables that were modified by using slack variables
9	XLOW	$\left\{\begin{array}{l} \mathrm{D} \\ \mathrm{R} \end{array}\right\}$	NM	Input	Lower limit values $\boldsymbol{d}=\left(d_{j}\right)(j=1,2, \cdots, n)$ of variables when ISW2 $=0$ (See Notes (b) and (f).)
				Output	Lower limit values of variables that were modified by using slack variables
10	C	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	NM	Input	Coefficients $\boldsymbol{c}=\left(c_{j}\right)(j=1,2, \cdots, n)$ of functions when ISW2=0 (See Note (f))
				Output	Coefficients of functions that were modified by using slack variables

No.	Argument	Type	Size		$\begin{array}{l}\text { Input/ } \\ \text { Output }\end{array}$		
11	ITYPE	I	M	Input	$\begin{array}{l}\text { Distinction among symbols for equality and in- } \\ \text { equality of constraints } \\ 0: \boldsymbol{a}_{i}^{T} \boldsymbol{x}=b_{i}\end{array}$		
$1: \boldsymbol{a}_{i}^{T} \boldsymbol{x} \leq b_{i}$							
$-1: \boldsymbol{a}_{i}^{T} \boldsymbol{x} \geq b_{i}$						$]$	ETB
:---							
12							

No.	Argument	Type	Size	$\begin{array}{l}\text { Input/ } \\ \text { Output }\end{array}$	Contents		
20	ISW2	I	1	Input	$\begin{array}{l}\text { Processing switch (Default value:0) (See Note } \\ (\mathrm{k}))\end{array}$		
$0:$ Initial processing							
$1:$ Continuation processing						$]$	IW
:---							
21							

(4) Restrictions
(a) $\operatorname{XLOW}(\mathrm{J}) \leq \mathrm{XUP}(\mathrm{J}) \mathrm{J}=1,2, \ldots, \mathrm{NM}-2 \times \mathrm{M}$
(b) $\mathrm{ISW} 1=0$ or $\mathrm{ISW} 1=1$
(c) $\operatorname{ISW} 2=0$ or ISW2 $=1$
(d) $\operatorname{ETB}(\mathrm{I}) \geq$ unit for determining error $(\mathrm{I}=1,2,3)$ (except when 0.0 is entered to set default value)
(e) $\mathrm{NEV}>0$ (except when 0 is entered to set default value)
(f) $\mathrm{NCK}>0$ (except when 0 is entered to set default value)
(g) $\mathrm{AP}>0$ (except when 0.0 is entered to set default value)
(h) $\mathrm{BM}>0$ (except when 0.0 is entered to set default value)
(i) $0<\mathrm{NM}, 0<\mathrm{M}$ (except when 0 is entered to set default value)
(j) $\mathrm{IA}(1)=1$
$0<\mathrm{IA}(\mathrm{i}+1)-\mathrm{IA}(\mathrm{i}) \leq \mathrm{N}(\mathrm{i}=1,2, \cdots, \mathrm{~N}-1)$
$0<\mathrm{NA}-\mathrm{IA}(\mathrm{N})+1 \leq \mathrm{N}$
(k) $\mathrm{M} \leq \mathrm{NA} \leq \mathrm{M} \times \mathrm{N}$
(l) $0<$ Column number of nonzero element of matrix $A \leq \mathrm{N}$

The column numbers of the nonzero elements of matrix A, which are stored in array JCN, must be in ascending order for each row. Also, each column must have at least one nonzero element.
$(\mathrm{m}) \mathrm{NW} \geq \mathrm{NA}+17 \times \mathrm{M}+13+\left(\right.$ size of area required to perform LU decomposition of $\left.A\left(D^{(k)}\right)^{2} A^{\mathrm{T}}\right)$.
Here, $\mathrm{N}=\mathrm{NM}-2 \times \mathrm{M}$. Also, $D^{(k)}$ is a diagonal matrix having $x_{i}^{(k)}$ in element (i, i) for the solution $\boldsymbol{x}^{(k)}=\left(x_{1}^{(k)}, x_{2}^{(k)}, \ldots, x_{n}^{(k)}\right)^{\mathrm{T}}$ at the time of the k-th iteration.

(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	For some $j(j=1,2, \ldots, \mathrm{NM}-2 \times \mathrm{M})$, $\operatorname{XLOW}(j)$ and $\operatorname{XUP}(j)$ did not satisfy Restriction (a).	The values of $\operatorname{XLOW}(j)$ and $\operatorname{XUP}(j)$ are swapped and processing is performed.
1500	One of restrictions (b) to (h) was not satisfied.	Processing is performed with the default value set.
3000	Restriction (i) was not satisfied.	Processing is aborted.
3010	One of restrictions (j) to (l) was not satisfied.	
3100	Restriction (m) was not satisfied.	
4000	A basic feasible solution could not be obtained.	
4100	$\operatorname{rank}(A)<m$ for the matrix A that assigns the constraints. (m is the number of constraints.)	
4200	The residual for the constraints did not satisfy the required precision. (See Note (i))	
5000	The sequence did not converge even though the maximum assigned iteration count was reached.	The values of X and Y at that time were output, and processing is aborted. (See Notes (h) and (i))

(6) Notes
(a) The value of the final destination \boldsymbol{x} is set in $\mathrm{X}(1)$ to $\mathrm{X}(n)$. The remainder of array X contains values such as the slack variables.
(b) If the upper and lower limit values of the variable have not specifically been defined, they are set to positive and negative numbers having suitably large absolute values. If the variable value at the final destination matches the upper or lower limit value defined here, an optimal value may not be obtained. Therefore, a number having a larger absolute value must be set for the upper or lower limit value and the calculation must be executed again.
(c) If a default value appears in the "Contents" column of the argument table and 0 is entered for an integer type argument or 0.0 is entered for a real type argument, the default value is set.
(d) Scaling should be performed so that each variable participates to an equal degree in the function value. For example, if $f(\boldsymbol{x})=100 x_{1}+x_{2}$ with constraint: $200 x_{1}+5 x_{2}=3$ the transformation $y_{1}=100 x_{1}, y_{2}=x_{2}$ should be performed so that the result is obtained using, $h(\boldsymbol{y})=y_{1}+y_{2}$ with constraint: $2 y_{1}+5 y_{2}=3$.
(e) When ISW2=0, only nonzero coefficients among the coefficients $a_{i, j}(i=1,2, \cdots, m ; j=1,2, \cdots, n)$ corresponding to constraints are stored in array AVAL. Here, m represents the number of constraints and n represents the number of variables. For example, if the matrix $A=\left(a_{i j}\right)$ representing the
constraints is given by

$$
A=\left[\begin{array}{cccccc}
0.0 & a_{12} & a_{13} & 0.0 & 0.0 & a_{16} \\
a_{21} & 0.0 & 0.0 & 0.0 & a_{25} & 0.0 \\
0.0 & a_{32} & 0.0 & 0.0 & 0.0 & a_{36} \\
0.0 & 0.0 & 0.0 & a_{44} & 0.0 & a_{46}
\end{array}\right]
$$

the storage conditions of arrays AVAL, JCN and IA are as follows.

StorageConditionsofArraysAVAL, JAandIA

Remark: The portions indicated by $*$ need not be set as input values.
(f) The values after the constraints and other items were transformed are entered for the output of A, B, XUP, XLOW, C and NM.
(g) To search for the maximum value, you should search for the minimum value of $-f(\boldsymbol{x})$. At this time, the maximum value will be the value of Y with the plus or minus sign reversed.
(h) In theory, as the step size parameter α approaches 1 , fewer iterations are required to converge to the optimal solution. However, in some cases, if α is too close to 1 , the error gets large.
(i) To prevent a situation in which the constraint cannot be satisfied with sufficient precision due to calculation error, this subroutine performs the check described below when the iteration count k satisfies any of the following conditions.
i. k is 1
ii. k is divisible by the value of the argument NCK
iii. k is equal to the value of the argument NEV

When any of these conditions is satisfied, the subroutine checks whether or not the residual for the constraint of the solution $\boldsymbol{x}^{(k)}$ at that time satisfies the condition

$$
\left\|A \boldsymbol{x}^{(k)}-b\right\| \leq \epsilon_{r}
$$

where ϵ_{r} is the value that is set for the argument $\operatorname{ETB}(2)$. If this condition is not satisfied, the initial solution is recalculated based on the previous solution for which this condition was satisfied, and the iterations are repeated. If the condition is not satisfied again after NCK iterations from the recalculation of the initial value, the value of NCK is replaced by, $\max (\mathrm{NCK} / 2,1)$ and the iterations are repeated further. If this condition is still not satisfied even when $\mathrm{NCK}=1, \mathrm{IERR}=4200$ is output, and processing is stopped.
(j) This subroutine solves simultaneous linear equations to determine the search direction for the optimal solution. The value of the argument ISW1 can be used to select whether the coefficient matrix of the simultaneous linear equations is to be treated as a dense matrix or as a sparse matrix. If the coefficient matrix is to be treated as a dense matrix, the subroutine 2.2.2 $\left\{\begin{array}{l}\text { DBGMSL } \\ \text { RBGMSL }\end{array}\right\}$ (described in <Basic Functions Vol. $2>$, Section (2.2.2)) is used. If the coefficient matrix is to be treated as a sparse matrix, the subroutine 2.21.1 $\left\{\begin{array}{l}\text { DBMFSL } \\ \text { RBMFSL }\end{array}\right\}$ (described in $<$ Basic Functions Vol. 2> , Section (2.21.1)) is used. If the coefficient matrix A of the constraints is a sparse matrix and if $A A^{\mathrm{T}}$ is also a sparse matrix, the calculation time will be shorter if the coefficient matrix of the simultaneous linear equations is treated as a sparse matrix. Otherwise, $I S W 1=0$ should be set.
(k) If the specified convergence count is small and IERR $=5000$ is returned, the calculation can be continued using information that was calculated up to that time. To perform this processing, set 1 for the value of ISW1, set a sufficiently large value for NEV, and use the output values from the previous execution directly for the other input values. Also use the work area information from the previous execution (See the example).
(l) If the maximum value of the absolute values of the artificial variables is greater than the value that was set for $\operatorname{ETB}(3)$ when the iterative calculation ends, the assigned problem is considered to be infeasible, and $\operatorname{IERR}=4000$ is output.
(m) If $\operatorname{rank}(A)<m$ for the coefficient matrix A that assigns the constraints, this subroutine cannot calculate the optimal solution, and $\operatorname{IERR}=4100$ is output. In this case, the subroutine 5.6.1 $\left\{\begin{array}{l}\text { DMCLSN } \\ \text { RMCLSN }\end{array}\right\}$ should be used.
(n) The size NW of the array W must be estimated in advance. To prevent IERR=3100 from being output because NW is not sufficiently large, $N W=N A+13 \times N M+2 \times M \times(M+1)+13$ should be set.

(7) Example

(a) ProblemMinimize

$$
f(\boldsymbol{x})=2 x_{1}+x_{2}+x_{3}-3 x_{4}+x_{5}
$$

based on

$$
\begin{aligned}
& x_{1}+2 x_{4}+3 x_{5} \geq-7 \\
& 2 x_{2}-x_{3}=0 \\
& x_{1}+2 x_{5} \leq 8 \\
& 0 \leq x_{1} \leq 1,0 \leq x_{2} \leq 1,1 \leq x_{3} \leq 2,-3 \leq x_{4} \leq 0,2 \leq x_{5} \leq 5 .
\end{aligned}
$$

In this example, to show the continuation processing described in Note (k), the maximum evaluation count NEV is set to a small value, $\mathrm{NEV}=5$, so that $\mathrm{IERR}=5000$ will be output.
(b) Input data
(First time): $\mathrm{NM}=14, \mathrm{M}=4, \mathrm{AP}=0.0, \mathrm{BM}=0.0, \mathrm{NEV}=3, \mathrm{ISW} 1=0$, $\mathrm{ISW} 2=0, \mathrm{LMA}=11$, arrays A, JCN, IA, B, XUP, XLOW, C, ETB and ITYPE.
(Second and subsequent times): NEV=20 and ISW=1.
(For the other arguments, the values that were output by the previous calculation are used directly as input values.)
(c) Main program

```
        PROGRAM BMCLAF
! *** EXAMPLE OF DMCLAF ***
    IMPLICIT NONE
    INTEGER N,NA,M,NM,NCK,NW,LNW,LNA,LM,LNM,LA
    INTEGER NEV,ISW1,ISW2
    PARAMETER (LNA=50, LM=5,LNM=20,LA=5,LNW=5000)
    INTEGER I
    INTEGER IA(LA),ITYPE(LM),IERR
    INTEGER JCN(LNÁ), IW (LNW+LNA+14*LM+4*LNM+30)
    REAL(8) B(LA),AVAL(LNA),ER(3),W(LNW)
    REAL (8) X (LNM), XUP(LNM),, XLOW(LNM),C(LNM)
    REAL(8) AP,BM,Y
    READ (5,*) NA
    READ (5,*) NM
    READ (5,*) M 
    READ (5,*) ER(1)
    READ (5,*) BM
    READ (5,*) NEV
    READ (5,*) ISW1
    READ (5,*) ISW2
    READ (5,*) NW
    N =NM - 2 **M
    WRITE (6,1000) NA,NM,M,ER(1) ,ER(2),ER(3) ,AP,BM,&
        NCK,NEV,ISW1,ISW2,NW
!
    READ (5,*) (AVAL(I),I=1,NA)
    WRITE (6,1100) (AVAL(I),I=1,NA)
    READ (5,*) (JCN(I),I=1,NA)
    WRITE (6,1130) (JCN (I), I=1,NA)
    READ (5,*) (IA(I),I=1,M)
    WRITE (6,1150) (IA (I), I=1,M)
    READ (5,*) (B(I), I=1,M)
    READ (5,*)(B(I),I=1,M)
    READ (5,*) (XUP(I), I=1,N)
    WRITE (6,1210) (XUP(I),I=1,N)
    READ (5,*) (XLOW (I) , I=1,N)
```

```
        WRITE ( }6,1220)(XLOW(I), I=1,N
        READ (5,*) (C(I),I=1,N)
        WRITE (6,1230) (C'(I),I=1,N)
! READ (5,*) (ITYPE(I),I=1,M)
        WRITE (6,1160) (ITYPE(I),I=1,M)
! WRITE (6,1300)
CALL DMCLAF (AVAL,NA,JCN,IA ,NM, B,M,XUP,XLOW,C,ITYPE, &
    ER, AP,BM,NCK,NEV,X,Y,ISW1,ISW2,IW,W,NW, IERR)
    WRITE (6,1900)
        WRITE (6,1400) 'DMCLAF',IERR
        WRITE (6,1450) NEV
        WRITE (6,1470) ISW1
        IF ((IERR.GE. 3000) AND. (IERR .NE. 5000)) STOP
        WRITE (6,1500) (I,X (I),I=1,N)
        WRITE (6,1500) Y
! IF (IERR .EQ. 5000) THEN
            ISW2 = 1 
            CALL DMCLAF(AVAL,NA,JCN,IA,NM,B,M,XUP,XLOW,C
            ER, AP,BM,NCK ,NEV,X ,Y, ISW1,ISW2,IW,W,NW, IERR)
!
    WRITE (6,2300)
    WRITE (6,1400) 'DMCLAF',IERR
    WRITE (6,1450) NEV
    WRITE (6,1470) ISW1
    IF (IERR'.GE. 3000) STOP
            WRITE (6,1500) (I,X(I), I=1,N)
            WRITE (6,1600) Y
        ENDIF
1000 FORMAT(', ',/,/,&
            '*** DMCLAF ***',/,&
                3,l,&
                    6X,'NM =,',I3,/,',
                    6x,',ER(1)=,',F9.3,/
                    6X,',ER(1)=','F9.3,\,'&
                    6X,''ER(2)=','F9.3, /,&
                    6X,',AR(3)=',F9.3,/,&
                    6X,'BM =,',F9.3,/,&
                            6X,'NEV
                            6X,',ISW1
                            6X,'ISW
                            6X,''COEFFICIENT MATRIX AVAL')
    1100 FORMAT(',', ,7(F9.3)
    1130 FORMAT(' ',l,l,&
            6X,'JCN (COLUMN NUMBER CORRESPONDING TO AVAL(K))',/,&
    1150 FORMAT(,
            6X,'IA (STARTING POSITION OF THE I-TH ROW IN ',/,&
            6X',' ARRAYS AVAL,JCN)',/,&
1160 FORMAT(,
            6X,'ITYPE (TYPE OF EACH CONSTRAINT)',/,&
    1200 FORMAT(,
    6X,'CONSTANT VECTOR',/,(7X,F10.4))
    1210 FORMAT('6X,'/,/&& BOUND OF EACH VARIABLE',/,(7X,F10.4))
    1220 FORMAT(',',/,/,& BOUND OF EACH VARIABLE',/, (7X,F10.4))
    1230 FORMAT('6X,'CÓEFFICIENTS OF OBJECTIVE FUNCTION',/,(7X,F10.4))
    1300 FORMAT(')',/,/,&
    1400 FORMAT(6X,' IERR (',A6,') =','I5)
    1450 FORMAT(6X,'ITERATION NUMBER =','I5)
    1500 FORMAT(', ,/,&
            6X,'SOLUTION',/,(8X,'X(',I2,') =',D18.10))
    1600 FORMAT(,
            6X,'FUNCTION VALUE ',/,(8X,D18.10))
            7x,'** OUTPUT **',/,&
            8X,'** FIRST RESULT'(ISW2.EQ.0) **',/)
            T(,
            8X','** IMPROVED RESULT (ISW2.NE.0) **',/)
            END
(d) Output results
```

```
*** DMCLAF **
```

*** DMCLAF **
** INPUT **

```
** INPUT **
```



```
    IA (STARTING POSITION OF THE I-TH ROW IN
    ARRAYS AVAL,JCN)
    CONSTANT VECTOR
        -7.0000
        0.0000
        8.0000
    UPPER BOUND OF EACH VARIABLE
        1.0000
        .0000
        2.0000
        0.0000
        5.0000
    LOWER BOUND OF EACH VARIABLE
        0.0000
        0.0000
        1.0000
            2.0000
    COEFFICIENTS OF OBJECTIVE FUNCTION
        2.0000
            1.0000
            1.0000
            -3.0000
            1.0000
    ITYPE (TYPE OF EACH CONSTRAINT)
** OUTPUT **
    ** OUTPUT **
    ** FIRST RESULT (ISW2.EQ.0) **
IERR (DMCLAF) = 5000
ITERATION NUMBER =
SELECTED ISW1 = = 1
SOLUTION
    X( 1) = 0.3804293265D+00
    X( 2) = 0.7015472780D+00
    X( 3) = 0.1403143425D+01
    X( 4) = -0.2995978790D+01
    x(5) = 0.2002974615D+01
FUNCTION VALUE
        0.1385646034D+02
    ** OUTPUT **
    ** IMPROVED RESULT (ISW2.NE.O) **
IERR (DMCLAF) = 1500
ITERATION NUMBER = 20
SOLUTION
    X( 1) = 0.2194790042D-08
    X( 1) = 0.2194790042D-08
    X( 2) = 0.5000000006D+00
    X( 4)= 0.1000000001D+01
```


$X(5)=0.2000000000 \mathrm{D}+01$

FUNCTION VALUE
$0.3500000007 \mathrm{D}+01$

5.6.3 DMCLMZ, RMCLMZ

Minimization of a Constrained Linear Function of Several Variables Including 0-1 Variables (Mixed 0-1 Programming)

(1) Function

DMCLMZ or RMCLMZ obtains $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ that minimizes the objective function:

$$
f(\boldsymbol{x})=\sum_{j=1}^{n} c_{j x_{j}}
$$

based on the constraints:

$$
\begin{array}{rlrl}
\sum_{j=1}^{n} a_{i, j} x_{j} & =b_{i} & & \left(i=1, \cdots, m_{e} ; j=1, \cdots, n\right) \\
\sum_{j=1}^{n} a_{i, j} x_{j} & \leq b_{i} & & \left(i=m_{e}+1, \cdots, m ; j=1, \cdots, n\right) \\
d_{j} & \leq x_{j} \leq u_{j} & (j=1, \cdots, n) \\
x_{j} & =0,1 & & \left(j \in N_{01}\right)
\end{array}
$$

and the value of the objective function $f(\boldsymbol{x})$ for that $\boldsymbol{x} . N_{01}$ is the set of subscripts of the $0-1$ variables.
(2) Usage

Double precision:
CALL DMCLMZ (A, MA, N, B, M, ME, XUP, XLOW, LZ, LN, C, MP, NP, ER, NEV, X, Y, ISW, IWK, WK, IERR)
Single precision:
CALL RMCLMZ (A, MA, N, B, M, ME, XUP, XLOW, LZ, LN, C, MP, NP, ER, NEV, X, Y, ISW, IWK, WK, IERR)
(3) Arguments

D:Double precision real R:Single precision real	Z:Double precision complex
C:Single precision complex	

INTEGER(8) as for 64 \mathrm{bit} Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	MA,N	Input	Coefficients of left-hand side of constraints $a_{i, j}$ $($ See Note (a))
2	MA	I	1	Input	Adjustable dimension of array A
3	N	I	1	Input	Number of variables n
4	B	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	M	Input	m-dimensional vector having constants of right- hand side of constraints b_{i} as components
5	M	I	1	Input	Number of constraints m
6	ME	I	1	Input	Number of equality constraints m_{e}
7	XUP	I	N	Input	Variable x_{j} upper bound u_{j} (See Note (b))
8	XLOW	I	N	Input	Variable x_{j} lower bound d_{j} (See Note (b))
9	LZ	I	LN	Input	Set of subscripts of 0-1 variables N_{01} (See Note $(i))$
10	LN	I	1	Input	Number of 0-1 variables (See Note (h))

No.	Argument	Type	Size	Input/ Output	Contents
11	C	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	N	Input	Objective function coefficient Vector c_{j}
12	MP	I	1	Input	Depth of search in branch-and-bound method p When $p=1$, a depth-first search is performed. As p gets larger, the search gets closer to a heuristic search (See Note (f))
13	NP	I	1	Input	Maximum length of partial problem list in branch-and-bound method
14	ER	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Input	Required precision (See Note (c))
15	NEV	I	1	Input	Maximum number of iterations when solving the relaxation problem (See Note (d))
16	X	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	N	Output	Optimal solution \boldsymbol{x}
17	Y	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Output	Objective function value $f(\boldsymbol{x})$ for optimal solution \boldsymbol{x}
18	ISW	I	1	Input	Processing switch (See Notes (g) and (h)) ISW=0: Initial processing ISW=1: Continuation processing
19	IWK	I	See Contents	Work	Work area Size : $\mathrm{MP}+(\mathrm{MP}+3) \times(\mathrm{N}+\mathrm{M}-\mathrm{ME})+\mathrm{M}+$ $(\mathrm{LN}+2) \times \mathrm{NP}+7$
20	WK	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	See Contents	Work	Work area Size : $\mathrm{M} \times 4+(\mathrm{M}+4) \times(\mathrm{N}+2 \times \mathrm{M}-\mathrm{ME})+(\mathrm{MP}+$ 1) $\times(\mathrm{M}+1) \times(\mathrm{N}-\mathrm{ME}+1)+(\mathrm{M}+1) \times(\mathrm{N}+\mathrm{M}-$ $\mathrm{ME}+1)+2 \times \mathrm{LN}+(\mathrm{N}+\mathrm{M}-\mathrm{ME}+2) \times(\mathrm{NP}+1)+2$
21	IERR	I	1	Output	Error indicator

(4) Restrictions

(a) M, LN, N, MP > 0
(b) $\mathrm{MA} \geq \mathrm{M}$
(c) $0 \leq \mathrm{ME} \leq \mathrm{N}, \mathrm{M}$
(d) $\mathrm{N} \geq \mathrm{LN}$
(e) $\mathrm{NP} \geq 2$
(f) $1 \leq \mathrm{LZ}(1)<\mathrm{LZ}(2)<\cdots<\mathrm{LZ}(\mathrm{LN}) \leq \mathrm{N}$
(g) ER >0.0 (except when 0.0 or a negative value is entered to use the default value)
(h) NEV >0 (except when 0 or a negative value is entered to use the default value)
(i) $\mathrm{ISW}=0$ or $\mathrm{ISW}=1$
(j) $\operatorname{XUP}(\mathrm{i}) \geq \operatorname{XLOW}(\mathrm{i}) \quad(\mathrm{i}=1,2, \cdots, \mathrm{~N})$
(k) When ISW=1 is set to perform continuation processing after IERR=5600 is output, the value of NP must be set larger than it was for the previous processing.
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	Restriction (g) or (h) was not satisfied.	The default value is used, and processing continues.
1100	Restriction (i) was not satisfied.	ISW $=0$ is considered to have been specified, and processing continues.
1200	Restriction (j) was not satisfied.	The upper and lower bounds are switched, and processing continues.
3000	Restriction (a) was not satisfied.	Processing is aborted.
3010	Restriction (b) was not satisfied.	
3020	Restriction (c) was not satisfied.	
3030	Restriction (d) was not satisfied.	
3040	Restriction (e) was not satisfied.	
3100	Restriction (f) was not satisfied.	
3500	Restriction (k) was not satisfied.	
4000	No feasible solution exists.	
5000	The solution of the relaxation problem could not be obtained within the given number of iterations. The incumbent has been obtained.	The incumbent at that time is output, and processing is aborted.
5100	The solution of the relaxation problem could not be obtained within the given number of iterations. The incumbent has not been obtained.	Processing is aborted.
5500	The number of partial problems retained in memory without processing ending reached NP during calculations of the branch-and-bound method. The incumbent has been obtained.	The incumbent at that time is output, and processing is aborted.
5600	The number of partial problems retained in memory without processing ending reached NP during calculations of the branch-and-bound method. The incumbent has not been obtained.	Processing is aborted.

(6) Notes

(a) The coefficients $a_{i, j}$ of the left-hand side of the constraints are stored as follows in array A.

$$
\operatorname{MA} \uparrow \begin{array}{|ccccc}
a_{1,1} & a_{1,2} & a_{1,3} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & a_{2,3} & \cdots & a_{2, n} \\
a_{3,1} & a_{3,2} & a_{3,3} & \cdots & a_{3, n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & a_{m, 3} & \cdots & a_{m, n} \\
\hline \leftarrow-----\mathrm{N}---\cdots-\rightarrow
\end{array} \downarrow \mathrm{M}
$$

(b) When x_{j} is a 0-1 variable, the values of $\operatorname{XUP}(j)$ and $\operatorname{XLOW}(j)$ need not be set in advance.
(c) If a nonpositive value is entered for argument ER, the default value, which is $2 \times \sqrt{(\text { Units for determining error })}$, is used as the required precision.
(d) A problem in which some of the $0-1$ variables of a mixed $0-1$ problem are fixed at 0 or 1 is called a partial problem. The linear programming problem in which the conditions for the $0-1$ variables that have not been fixed in a partial problem have been weakened so that these variables can take real values greater than or equal to 0 and less than or equal to 1 is called the relaxation problem of that partial problem. When using the simplex method to solve the relaxation problem of a partial problem generated in the process for searching for the solutions of a mixed 0-1 programming problem, the value of argument NEV is used as the upper bound of the number of iterations. If a nonpositive value is entered for argument NEV, the default value, which is $10 \times \mathrm{M}$ is used as the upper bound of the number of iterations.
(e) During the search for the optimal solution by using the branch-and-bound method, the solution that yields the smallest objective function value among the solutions satisfying the constraints that have been obtained up to that time is called the incumbent. If IERR $=5000$ or 5500 is returned, the incumbent is output for X when processing is aborted. At this time, although the solution that was obtained satisfies the constraints, it does not necessarily match the true optimal solution.
(f) The depth of search MP is a parameter assigned by the user for setting the solution search method in the branch-and-bound method. The larger the value assigned for MP, the stronger the tendency for a good incumbent to be obtained quickly. However, as the value assigned for MP gets larger, the number of partial problems retained in memory without processing terminating tends to increase dramatically. Therefore, the value of NP must be set sufficient large in advance. When $M P=1$, the area required for calculations is smallest. To prevent IERR $=5500$ or 5600 from being returned because the size of NP is insufficient, the value of MP should be set to 1 and the value of NP should be set to LN +1 .
(g) When IERR $=5000$ or 5100 is output and processing is aborted, ISW=1 can be set, NEV can be reset to a larger value, and calculations can be resumed using the previous calculation results. In this case, the contents of all arguments other than NEV that were used by the previous processing must be saved in advance.
(h) When $\operatorname{IERR}=5500$ or 5600 is output and processing is aborted, ISW=1 can be set, NP can be reset to a larger value, and calculations can be resumed using the previous calculation results. In this case, the contents of all arguments other than NP, IWK and WK that were used by the previous processing must be saved in advance. In addition, for IWK and WK, which are work area arrays, suitably large
areas must be reserved according to the value of NP, and the contents of IWK and WK at the time the previous processing terminated must be stored in advance at the beginnings of those areas.
(i) The subscripts of $0-1$ variables among the variables $x_{1}, x_{2}, \cdots, x_{n}$ are stored in array LZ, and the number of $0-1$ variables is stored in argument LN. For example, when dealing with the mixed $0-1$ programming problem in which there are eight variables $x_{1}, x_{2}, \cdots, x_{8}$ of which x_{2}, x_{5}, and x_{8} are 0-1 variables, set array LZ and argument LN as follows.

$$
\begin{aligned}
\mathrm{LN} & =3 \\
\mathrm{LZ}(1) & =2 \\
\mathrm{LZ}(2) & =5 \\
\mathrm{LZ}(3) & =8
\end{aligned}
$$

(7) Example

(a) Problem

Minimize the following objective function:

$$
\begin{aligned}
f(\boldsymbol{x})= & -13 x_{1}-18 x_{2}-10 x_{3}-8 x_{4}-8 x_{5}-12 x_{6} \\
& -10 x_{7}-8 x_{8}+11 x_{9}-9 x_{10}-30 x_{11}-10 x_{12}
\end{aligned}
$$

under the following constraints:

$$
\begin{aligned}
& x_{2}+x_{3}+x_{10}=1 \\
& 6 x_{1}+28 x_{2}+6 x_{3}+6 x_{4}+3 x_{5}+6 x_{6} \\
&+21 x_{7}+8 x_{8}-18 x_{9}+12 x_{10}+20 x_{11}+23 x_{12} \leq 60 \\
& 7 x_{1}+7 x_{2}+5 x_{3}+2 x_{4}+2 x_{5}+5 x_{6} \\
&+4 x_{7}+2 x_{8}-3 x_{9}+3 x_{10}+8 x_{11}+3 x_{12} \leq 20 \\
&-x_{4}-x_{11} \leq-1 \\
&-x_{6}-x_{7}-x_{12} \leq-1 \\
& 0 \leq x_{1} \leq 2, 0 \leq x_{5} \leq 3,0 \leq x_{8} \leq 1,-2 \leq x_{9} \leq 0 \\
& x_{j}=0,1 \quad(j=2,3,4,6,7,10,11,12)
\end{aligned}
$$

(b) Input data
$\mathrm{MA}=6, \mathrm{~N}=12, \mathrm{M}=5, \mathrm{ME}=1, \mathrm{MP}=4$,
$\mathrm{NP}=50, \mathrm{ER}=0.0$ (Set to the default value), $\mathrm{NEV}=0$ (Set to the default value) and ISW $=0$.
Arrays A and B for coefficients of constraints, array C for objective function coefficients and array LZ for subscripts of 0-1 variables.
(c) Main program

```
PROGRAM BMCLMZ
IMPLICIT NONE
INTEGER MAO,NO,MO,LNO,MPO,NPO,MEO
INTEGER NIWK,NWK
MARAMETER (MAO = 6 )
PARAMETER (NO = = 6
PARAMETER (MO =5)
PARAMETER ( LNO = 8)
PARAMETER ( NPO = 10)
PARAMETER (MPO = 4 )
PARAMETER ( NIWK=MPO + (MPO +3)* (NO+MO-MEO) +MO+(LNO+2)*NPO+7 )
PARAMETER ( NWK=4*MO+(MO+4)* (NO+2*MO-MEO) & 
                                    +(MPO+1)*(MO+1)*(NO-MEO+1)&
                                    +(MO+1)*(NO+MO-MEO+1)&
                            +2*LNO+(NO+MO-MEO+2)*(NPO+1)+2)
INTEGER MA,ME,N,M,LN,MP,NP,NEV,IERR
REAL (8) A(MAO,NO), B(MO), XUP (NO), XLOW (NO) , C(NO) ,X(NO)
REAL (8) ER, Y,WK (NWK)
INTEGER LZ(LNO),IWK(NIWK)
```

```
    INTEGER I,J,ISW
    READ (5,*) MA,N ,M ,ME,LN,MP,NP,NEV,ISW,ER
    WRITE (6,6000) MA,N,M,ME,LN ,MP ,NP,NEV,ISW,ER
    WRITE (6,6010)
    DO 100 I = 1,M
100 CONTINUE
    DO 110 I = 1,M
        WRITE (6,6020) (A(I, J),J=1,N),B(I)
    1 1 0 ~ C O N T I N U E ~
    WRITE (6,6030)
    READ (5,*) (C(J) , J=1,N)
    DO 120 J = 1,N
        WRITE(6,6040) J,C(J)
120 CONTINUE
    WRITE (6,6070)
    READ (5,*) (LZ(I), I=1,LN)
    WRITE(6,6080) (LZ (I), I=1,LN)
    WRITE (6,6050)
    DO 130 J = 1,N 
        IF(LZ(I).EQ.J) THEN
                GOTO 135
            ENDIF
            CONTINUE
            READ (5,*) XUP (J) , XLOW (J)
        WRITE (6,6060) J, XUPP (J) , J , XLOW (J)
    135 CONTINUE
130 CONTINUE
    CALL DMCLMZ&
    (A,MA,N , B ,M , ME , XUP , XLOW , LZ , LN , C , MP , NP , ER , NEV , X , Y , ISW , IWK , WK , &
    IERR)
    WRITE (6,6090)
    WRITE (6,6100) IERR
    DO 150 J = 1,N
        WRITE (6,6110) J,X(J)
    CONTINUE
6000 FRITE(6,6120) FORMAT(/,/,5X,'`** INPUT **',/,/,/,,&
                                    M,
                                    11X,'MA = ,'I5,8X,','ME =,'I5,/,&
                            11X,'LN = ',I5,8X,',MP =',I5,l,&
                            11X,'NP = =',I5,8X,',,NEV =',I5,1,&
6010 FORMAT(/,5X,'CONSTRAINTS',/,/,&
32X,' A ',31X,'B',/)
6030 FORMAT(/,5X,'COEFFICIENTS OF THE OBJECTIVE FUNCTION',/)
6030 FORMAT (/,5X,'COEFFICIENTS OF THE
6050 FORMAT (/,5X,'UPPER AND LOWER BOUNDS OF X', /)
6060 FORMAT (8X,'XUP (',I2,') = ',D15.5,2X,'XLOW'','I2,') = ',D15.5)
6070 FORMAT(/,5X,'INDICES OF 0-1 VARIABLES',/)
6080 FORMAT (8X,12(1X,I2),/)
6090 FORMAT (/,5X,'** OUTPUT **',/,/)
6100 FORMAT (8X, 'IERR = ,',I5)
6110 FORMAT (8X,',X(',I2,')}==,,D15.5
6110 FORMAT(8X,'X ',I2,', = ', ,D15
    STOP
```

(d) Output results
** INPUT **

$\mathrm{MA}=$	6	, $\mathrm{~N}=$
$M=$	5	, $\mathrm{ME}=$
$\mathrm{MN}=$	8	, $\mathrm{MP}=$
$\mathrm{NP}=$	10	, $\mathrm{NEV}=$
ISW $=$	0	, $\mathrm{ER}=0.1 \mathrm{D}-11$

CONSTRAINTS

A

B
$\begin{array}{rrrrrrrrrrrrr}0.0 & 1.0 & 1.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 0.0 & 0.0 & 1.0\end{array}$

6.0	28.0	6.0	6.0	3.0	6.0	21.0	$8.0-18.0$	12.0	20.0	23.0	60.0
7.0	7.0	5.0	2.0	2.0	5.0	4.0	2.0	-3.0	3.0	8.0	3.0
.0	0.0	0.0	1.0	20.0							

$\mathrm{C}(1)$	$=$	$-0.13000 \mathrm{D}+02$
$\mathrm{C}(2)$	$=$	$-0.18000 \mathrm{D}+02$
$\mathrm{C}(3)$	$=$	$-0.10000 \mathrm{D}+02$
$\mathrm{C}(4)$	$=$	$-0.80000 \mathrm{D}+01$
$\mathrm{C}(5)$	$=$	$-0.80000 \mathrm{D}+01$
$\mathrm{C}(6)$	$=$	$-0.12000 \mathrm{D}+02$
$\mathrm{C}(7)=$	$-0.10000 \mathrm{D}+02$	
$\mathrm{C}(8)=$	$-0.80000 \mathrm{D}+01$	
$\mathrm{C}(9)=$	$0.11000 \mathrm{D}+02$	
$\mathrm{C}(10)=$	$-0.90000 \mathrm{D}+01$	

$C(11)=-0.30000 \mathrm{D}+02$
$\mathrm{C}(12)=-0.10000 \mathrm{D}+02$
INDICES OF 0-1 VARIABLES
$\begin{array}{llllllll}2 & 3 & 4 & 6 & 7 & 10 & 11 & 12\end{array}$
UPPER AND LOWER BOUNDS OF X

$\operatorname{XUP}(1)=$	$0.20000 \mathrm{D}+01$	XLOW (1) =	$0.00000 \mathrm{D}+00$
XUP (5) =	$0.30000 \mathrm{D}+01$	XLOW (5) =	$0.00000 \mathrm{D}+00$
$\operatorname{XUP}(8)=$	$0.10000 \mathrm{D}+01$	XLOW (8) =	$0.00000 \mathrm{D}+00$
$\operatorname{XUP}(9)=$	$0.00000 \mathrm{D}+00$	XLOW (9) =	-0.20000D+01

** OUTPUT **

IERR =	0
X (1)	$0.00000 \mathrm{D}+00$
X (2)	$0.00000 \mathrm{D}+00$
X (3)	$0.00000 \mathrm{D}+00$
X (4)	$0.10000 \mathrm{D}+01$
X (5)	$0.30000 \mathrm{D}+01$
X (6)	$0.10000 \mathrm{D}+01$
X (7)	$0.00000 \mathrm{D}+00$
$\mathrm{X}(8)$	$0.10000 \mathrm{D}+01$
X (9)	-0.66667D+00
X (10)	$0.10000 \mathrm{D}+01$
X (11)	$0.00000 \mathrm{D}+00$
X (12)	$0.00000 \mathrm{D}+00$
$\mathrm{Y}=$	-0.68333D+02

5.6.4 DMCLMC, RMCLMC
 Minimization of Cost for Flow in a Network (Minimal-Cost Flow Problem)

(1) Function

DMCLMC or RMCLMC obtains the nonnegative flows $x_{k} \quad(k=1,2, \cdots, m)$ that satisfy the vertex i inflow/outflow amount b_{i} and directed edge k nonnegative capacity u_{k} constraints and minimize the sum of the costs of all edges in a network having n vertices and m edges, and the subroutine also obtains the minimum value of $\sum_{k=1}^{m} c_{k} x_{k}$ at that time.

$$
\begin{aligned}
\text { Objective function }: & \sum_{k=1}^{m} c_{k} x_{k} \rightarrow \min \\
\text { Constraints }: & \sum_{\operatorname{tail}(k)=i} x_{k}-\sum_{\text {head }(k)=i} x_{k}=b_{i}, \quad(i=1, \cdots, n) \\
& 0 \leq x_{k} \leq u_{k}, \quad(k=1, \cdots, m) \\
& \sum_{i=1}^{n} b_{i}=0
\end{aligned}
$$

(2) Usage

Double precision:
CALL DMCLMC (N, M, B, ITL, IHD, CAP, COST, NEV, X, Y, ISW, IWK, WK, IERR)
Single precision:
CALL RMCLMC (N, M, B, ITL, IHD, CAP, COST, NEV, X, Y, ISW, IWK, WK, IERR)
(3) Arguments

D:Double precision real R:Single precision real			Z:Double precision complex C:Single precision complex		$\text { I: }\left\{\begin{array}{l} \text { INTEGER }(4) \text { as for } 32 \text { bit Integer } \\ \text { INTEGER }(8) \text { as for } 64 \text { bit Integer } \end{array}\right\}$
No.	Argument	Type	Size	Input/ Output	Contents
1	N	I	1	Input	Number of vertices n
2	M	I	1	Input	Number of edges m
3	B	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	N	Input	Vertex i inflow/outflow amount b_{i}
4	ITL	I	$\mathrm{M}+\mathrm{N}$	Input	Vertex number of edge k tail, $\operatorname{tail}(k)$ (See Note (a))
				Output	Vertex numbers of edge tail after graph modification
5	IHD	I	$\mathrm{M}+\mathrm{N}$	Input	Vertex number of edge k head, head(k) (See Note (a))
				Output	Vertex numbers of edge head after graph modification

No.	Argument	Type	Size	Input/ Output	Contents
6	CAP	$\left\{\begin{array}{l} \mathrm{D} \\ \mathrm{R} \end{array}\right\}$	$\mathrm{M}+\mathrm{N}$	Input	Edge k capacity u_{k} (See Note (a))
				Output	Edge capacity after graph modification
7	COST	$\left\{\begin{array}{l} D \\ R \end{array}\right\}$	$\mathrm{M}+\mathrm{N}$	Input	Edge k cost coefficient per unit flow c_{k} (See Note (a))
				Output	Edge costs coefficient per unit flow after graph modification
8	NEV	I	1	Input	Maximum number of updates of basic tree (De- fault: $\mathrm{N} \times 10$) (See Note (c))
				Output	Actual number of updates of basic tree
9	X	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	M	Output	Flow minimizing sum of costs of all edges x_{k}
10	Y	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Output	Sum of costs at final destination $\mathrm{X} \sum_{k=1}^{m} c_{k} x_{k}$
11	ISW	I	1	Input	Processing switch (See Note (d)) ISW=0: Initial processing ISW=1: Continuation processing
12	IWK	I	See Contents	Work	Work area Size : $\mathrm{N}^{2}+11 \times \mathrm{N}+\mathrm{M}+3$
13	WK	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	See Contents	Work	Work area Size: $2 \times N+M+1$
14	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{N} \geq 2$
(b) $\mathrm{M} \geq 1$
(c) $\mathrm{B}(1)+\mathrm{B}(2)+\cdots+\mathrm{B}(\mathrm{N})=0.0$
(d) $1 \leq \mathrm{ITL}(\mathrm{k}) \leq \mathrm{N}, \quad(k=1, \cdots, \mathrm{M})$
(e) $1 \leq \operatorname{IHD}(\mathrm{k}) \leq \mathrm{N}, \quad(k=1, \cdots, \mathrm{M})$
(f) $\operatorname{ITL}(\mathrm{k}) \neq \operatorname{IHD}(\mathrm{k}), \quad(k=1, \cdots, \mathrm{M}) \quad$ (No loop, that is, edge for which the head and tail are the same, exists)
(g) $\operatorname{CAP}(\mathrm{k}) \geq 0.0, \quad(k=1, \cdots, \mathrm{M})$
(h) NEV >0 (Except when zero or a negative number is entered to set the default value)
(i) ISW $=0$ or ISW $=1$

(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	Restriction (h) was not satisfied.	Processing is performed with the default value set.
1100	Restriction (i) was not satisfied.	Processing is performed with ISW=0 set.
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.
3100	Restriction (c) was not satisfied.	
3200	Restriction (d) or (e) was not satisfied.	
3300	Restriction (f) was not satisfied.	
3400	Restriction (g) was not satisfied.	
4000	No basic feasible solution could be obtained.	
5000	The problem could not be solved even though the assigned maximum number of updates of the basic tree was reached.	

(6) Notes
(a) You should set the values of the leading M elements of ITL, IHD, CAP and COST respectively. The last N elements of these arrays are used for work areas.
(b) If the capacities have not been specifically determined, positive numbers having appropriately large absolute values are assumed for the capacities, respectively. Since the optimal solution may not be obtained when the destination matches a value set here, numbers having even larger absolute values may have to be set for the capacities.
(c) If zero or a negative number is entered for NEV, the default value is set.
(d) If the specified value of the maximum number of updates of the basic tree was too small and IERR=5000 was returned, continuation processing can be performed using information that was calculated up to that point. To perform this processing, set ISW to 1 , set a sufficiently large value for NEV, and use the values from the previous processing directly for the input values of other arguments. Also, use the Work information from the previous processing.

(7) Example

(a) Problem

For the network shown below, obtain the flow that satisfies the constraints for the inflow/outflow of each vertex and capacity of each edge and minimizes the sum of the costs of all edges.

(b) Input data
$\mathrm{N}=10, \mathrm{M}=18$, array B for inflow/outflow amount array CAP for capacity, arrays ITL and IHD for vertex number of edge, and array COST for edge cost coefficient per unit flow. NEV=0 (Set to the default value) and ISW=0.
(c) Main program

```
    PROGRAM BMCLMC
    IMPLICIT REAL(8)(A-H,0-Z)
    PARAMETER( NMAX = 10 )
    DIMENSION B(NMAX),ITAIL(MMAX+NMAX), IHEAD (MMAX+NMAX)
    DIMENSION CAP (MMAX+NMAX),COST(MMAX+NMAX),X(MMAX)
    DIMENSION IWK(NMAX**2+11*NMAX +MMAX + ) ,WK'(2*NMAX +MMAX+1)
    READ(5,*) N,M
    DO 100 I=1,N
    100 CONTINUE
    DO }\underset{~}{110 K=AD (5,*)
    110 CONTINUE
    NEV = 0
    WRITE (6,6000) N,M,NEV,ISW
    WRITE(6,6010)
    DO 120 I=1,N
        WRITE (6,6020) B(I)
    120 CONTINUE
        WRITE (6,6030)
    DO 130 K=1,M
        WRITE(6,6040) ITAIL(K),IHEAD (K),CAP (K),COST(K)
    130 CONTINUE
    CALL DMCLMC(N,M,B,ITAIL,IHEAD,CAP,COST,NEV,X,Y,ISW,IWK,WK,IERR)
    WRITE (6,6050) IERR,NEV
    DO 140 K=1,M
        WRITE(6,6060) K,X(K)
```

```
    140 CONTINUE
    \(\operatorname{WRITE}(6,6070)\) Y
6000 FORMAT (/,\&
```



```
6020 FORMAT (1X,
6030 FORMAT ( \(/, \& \quad, \quad, F 7.2\) )
```



```
6050 FORMAT (/, \&
```



```
6060 FORMAT (1X,'NEV \(=\) X'(',I2,') \(=\) ', F10.2)
6070 1X, \({ }^{\text {FORMAT }(/ \& ~} \mathrm{Y} \quad=\), ,F10.2)
    ST,'
```

(d) Output results

5.6.5 DMCLCP, RMCLCP
 Minimization of Cost for Project Scheduling (Project Scheduling Problem)

(1) Function

DMCLCP or RMCLCP solves the problem of completing a project within the scheduled completion time according to a minimum cost.
(2) Usage

Double precision:
CALL DMCLCP (N, M, ITL, IHD, TN, TC, CN, CC, TS, NEV, TMAX, TMIN, TIME, TTIME, ES, LS, TF, FF, CMAX, CMIN, COST, TCOST, IWK, WK, IERR)
Single precision:
CALL RMCLCP (N, M, ITL, IHD, TN, TC, CN, CC, TS, NEV, TMAX, TMIN, TIME, TTIME, ES, LS, TF, FF, CMAX, CMIN, COST, TCOST, IWK, WK, IERR)
(3) Arguments
$\begin{array}{ll}\begin{array}{l}\text { D:Double precision real } \\ \text { R:Single precision real }\end{array} & \begin{array}{l}\text { Z:Double precision complex } \\ \text { C:Single precision complex }\end{array}\end{array} \quad$ I: $\left\{\begin{array}{l}\text { INTEGER(4) as for } 32 \mathrm{bit} \text { Integer } \\ \text { INTEGER(8) as for 64bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	N	I	1	Input	Number of nodes.
2	M	I	1	Input	Number of tasks.
3	ITL	I	M	Input	Tail of task k.
4	IHD	I	M	Input	Head of task k.
5	TN	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	M	Input	Normal time of task k.
6	TC	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	M	Input	Crash time of task k.
7	CN	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	M	Input	Normal cost of task k.
8	CC	$\left\{\begin{array}{l}\text { D } \\ \text { R }\end{array}\right\}$		M	Input

No.	Argument	Type	Size	Input/ Output	Contents
11	TMAX	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	1	Output	Completion time with normal process times.
12	TMIN	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Output	Completion time with crash process times.
13	TIME	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	M	Output	Scheduled process time of task k.
14	TTIME	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Output	Total task time.
15	ES	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	M	Output	Earliest start time of task k.
16	LS	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	M	Output	Latest start time of task k.
17	TF	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	M	Output	Total float of task k.
18	FF	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	M	Output	Free float of task k.
19	CMAX	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Output	Completion time with normal process costs.
20	CMIN	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Output	Completion time with crash process costs.
21	COST	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	M	Output	Schedules process cost of task k.
22	TCOST	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Output	Total task cost.
23	IWK	I	See Contents	Work	Work area. Size: $\mathrm{N}^{2}+15 \times \mathrm{N}+6 \times \mathrm{M}+23$
24	WK	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	See Contents	Work	Work area. Size: $7 \times N+12 \times M+14$
25	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{N}>1$
(b) $\mathrm{M} \geq \mathrm{N}-1$
(c) $1 \leq \operatorname{ITL}(\mathrm{k})<\mathrm{N}, \quad(k=1, \cdots, \mathrm{M})$
(d) $1<\operatorname{IHD}(\mathrm{k}) \leq \mathrm{N}, \quad(k=1, \cdots, \mathrm{M})$
(e) $\operatorname{ITL}(\mathrm{k})<\operatorname{IHD}(\mathrm{k}), \quad(k=1, \cdots, \mathrm{M})$
(f) $\mathrm{TN}(\mathrm{k}) \geq 0.0, \quad(k=1, \cdots, \mathrm{M})$
(g) $\mathrm{TC}(\mathrm{k}) \geq 0.0, \quad(k=1, \cdots, \mathrm{M})$
(h) $\mathrm{TN}(\mathrm{k}) \geq \mathrm{TC}(\mathrm{k}), \quad(k=1, \cdots, \mathrm{M})$
(i) $\mathrm{CN}(\mathrm{k}) \leq \mathrm{CC}(\mathrm{k}), \quad(k=1, \cdots, \mathrm{M})$
(j) NEV >0 (Except when zero is entered to set the default value.)
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	NEV $=0$.	Processing is performed with the default value set.
1100	TS \geq TMAX .	Processing is performed with TS=TMAX. Presen
1200	TS \leq TMIN.	Processing is performed with TS=TMIN.
3000	Restriction (a) was not satisfied.	Processing is aborted.
3100	Restriction (b) was not satisfied.	
3200	Restriction (c) was not satisfied.	
3300	Restriction (d) was not satisfied.	
3400	Restriction (e) was not satisfied.	
3500	Restriction (f) was not satisfied.	
3600	Restriction (g) was not satisfied.	
3700	Restriction (h) was not satisfied.	
3800	Restriction (i) was not satisfied.	
3900	Restriction (j) was not satisfied.	
4000	No basic feasible solution for MinimalCost Flow Problem could be obtained.	
5000	Minimal-Cost Flow Problem could not be solved even though the assigned maximum number of updates of the basic tree was reached.	

(6) Notes
(a) If zero is entered for NEV, the default value is set.
(b) If large number than completion time with normal process times TMAX is entered for scheduled completion time TS, completion time with normal process times is set for scheduled completion time. And if large number than completion time with crash process times TMIN is entered for scheduled completion time TS, completion time with crash process times is set for scheduled completion time.

(7) Example

(a) Problem

Compute completion time with normal process times, completion time with crash process times, an optimal schedule, its cost, earliest start time, latest start time, total float, free float, total task time and total task cost for given project follows task lists.

task	tail of task	head of task	normal task time	crash task time	normal task cost	crash task cost
1	1	2	5	3	3	6
2	1	3	8	4	2	3
3	2	4	5	2	1	5
4	2	5	9	4	1	3
5	4	5	0	0	0	0
6	2	6	3	3	4	4
7	3	6	7	3	2	3
8	5	7	5	1	1	5
9	6	7	0	0	0	0
10	6	8	12	6	7	11
11	7	8	7	4	2	7
12	5	9	15	8	5	10
13	7	9	8	2	5	11
14	8	9	2	1	3	4
15	8	10	8	5	2	5
16	9	10	3	2	1	3
17	8	11	13	10	10	12
18	10	11	8	4	6	10

(b) Input data
$\mathrm{N}=11, \mathrm{M}=18$, tail of task ITL, head of task IHD, normal task time TN, crash task time TC, normal task cost CN , crash task cost $\mathrm{CC}, \mathrm{TS}=36$ and $\mathrm{NEV}=\mathrm{N} \times 10$.
(c) Main program

PROGRAM BMCLCP
EXAMPLE OF DMCLCP ***
IMPLICIT REAL (8) (A-H, O-Z)
INTEGER NMAX , MMAX
PARAMETER (NMAX $=11$, MMAX $=18$)
INTEGER N,M, ITAIL (MMAX), IHEAD (MMAX) , NEV , IERR
INTEGER IWK (NMAX*NMAX $+15 *$ NMAX $+6 * M M A X+23$)
REAL (8) TN (MMAX), TC(MMAX), CN (MMAX), CC (MMAX), TS
REAL (8) TMIN,TMAX, TIME (MMAX), TTIME \quad REAL(8) ES (MMAX), LS (MMAX), TF (MMAX), FF (MMAX)
REAL (8) CMIN, CMAX, COST (MMAX), TCOST
REAL (8) WK (7*NMAX $+12 *$ MMAX +14)
DATA ITAIL $/ 1,1,2,2,4,2,3,5,6,6,7,5,7,8,8,9,8,10 /$
DATA IHEAD $/ 2,3,4,5,5,6,6,7,7,8,8,9,9,9,10,10,11,11 /$
DATA TN\&
/5.0DO,8.0DO,5.0DO , 9.0DO , 0.0DO,\&
3.0DO, 7.ODO,5.ODO',O.ODO,12.0DO, \&
7.0DO,15.ODO,'8.0DO, 2.ODO, 8.ODO,'\&
3.0DO,13.0DO,8.0DO/

DATA TC\&
/3.0D0,4.0DO , 2. ODO , 4. ODO , 0.ODO,\&
3. ODO, 3. ODO, 1. ODO, O. ODO, 6.0DO,\&
4.ODO, 8.ODO, 2.ODO,1.ODO'5.ODO'\&

DATA CN\&

```
    /3.0D0,2.0D0,1.0D0,1.0D0,0.0DO,&
    4.ODO,2.ODO,1.ODO,0.ODO,7.ODO,&
    2.ODO,5.ODO,5.ODO,3.ODO,2.ODO'&
    1.ODO,10.0DO,6.0DO/
    DATA CC&
    /6.0DO, 3. ODO ,5.ODO, 3.ODO, O. ODO &
        4.ODO,3.ODO,5.ODO,O.ODO,11.ODO,&
        7.ODO,10.ODO,,11.ODD,4.ODO,5.ODO,&
        3.0DO,12.0DO,10.0DO"
    N = 11
    TS = 36.0D0
    NEV = N * 10
    WRITE(6,6000) N,M,NEV
    WRITE (6,6010)
    DO 100 K=1,M
        WRITE(6,6020) K,ITAIL(K),IHEAD (K),TN(K),TC(K),CN(K),CC(K)
    O CONTINUE
    WRITE (6,6030) TS
    CALL DMCLCP&
    (N,M, ITAIL, IHEAD,TN,TC, CN, CC, TS,NEV &
        TMAX,TMIN,TIME,TTIME,ES,LS,TF,FF,CMAX,CMIN, COST,TCOST,&
        IWK,WK, IERR)
    WRITE(6,6040) IERR
    IF( IERR .LT. 3000 ) THEN
        WRITE (6,6050) TMAX,TMIN
        WRITE (6,6060)
        DO 110 K=1,M
        WRITE(6,6070) K,TIME (K),COST(K),ES(K),LS(K),TF(K),FF(K)
            CONTINUE
            WRITE (6,6080) NEV
            WRITE (6,6090) TTIME,TCOST
    ENDIF
    STOP
6000 FORMAT(/,/,&
    1X,'*** DMCLCP ***',/,/,&
    1X,', ** INPUT **',/,/,&&
010 FORMAT (/,/,&
    1X,', NORMAL CRASH NORMAL CRASH',/,&
        ',TASK TAIL HEAD TASK TIME TASK TIME TASK COST TASK COST',/)
6 0 2 0 ~ F O R M A T ( \& ~
1X,' (& ',I4,2I5,4F10.3)
0030 FORMAT(/,& REQUEST TASK TIME = ,,F10.3)
6040 FORMAT(/,& & OUTPUT **, // /
    1X,', ** OUTPUT (**',/,/,&
6 0 5 0
    1X,',
6 0 6 0
```



```
070 FORM
                FLOAT FLOAT',/) COS
    1X,', ,,14,6F10.3)
6080 FORMAT (/,
    1X,'
    lX,',
(d) Output results
```

```
*** DMCLCP ***
```

 ** INPUT **
 \(\mathrm{N}=11 \quad \mathrm{M}=18 \quad \mathrm{NEV}=110\)
 TASK TAIL HEAD TASK TIME TASK TIME TASK COST TASK COST
 | 1 | 1 | 2 | 5.000 | 3.000 | 3.000 | 6.000 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 1 | 3 | 8.000 | 4.000 | 2.000 | 3.000 |
| 3 | 2 | 4 | 5.000 | 2.000 | 1.000 | 5.000 |
| 4 | 2 | 5 | 9.000 | 4.000 | 1.000 | 3.000 |
| 5 | 4 | 5 | 0.000 | 0.000 | 0.000 | 0.000 |
| 6 | 2 | 6 | 3.000 | 3.000 | 4.000 | 4.000 |
| 7 | 3 | 6 | 7.000 | 3.000 | 2.000 | 3.000 |
| 8 | 5 | 7 | 5.000 | 1.000 | 1.000 | 5.000 |
| 9 | 6 | 7 | 0.000 | 0.000 | 0.000 | 0.000 |
| 10 | 6 | 8 | 12.000 | 6.000 | 7.000 | 11.000 |

5.6.6 DMCLTP, RMCLTP

Minimization of Cost for Transportation from Supply Place to Demand Place (Transportation Problem)

(1) Function

Supply quantity of supply place i is a_{i}, demand quantity of demand place j is b_{j} and $x_{i j}$ is the volume transported from supply place i to demand place j.

Constraint:

$$
\begin{aligned}
& \sum_{j=1}^{n} x_{i j}=a_{i} \quad(i=1, \cdots, m) \\
& \sum_{i=1}^{m} x_{i j}=b_{i} \quad(j=1, \cdots, n) \\
& x_{i j} \geq 0 \quad(\text { For all } i \text { and } j \text { numbers })
\end{aligned}
$$

Therefore, the total transportation cost is obtained by finding $x_{i j}$ that minimizes the following function.

$$
Z=\sum_{j=1}^{n} \sum_{i=1}^{m} c_{i j} x_{i j}
$$

(2) Usage

Double precision:
CALL DMCLTP (C, LMC, NS, ND, S, D, NEV, X, Z, ISW1, ISW2, IWK, WK, IERR)
Single precision:
CALL RMCLTP (C, LMC, NS, ND, S, D, NEV, X, Z, ISW1, ISW2, IWK, WK, IERR)
(3) Arguments

| D:Double precision real
 R:Single precision real | Z:Double precision complex
 C:Single precision complex |
| :--- | :--- |\quad I: \(\left\{\begin{array}{l}INTEGER(4) as for 32bit Integer

INTEGER(8) as for 64bit Integer\end{array}\right\}\)

No.	Argument	Type	Size	Input/ Output	Contents
1	C	$\left\{\begin{array}{l}\mathrm{D} \\ \mathrm{R}\end{array}\right\}$	See Contents	Input	Transportation Costs $c_{i j}(i=1, \cdots, m: j=$ $1, \cdots, n)$ (See Note (a))
Size: LMC, (ND +1$)$					

No.	Argument	Type	Size	Input/ Output	$\left.\begin{array}{l}\text { L Contents } \\ \mathrm{R}\end{array}\right\}$

(4) Restrictions
(a) $\mathrm{C}(\mathrm{i}, \mathrm{j}) \geq 0(i=1, \cdots, \mathrm{NS}: j=1, \cdots, \mathrm{ND})$
(b) $\mathrm{S}(\mathrm{i})>0(i=1, \cdots, \mathrm{NS})$
(c) $\mathrm{D}(\mathrm{i})>0(i=1, \cdots, \mathrm{ND})$
(d) ISW1, ISW2 $=0$ or 1
(e) $\mathrm{NS}>2, \mathrm{ND}>2$
(f) $\mathrm{LMC} \geq \mathrm{NS}+1$
(g) $\mathrm{NEV} \geq 0$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	Total demand volume is greater than Total supply volume.	Processing continues by setting up an imaginary supply place that handles a surplus.
1100	Total demand volume is less than Total supply volume	Processing continues by setting up an imaginary demand place that handles a surplus.
3000	Restriction (a) was not satisfied.	Processing is aborted.
3100	Restriction (b) was not satisfied.	
3200	Restriction (c) was not satisfied.	
3300	Restriction (d) was not satisfied.	
3400	Restriction (e) was not satisfied.	
3500	Restriction (f) was not satisfied.	
3600	Restriction (g) was not satisfied.	
5000	The values did not converge before the given maximum number of function evaluation was reached.	The values of X and Z at that time are output and processing is aborted.

(6) Notes

(a) Store the transportation cost in Array C as in the following table so that it can correspond to each supply place and demand place. In the following table, $c_{2,1}$ indicates the unit cost for transportation between Supply Place 2 and Demand Place 1.

	Demand place 1	Demand place 2	\cdots	Demand place n	Supply volume
Supply place 1	c_{11}	c_{12}	\cdots	$c_{1, n}$	a_{1}
Supply place 2	c_{21}	c_{22}	\cdots	$c_{2, n}$	a_{2}
\vdots	\vdots	\vdots	\ddots	\vdots	\vdots
Supply place m	$c_{m, 1}$	$c_{m, 2}$	\cdots	$c_{m, n}$	a_{m}
Demand volume	b_{1}	b_{2}	\cdots	b_{n}	

(b) For Array C and Array X, $(\mathrm{ND}+1) \times(\mathrm{NS}+1)$ units or more must be secured per each. For Array S and Array $\mathrm{D},(\mathrm{NS}+1)$ units or more and (ND+1) units or more must be secured, respectively. However, the values to be actually input are enough with ND \times NS units for Array C, and NS and ND units for Array S and Array D, respectively.
(c) Store the improved transportation cost in Array X as in the following table so that it can correspond to each supply place and demand place. In the following table, $c_{2,1}$ indicates the transport volume for transportation between Supply Place 2 and Demand Place 1.

	Demand place 1	Demand place 2	\cdots \cdots	Demand place n	Imaginary demand place $n+1)$
Supply place 1	c_{11}	c_{12}	\cdots	$c_{1, n}$	$*$
Supply place 2	c_{21}	c_{22}	\cdots	$c_{2, n}$	$*$
\vdots	\vdots	\vdots	\ddots	\vdots	\vdots
Supply place m	$c_{m, 1}$	$c_{m, 2}$	\cdots	$c_{m, n}$	$*$
(Imaginary supply place $m+1)$	$*$	$*$	\cdots	$*$	

(d) Although the value of \boldsymbol{x} when IERR $=5000$ is not the optimal solution, the constraint is satisfied.
(e) If IERR $=5000$ is returned and the number of iterations is less than the specified convergence count, the calculation can be continued using the information calculated up to the intermediate point. To perform this processing set 1 for the ISW1 value, set a sufficient value for the NEV value, and use the output values of the previous execution for all other input valued. Also, use the work information from the previous execution (See the example).
(f) In this subroutine, the northwestern corner rule or Houthakker's Method is applied. By Houthakker's Method, you can obtain as a primary solution an approximate solution value closer to the optimum solution than that by the northwest corner rule, which can shorten the time for improving the solution. However, calculating approximate solution by Houthakker's Method needs longer time compared with calculating it by the northwestern corner rule.

(7) Example

(a) Problem

Transportation cost:

$$
C=\left[\begin{array}{lllllll}
6.000 & 2.000 & 6.000 & 1.000 & 3.000 & 3.000 & 7.000 \\
7.000 & 5.000 & 3.000 & 8.000 & 5.000 & 8.000 & 5.000 \\
4.000 & 8.000 & 9.000 & 7.000 & 5.000 & 7.000 & 2.000 \\
4.000 & 7.000 & 3.000 & 6.000 & 7.000 & 3.000 & 4.000 \\
2.000 & 3.000 & 6.000 & 4.000 & 7.000 & 9.000 & 9.000 \\
2.000 & 3.000 & 9.000 & 4.000 & 3.000 & 2.000 & 3.000
\end{array}\right]
$$

Demand volume of each Demand place:

$$
D=\left[\begin{array}{lllllll}
40.000 & 73.000 & 32.000 & 24.000 & 32.000 & 45.000 & 35.000
\end{array}\right]
$$

Supply volume of each Supply place:

$$
S=\left[\begin{array}{llllll}
73.000 & 29.000 & 64.000 & 23.000 & 76.000 & 34.000
\end{array}\right]
$$

In this example, to illustrate the continuation processing described in Note (e), the maximum number of evaluations $\mathrm{NEV}=2$ is set small enough so that $\mathrm{IERR}=5000$ is output.
(b) Input data
(First time): array C, $\mathrm{NS}=7, \mathrm{LMC}=7, \mathrm{ND}=8$, array D , array $\mathrm{S}, \mathrm{NEV}=2$, $\mathrm{ISW} 1=0$ and $\mathrm{ISW} 2=1$.
(Second and subsequent times):NEV=2 and ISW1=1.
(For other arguments, the value obtained after the previous calculation is used directly as the input value.)
(c) Main program

```
            PROGRAM BMCLTP
            EXAMPLE OF DMCLTP ***
            INTEGER I,J,LMC,MD,MWK
            INTEGER ND,NS,NEV,ISW1,ISW2,IERR
            PARAMETER('LMC=7,MD=8,MWK=12*(LMC+MD+1)+5, MDWK=3*(LMC+MD+2) )
            REAL(8) C(LMC,MD), X (LMC,MD),Z
            REAL(8) S(LMC), D'(MD), WK(MDWKK
            REALEGER IWK(MWK)
            INTEGER IWK(MWK)
            READ (5,*) ISW1
            READ (5,*) ISW2
            READ (5,*) NEV
            READ (5,*) NS
            READ (5,*) ND
!
            DO 100 I=1,NS
            DO 110 J=1,ND
    110 CONTINUE
    100 CONTINUE
            DO 120 I=1,NS
            S(I) = ZERO
    120 CONTINUE
            DO 130 J=1,ND
    130 CONTINUE
            DO 140 I=1,NS
                READ (5,*) ( C(I,J), J=1,ND )
    1 4 0 ~ C O N T I N U E ~
            READ (5,*) ( ( S(I), I=1, NS )
            WRITE (6,6000)
            WRITE(6,6010) LMC, NS, ND, NEV, ISW1, ISW2
            WRITE (6,6020)
            DO 150 I=1,NS
                WRITE (6,6030) I,( C(I,J), J=1,ND )
    150 CONTINUE
            WRITE (6,6040) (I, I=1,ND)
            WRITE(6,6050)
            WRITE (6,6060)
            WRITE(6,6070) ( D(J), J=1,ND )
            WRITE (6,6080)
            WRITE (6,6070) ( S(I), I=1,NS )
            CALL DMCLTP&
                X C, LMC, NS, ND, S, D, NEV,&
        WRITE(6,6090)
            WRITE (6,6100)
            WRITE (6,6110) IERR
            WRITE (6,6110) IERR
            WRITE (6,6120) NE
            WRITE (6,6130)
            WRITE (6, 1=1,NS+1
                WRITE(6,6030) I,( X (I,J), J=1,ND+1 )
    160 CONTTNUE
        WRITE (6,6040) (I, I=1,ND+1)
        WRITE(6,6050)
            IF( IERR .EQ. 5000) THEN
            NEV = 1000
            ISW1 = 1
            CALL DMCLTP&
                    ( C, LMC, NS, ND, S, D, NEV,&
                    X, Z, ISW1, ISW2, IWK, WK, IERR )
!
            WRITE (6,6150)
            WRITE(6,6110) IERR
            WRITE (6,6120) NE
            WRITE (6,6130)
            WRITE (6,6140)
                    DO 170 I=1,NS+1 ( X (I,J), J=1,ND+1
                    WRITE(6,6030) I,( X(I,J), J=1,ND+1 )
    170 CONTINU
            WRITE (6,6040) (I,I=1,ND+1)
            WRITE (6,6050)
        ENDIF
6000 FORMAT( 1X,/,&
6010 FORMAT( 1X,', *** DMCLTP *** ',
                    lol
                    ll
                    1X,', ND NEV = ,'I5,M,&
                    ISW1 = ,',I5,'/,&
                                    ISW2 = ,',I5
```


(d) Output results

```
*** DMCLTP ***
    DEMAND =
        40.00 73.00 32.00 24.00 32.00 45.00
    SUPPLY =
```


** OUTPUT **
** FIRST RESULT $=5000$ (ISW1.EQ.0) $* *$
$\begin{array}{llr}\text { IERR } & =5000 \\ \mathrm{NEV} & = & 2\end{array}$
TOTAL COST $=707.0000$

TRANSPORTATION PLAN =							
10.00	37.00	0.00	24.00	3.00	0.00	0.00	9.00
$2 \quad 0.00$	0.00	20.00	0.00	0.00	0.00	0.00	9.00
$3 \quad 0.00$	0.00	0.00	0.00	29.00	0.00	35.00	0.00
$4 \quad 0.00$	0.00	12.00	0.00	0.00	11.00	0.00	0.00
$5 \quad 40.00$	36.00	0.00	0.00	0.00	0.00	0.00	0.00
$6 \quad 0.00$	0.00	0.00	0.00	0.00	34.00	0.00	0.00
$7 \quad 0.00$	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$\text { SUPPLY-SITE } 1$	2	3	4	5	6	7	8

IERR	$=$	1100
NEV	$=$	3
TOTAL COST	$=$	680.0000

5.7 MINIMIZATION OF A QUADRATIC FUNCTION OF SEVERAL VARIABLES (QUADRATIC PROGRAMMING)

5.7.1 DMCQSN, RMCQSN

Minimization of a Constrained Convex Quadratic Function of Several Variables (Linear Constraints)
(1) Function

DMCQSN or RMCQSN obtains the \boldsymbol{x} that minimizes a convex quadratic function of several variables $f(\boldsymbol{x})$ of the n dimensional vector $\boldsymbol{x}=\left[x_{1}, \cdots, x_{n}\right]^{T}$.

$$
f(\boldsymbol{x})=\boldsymbol{c}^{T} \boldsymbol{x}+(1 / 2) \boldsymbol{x}^{T} G \boldsymbol{x}
$$

Constraints :

$$
\begin{aligned}
& \boldsymbol{a}_{i}^{T} \boldsymbol{x}=b_{i} \quad\left(i=1,2, \cdots, m_{e}\right) \\
& \boldsymbol{a}_{i}^{T} \boldsymbol{x} \geq b_{i} \quad\left(i=m_{e}+1, m_{e}+2, \cdots, m ; \quad 0 \leq m_{e} \leq m\right)
\end{aligned}
$$

where G is an $n \times n$ positive definite matrix, $\boldsymbol{c}^{T}=\left[c_{1}, c_{2}, \cdots, c_{n}\right]$ and $\boldsymbol{a}_{i}^{T}=\left[a_{i, 1}, a_{i, 2}, \cdots, a_{i, n}\right]$ are vectors of dimension n and b_{i} are constants $(i=1,2, \cdots, m)$.
(2) Usage

Double precision:
CALL DMCQSN (A, LNA, M, B, G, C, N, ME, ER, NEV, X, Y, ISW, IWK, WK, IERR)
Single precision:
CALL RMCQSN (A, LNA, M, B, G, C, N, ME, ER, NEV, X, Y, ISW, IWK, WK, IERR)

(3) Arguments

$\begin{array}{ll}\begin{array}{l}\text { D:Double precision real } \\ \text { R:Single precision real }\end{array} & \text { Z:Double precision complex } \\ \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER(4)\text {asfor32bitInteger}} \\ \text { INTEGER(8) as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	A	$\left\{\begin{array}{l} \mathrm{D} \\ \mathrm{R} \end{array}\right\}$	LNA, M	Input	When ISW $=0$, transposed matrix $A^{\mathrm{T}}=\left(\left(\mathrm{a}_{\mathrm{j}, \mathrm{i}}\right)(\mathrm{i}=1,2, \cdots, \mathrm{~m} ; \mathrm{j}=1,2, \cdots, \mathrm{n})\right.$ corresponding to the constant coefficients of constraints. (See Notes (a) and (d))
				Output	Transposed matrix corresponding to the constant coefficients of constraints after transform.
2	LNA	I	1	Input	Adjustable dimension of array A
3	M	I	1	Input	Number of constraints m
4	B	$\left\{\begin{array}{l} \mathrm{D} \\ \mathrm{R} \end{array}\right\}$	M	Input	When ISW $=0$, right-hand side of constraints $\boldsymbol{b}=\left(b_{i}\right) \quad(i=1,2, \cdots, m)($ See Notes (d))
				Output	Right-hand side of constraints after transform.
5	G	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	LNA,N	Input	Objective function second order coefficient matrix G
6	C	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	N	Input	objective function first order coefficient vector c
7	N	I	1	Input	Number of variables n
8	ME	I	1	Input	Number of equality constraints m_{e}
9	ER	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Input	Required precision (Default value: $2 \times \sqrt{(\text { Unit for determining error) })}$
10	NEV	I	1	Input	Maximum number of evaluations of function $f(\boldsymbol{x})$ (Default value: $10 \times \mathrm{N}+\mathrm{M}$)
				Output	Actual number of function evaluations
11	X	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	N	Output	Final destination \boldsymbol{x}
12	Y	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	1	Output	Function value $f(\boldsymbol{x})$ at final destination \boldsymbol{x}
13	ISW	I	1	Input	Processing switch (See Notes (f)) 0: First processing 1: Continuation processing
14	IWK	I	3	Work	Work area
15	WK	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	See Contents	Work	Work area Size: $2 \times \mathrm{N}^{2}+17 \times \mathrm{N}+16 \times \mathrm{M}+16$
16	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $0<\mathrm{N} \leq \mathrm{LNA}, 0<\mathrm{M}, 0 \leq \mathrm{ME} \leq \mathrm{M}$
(b) $\mathrm{ISW}=0$ or $\mathrm{ISW}=1$
(c) $\mathrm{ER} \geq$ Unit for determining error (except when 0.0 is entered in order to set ER to the default value)
(d) NEV >0 (except when 0 is entered in order to set NEV to the default value)
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N was equal to 1.	Processing continues.
1500	Restriction (c) or (d) was not satisfied.	Processing is performed with the default value set for NEV or ER.
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.
3500	Equality constraints were not mutually independent.	
4000	The problem was not executable.	
$4000+i$	(1)The diagonal element became 0.0 in the processing of the i-th column during QR decomposition. (2)The diagonal element became less than or equal to 0.0 in the processing of the i-th column during $L L^{T}$ decomposition.	
5000	The value did not converge before the given maximum number of function evaluations was reached.	The value of X and Y at that time is output and processing is aborted. (See Notes (e) and (f))

(6) Notes

(a) When ISW $=0$, coefficients $a_{i, j}\left(i=1,2, \cdots, m_{e} ; j=1,2, \cdots, n\right)$ corresponding to the equality constraints and coefficients $a_{i, j}\left(i=m_{e}+1, m_{e}+2, \cdots, m ; j=1,2, \cdots, n\right)$ corresponding to the inequality constraints must be set in array A as follows, where n is number of variables and m is number of constraints.

$$
\begin{gathered}
\text { Storage status within array A(LNA, M) } \\
\qquad \begin{array}{|ccc|ccc|}
\hline a_{1,1} & \cdots & a_{m_{e}, 1} & a_{m_{e}+1,1} & \cdots & a_{m, 1} \\
a_{1,2} & \cdots & a_{m_{e}, 2} & a_{m_{e}+1,2} & \cdots & a_{m, 2} \\
a_{1,3} & \cdots & a_{m_{e}, 3} & a_{m_{e}+1,3} & \cdots & a_{m, 3} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
a_{1, n} & \cdots & a_{m_{e}, n} & a_{m_{e}+1, n} & \cdots & a_{m, n} \\
\hline
\end{array} \downarrow n \\
\leftarrow---m_{e}---\rightarrow \\
\leftarrow---------m--------\rightarrow \\
\\
\end{gathered}
$$

Remarks

a. LNA $\geq n$ must hold.
(b) The optimal solution is not obtained by this subroutine if the objective function second order coefficient matrix G is not positive definite.
(c) If a default value is shown for an argument in the "Contents" column of the table in the Arguments section, then the default value will be set if 0 is entered for an integer-type argument or if 0.0 is entered for a real-type argument.
(d) Transformed values are entered in A and B for output.
(e) Usually, the value of \boldsymbol{x} is not satisfied constraints when $\operatorname{IERR}=5000$ is returned.
(f) If IERR $=5000$ is returned and the number of iterations is less than the specified convergence count, the calculation can be continued using the information calculated up to the intermediate point. To perform this processing set 1 for the ISW value, set a sufficient value for the NEV value, and use the output values of the previous execution for all other input values. Also use the work information from the previous execution. (See the example)

(7) Example

(a) Problem

Minimize the function:

$$
f(\boldsymbol{x})=1 / 2\left(5 x_{1}^{2}+6 x_{1} x_{2}+5 x_{2}^{2}\right)-95 x_{1}-105 x_{2}
$$

based on:

$$
\begin{aligned}
-x_{1}-2 x_{2} & \geq-10 \\
-3 x_{1}-x_{2} & \geq-15 \\
-2 x_{1}-3 x_{2} & \geq-30 \\
15 x_{1}-13 x_{2} & \geq 0 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
$$

In this example, to illustrate the continuation processing described in Notes (f), the maximum number of evaluations $\mathrm{NEV}=3$ is set small enough so that $\operatorname{IERR}=5000$ is output.
(b) Input data
(First time): $\mathrm{N}=2, \mathrm{M}=6, \mathrm{ME}=0, \mathrm{LNA}=11, \mathrm{NEV}=3, \mathrm{ISW}=0, \mathrm{ER}=0.0$, arrays A, B, G and C.
(Second and subsequent times): $\mathrm{NEV}=3$ and ISW $=1$.
(For other arguments, the value obtained after the previous calculation is used directly as the input value.)
(c) Main program

```
        PROGRAM BMCQSN
! *** EXAMPLE OF DMCQSN ***
        IMPLICIT REAL(8) (A-H,O-Z)
        PARAMETER ( MO = 6 )
        PARAMETER (NO = 2)
    PARAMETER ( LNA = 11
    PARAMETER ( NWK = (2*NO+17)*NO+16*(MO+1) )
    DIMENSION A(LNA,MO),B(MO),G(LNA,NO),C(NO),X(NO)
    DIMENSION WK(NWK),IWK(3)
!
WRITE (6,1000)
    READ (5,*) N,M,ME,ER,NEV,ISW
    READ(5,*,1100) N,M,ME
    WRITE (6,1100)
    WRITE (6,1300)
    DO 10 I = 1,N N( N , J , J=1,M
    MEAD(5,*)(A(I,J),J=1,M M)
```

10 CONTINUE
$\operatorname{WRITE}(6,1400)$
$\operatorname{READ}(5, *)(B(I), I=1, M)$
$\operatorname{WRITE}(6,1200)(B(I), I=1, M)$
$\operatorname{WRITE}(6,1500)$

$\underset{\operatorname{RRITE}(6,1200)}{\operatorname{READ}(5, *)(\mathrm{G}(\mathrm{I}, \mathrm{J}), \mathrm{J}=1, \mathrm{~N})}$
20 CONTINUE
$\operatorname{WRITE}(6,1600)$
$\operatorname{READ}(5, *)(\mathrm{C}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N})$
$\operatorname{WRITE}(6,1200)(C(I), I=1, N)$
CALL DMCQSN\&
(A, LNA ,M, B, G , C , N , ME , ER , NEV , X , Y , ISW , IWK , WK , IERR)
$\operatorname{WRITE}(6,1700)$ IERR
$\operatorname{WRITE}(6,1800)$
WRITE $(6,1900)$
WRITE $(6,2200)(\mathrm{I}, \mathrm{X}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N})$
$30 \operatorname{READ}(5, *)$ NEV,ISW
CALL DMCQSN\&
(A,LNA , M, B , G , C, N, ME, ER , NEV , X , Y, ISW, IWK, WK, IERR)
WRITE (6,2100)
$\operatorname{WRITE}(6,1800)$ IERR
$\operatorname{WRITE}(6,1900)$
$\operatorname{WRITE}(6,2200)$ ($\mathrm{I}, \mathrm{X}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N})$
IF (IERR.EQ.5000) GOTO 30
${ }_{\text {STOP }}^{\text {IF }}$
1000 FORMAT($, \quad, /, 6 \mathrm{X},{ }^{\prime} * * * \operatorname{DMCQSN}$ ***',/,\&

1200 FORMAT (8X, 6(F7.1))
1300 FORMAT (8X,','** MATRIX A **')
1400 FORMAT (8X,' $8 *$ VECTOR
1500 FORMAT
BX
1500 FORMAT (8X, '** MATRIX G **')
1700 FORMAT (7X,','** OUTPUT **',l, \&
$8 \mathrm{X},{ }^{\prime}{ }^{* *}$ FIRST RESULT' (ISW.EQ.0) **')
1800 FORMAT (9X, 'IERR =', I5)
1900 FORMAT (8X,' $* *$ VECTOR X **')
2000 FORMAT (9X, 'Y =',D18.10)

2200 FORMAT (8X,'X(',I2,') =',D18.10)
END
(d) Output results

```
*** DMCQSN ***
    ** INPUT **
    N=2 M = 6 ME = 0
    * MATRIX A ** *
        -2.0 -1.0 -3.0 -13.0 0.0 1.0
    * VECTOR B ** 
    * MATRIX G **
        3.0
    * VECTOR 5.0
    -95}
** OS.0 -105
    ** FIRST RESULT (ISW.EQ.0) **
    IERR = 5000
    ** VECTOR X **
    X( 1) = 0.2142857143D+01
    X( 2) = 0.8571428571D+01
    ** OUTPUT **
    ** IMPROVED RESULT (ISW.NE.0) **
    IERR = 0
    X( 1) = 0.4000000000D+01
    X( 2) = 0.3000000000D+01
    Y = -0.5965000000D+03
```


5.7.2 DMCQLM, RMCQLM

Minimization of a Generalized Convex Quadratic Function of Several Variables (Linear Constraints)
(1) Function

DMCQLM or RMCQLM obtains \boldsymbol{x} that minimizes the objective function

$$
f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} G \boldsymbol{x}+\boldsymbol{c}^{T} \boldsymbol{x}
$$

under the constraints

$$
\begin{aligned}
& \sum_{j=1}^{n} a_{i, j} x_{j}=b_{i} \quad\left(i=1, \cdots, m_{e}\right) \\
& \sum_{j=1}^{n} a_{i, j} x_{j} \geq b_{i} \quad\left(i=m_{e}+1, \cdots, m\right) \\
& x_{i} \geq 0 \quad(i=1, \cdots, n)
\end{aligned}
$$

and obtains the objective function value $f(\boldsymbol{x})$ at that time. Where, G is an $n \times n$ positive semidefinite matrix and $\boldsymbol{c}^{T}=\left[c_{1}, c_{2}, \cdots, c_{n}\right]$ and $\boldsymbol{a}_{i}^{T}=\left[a_{i, 1}, a_{i, 2}, \cdots, a_{i, n}\right]$ are n dimensional vectors $(i=1, \cdots, m)$.
(2) Usage

Double precision:
CALL DMCQLM (A, NA, N, B, M, ME, G, NG, C, NEV, X, Y, ISW, IW, W, IERR)
Single precision:
CALL RMCQLM (A, NA, N, B, M, ME, G, NG, C, NEV, X, Y, ISW, IW, W, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	$\left.\begin{array}{l}\text { D } \\ \text { R }\end{array}\right\}$

(4) Restrictions

(a) $\mathrm{NA} \geq \mathrm{M}, \mathrm{NG} \geq \mathrm{N}$
(b) NG, NA, N >0
(c) $\mathrm{M}, \mathrm{ME} \geq 0$
(d) $\mathrm{M} \geq \mathrm{ME}$
(e) $\mathrm{N} \geq \mathrm{ME}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	N was 1.	Processing continues.
1500	M was 0.	Processing is aborted.
3000	One of restrictions (a) through (e) was not satisfied.	
3500	No solution that satisfies the equality con- straints exists.	
4000	It was determined that no optimal solu- tion exists.	
5000	The solution could not be obtained within the given number of iterations.	

(6) Notes
(a) When ISW $=0$, coefficients $a_{i, j}(i=1,2, \cdots, m ; j=1,2, \cdots, n)$ corresponding to the constants of constraints must be set in array A as follows, where n is number of variables and m is number of constraints.

$$
\begin{aligned}
& \text { Storage status within array A(NA, K) } \\
& \text { NA } \begin{array}{|ccccc|}
\hline a_{1,1} & a_{1,2} & a_{1,3} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & a_{2,3} & \cdots & a_{2, n} \\
a_{3,1} & a_{3,2} & a_{3,3} & \cdots & a_{3, n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & a_{m, 3} & \cdots & a_{m, n} \\
\leftarrow-----n-----\rightarrow \\
\leftarrow-------\mathrm{K}------\rightarrow \\
\leftarrow----- \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

Remarks

a. $\mathrm{K} \geq n$ must hold.
(b) The optimal solution is not obtained by this function if the two-dimensional coefficient matrix G of the objective function is not positive semidefinite.
(c) If a non-positive value is entered for argument NEV, then NEV $=\mathrm{N}-\mathrm{M}-\mathrm{ME}$ is set as the default value.
(d) If the specified number of iterations is too small and $\operatorname{IERR}=5000$ is returned, perform the calculation using the information calculated up that point. To perform this processing set ISW=1 and use the
output values from the previous time as input values. The contents of work arrays W and IW must be saved in advance. If the number of iterations has already reached $\mathrm{N}+\mathrm{M}-\mathrm{ME}$, no solution will be obtained even if further iterations are performed.

(7) Example

(a) Problem

Minimize the function

$$
f(\boldsymbol{x})=\frac{1}{2}\left(5 x_{1}^{2}+6 x_{1} x_{2}+5 x_{2}^{2}\right)-95 x_{1}-105 x_{2}
$$

under the constraints

$$
\begin{aligned}
-x_{1}-2 x_{2} & \geq-10 \\
-3 x_{1}-x_{2} & \geq-15 \\
-2 x_{1}-3 x_{2} & \geq-30 \\
15 x_{1}-13 x_{2} & \geq 0 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}
$$

In this example, to indicate the continuation processing described in Notes (d), set a small value $(\mathrm{NEV}=2)$ for the maximum number of evaluations so that $\mathrm{IERR}=5000$ will be output.
(b) Input data
(First time): $\mathrm{N}=2, \mathrm{M}=4, \mathrm{ME}=0, \mathrm{NA}=11, \mathrm{NEV}=0$,
arrays A, B, G and C.
(Second and subsequent times): NEV=0 and ISW=1.
(For other values, directly set the values at the end of the previous calculation as input values.)
(c) Main program

```
    PROGRAM BMCQLM
    IMPLICIT REAL(8) (A-H,O-Z)
    PARAMETER (NO = 2)
    PARAMETER (MO = 4)
    PARAMETER ( MEO = 0)
    PARAMETER ( NIWK = 2*NO-MEO+MO+2)
    PARAMETER ( NWK = 2*(NO+MO-MEO+2)*(NO+MO-MEO)}+(MO+MEO)*(NO+1)+NO
    PARAMETER ( NA = 11 , NG = 8)
    DIMENSION A(NA,NO),B(MO),G(NG,NO),C(NO),X(NO)
    DIMENSION W(NWK),IW(NIWK)
    WRITE (6,1000)
    READ (5,*) N,M,ME,NEV,ISW
    WRITE (6,1100)) N,M,ME,NEV ,ISW
    WRITE(6,1300)
    WRITE(6,1300)
    READ (5,*) ( A (I, J), J=1,N )
    READ(5,*) ( A (I, J), J=1,N ) ( N )
10
    CONTINUE
    WRITE(6,1400)
    READ (5,*) ( B (I) , I=1,M )
    WRITE (6,1200) ( B(I), I=1,M )
    WRITE(6,1500)
    DO 20 I = 1,N
    READ(5,*) (G(I,J),J=1,N )
        WRITE(6,1200) ('G(I,J),J=1,N )
2O CONTINUE
    WRITE (6,1600)
    READ(5,*) ( C(I),I=1,N )
    WRITE(6,1200) ( C(I),I=1,N )
    CALL DMCQLM&
    (A,NA,N,B,M,ME,G,NG,C,NEV,X,Y,ISW,IW,W,IERR)
    WRITE(6,1700)
    WRITE(6,1800) IERR
    WRITE(6,1800) IERR
    READ (5,*) NEV,IS
    CALL DMCQLM&
    (A,NA,N,B,M,ME,G,NG , C,NEV ,X,Y,ISW,IW,W,IERR)
    WRITE (6,1900)
    WRITE}(6,1800) IER
    WRITE (6,2000)
```

```
    WRITE(6,2200) ( I,X(I),I=1,N )
    WRITE (6,2100) Y
    !
    1000 FORMAT(' ',/,6X,'*** DMCQLM ***',/,&
    1100 FORMAT(6X,'N =',I3,5X,'M =',I3,5X,'ME =',I3&
    1200 FOX,'NEV =',I3,5X,'ISW =',I3)
    1300 FORMAT (8X,'** MATR
    1300 FORMAT(8X,'** MATRIX A **')
    1400 FORMAT (8X,',** VECTOR B **')
    1500 FORMAT(8X,'** MATRIX G **')
    1600 FORMAT(8X,'** VECTOR C **')
1700 FORMAT(7X,'** OUTPUT **'',',& (ISW .EQ. 0) **')
    1800 FORMAT (9X','IERR =',I5)
    1900 FORMAT(7X,'** OUTPUT **',/,&
    8X','** IMPROVED RESSULT (ISW .EQ. 1) **')
    2000 FORMAT(8X,'** VECTOR X **')
    2100 FORMAT(9X,'Y =',D18.10)
    2200 FORMAT(8X','X(',I2,')=',D18.10)
END
(d) Output results
```

```
*** DMCQLM ***
```

*** DMCQLM ***
N = 2 M M = 4 ME = 0 NEV = 2 ISW = 0
N = 2 M M = 4 ME = 0 NEV = 2 ISW = 0
** MATRIX A **
** MATRIX A **
-1.00 -2.00
-1.00 -2.00
-3.00
-3.00
-2.00 rrerer
-2.00 rrerer
15.00 -13.0
15.00 -13.0
** VECTOR B **
** VECTOR B **
-10.00 -15.00 -30.00 0.00
-10.00 -15.00 -30.00 0.00
* MATRIX G **
* MATRIX G **
5.00 3.00
5.00 3.00
3.00 5.00
3.00 5.00
** VECTOR C **
** VECTOR C **
-95.00 -105
-95.00 -105
** OUTPUT **
** OUTPUT **
** FIRST RESULT (ISW .EQ. 0) **
** FIRST RESULT (ISW .EQ. 0) **
IERR = 5000
IERR = 5000
** OUTPUT **
** OUTPUT **
** IMPROVED RESULT (ISW .EQ. 1) **
** IMPROVED RESULT (ISW .EQ. 1) **
IERR = 0
IERR = 0
** VECTOR X **
** VECTOR X **
X(1) = 0.4000000000D+01
X(1) = 0.4000000000D+01
X(2) = 0.3000000000D+01
X(2) = 0.3000000000D+01
Y = -0.5965000000D+03

```
    Y = -0.5965000000D+03
```


5.7.3 DMCQAZ, RMCQAZ

Minimization of an Unconstrained 0-1 Quadratic Function of Several Variables (Unconstrained 0-1 Quadratic Programming Problem)

(1) Function

DMCQAZ or RMCQAZ obtains the \boldsymbol{x} that minimizes a quadratic function of several variables of the n dimensional vector $\boldsymbol{x}=\left[x_{1}, \cdots, x_{n}\right]^{T} \quad\left(x_{i} \in\{0,1\}\right)$.

$$
f(\boldsymbol{x})=\boldsymbol{c}^{T} \boldsymbol{x}+(1 / 2) \boldsymbol{x}^{T} G \boldsymbol{x}
$$

where G is a $n \times n$ matrix and $\boldsymbol{c}^{T}=\left[c_{1}, c_{2}, \cdots, c_{n}\right]$ is a n dimensional vector.
(2) Usage

Double precision:
CALL DMCQAZ (G, NA, N, C, IR1, IR2, IPM, RPM, IX, Y, IWK, WK, IERR)
Single precision:
CALL RMCQAZ (G, NA, N, C, IR1, IR2, IPM, RPM, IX, Y, IWK, WK, IERR)

Minimization of an Unconstrained 0-1 Quadratic Function of Several Variables (Unconstrained 0-1 Quadratic Programming Problem)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER(4)} \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	$\left.\begin{array}{l}\text { Contents } \\ \text { R }\end{array}\right\}$

(4) Restrictions
(a) $0<\mathrm{N} \leq \mathrm{NA}, 0<\mathrm{N}$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) was not satisfied.	Processing is aborted.
4000	The branch-and-bound search for the op- timal solution failed because of the nu- merical errors.	The value of X and Y at that time is out- put and processing is aborted.
5000	The solution of the relaxation problem could not be obtained within the given number of iterations.	
5500	The number of active partial problems reached the given limit.	
5600	The branch-and-bound search did not complete within the given number of evaluations.	

(6) Notes

(a) IX and IY should be odd numbers.
(b) A random number sequence that continues the previously generated random number sequence can be obtained by using the output values of the previous execution for IX and IY.
(c) To search for the maximum value, perform a search for the minimum value of $-f(\boldsymbol{x})$. At this time, the value of Y is the maximum value with the sign reversed.
(d) If IERR $=4000,5000,5500$ or 5600 is returned and you try to continue the calculation, you can perform it efficiently by using the solution obtained in the previous execution as the initial solution. To perform this processing set the integer other than 1 for $\operatorname{IPM}(1)$ and $\operatorname{IPM}(2)$ values, and use the output values of the previous execution for all other input values.
(e) When n is too large, it takes very long calculation time to search the optimal solution by the branch-and-bound method. In such a case, set the value other than 0 for $\operatorname{IPM}(6)$ and you can search the optimal solution only heuristically, which can be used as an approximate solution for the true optimal solution but has no guarantee for the accuracy.
(f) The accuracy of the lower bound tests for the branch-and-bound method gets better sometimes when the parameter $\operatorname{IPM}(8)$ is set a large value. But the calculation time for each lower bound test increases exponentially as the value of $\operatorname{IPM}(8)$ increases. Therefore, you should usually set 1 for the the values of it.
(g) As the value of the parameter $\operatorname{RPM}(2)$ increases the calculation time by the branch-and-bound method increases but the numerical stability gets better and it makes IERR harder to return 4000 or 5000 .

Table 5-1 Parameter Table (Unconstrained Zero-One Quadratic Programming Problem)

Argument name	Default value	Contents
IPM(1)	-	Setting of default values 0 :Set default values of the integer parameters $\operatorname{IPM}(2-12)$ Other than 0 :The user sets the values of the integer parameters $\operatorname{IPM}(2-12)$
$\operatorname{IPM}(2)$	1	Initial solution setting selection switch 0 :The initial solution $\boldsymbol{x}^{(0)}$ is set automatically Other than 0:The user sets the initial solution $\boldsymbol{x}^{(0)}$
$\operatorname{IPM}(3)$	0	Heuristic search method selection switch 0:Obtain the initial solution by the simulated annealing and improve it by the tabu search. 1:Use the simulated annealing 2:Use the tabu search Otherwise:The heuristic search is not performed
IPM(4)	10000	The evaluation number of search by the simulated annealing. (When the value less than or equal to 0 is set, the default value is used.)
$\operatorname{IPM}(5)$	100	The evaluation number of search by the tabu search. (When the value less than or equal to 0 is set, the default value is used.)
$\operatorname{IPM}(6)$	0	Selection switch if the user perform the search of the solution by the branch-and-bound method or not 0:Perform the search of the solution by branch-and-bound method Other than 0:Does not perform the search of the solution by branch-and-bound method
$\operatorname{IPM}(7)$	$\operatorname{IPM}(5)$	The length of the tabu list (When the value less than or equal to 0 is set, the default value is used.)
$\operatorname{IPM}(8)$	1	The number of free variables which are used for the evaluating the lower bounds of partial problems in the branch-and-bound search (When the value other than 0 to 10 is set, the default value is used.)
$\operatorname{IPM}(9)$	1	The maximum iteration number for solving relaxation quadratic programming problems (When the value less than or equal to 0 is set, the default value is used.)
$\operatorname{IPM}(10)$	See Contents	The maximum number of active partial problems in the branch-and-bound search Default value: $\operatorname{MAX}(\mathrm{N}, \operatorname{IPM}(7))$ (When the value less than or equal to 0 is set, the default value is used.)

Table 5-1 Parameter Table (Unconstrained Zero-One Quadratic Programming Problem) (cont'd)

Argument name	Default value	Contents
IPM(11)	1	The depth of search for the branch-and-bound method (When the value less than or equal to 0 is set, the default value is used.)
$\operatorname{IPM}(12)$	$100 \times \mathrm{N}$	The maximum evaluation number for the branch-and-bound method. (When the value less than or equal to 0 is set, the default value is used.)
RPM(1)	-	Setting of default values 0.0 :Set default values of the real parameters $\operatorname{RPM}(2-5)$ Other than 0.0:The user sets the values of the real parameters RPM (2-5)
RPM(2)	See Contents	Required precision for solving the relaxation quadratic programming problem Default value: $\sqrt{\text { Unit for determining error }}$ (When the value less than or equal to 0.0 is set, the default value is used.)
RPM(3)	1.0	The minimum eigen value β of the coefficient matrix which has been transformed into a positive definite matrix. (When the value less than or equal to 0.0 is set, the default value is used.)
RPM(4)	50000.0	The initial temperature T_{0} for the simulated annealing search (When the value less than 0.0 is set, the default value is used.)
RPM(5)	0.999	The ratio of the temperature reduction α (When the value less than or equal to 0.0 or larger than 1.0 is set, the default value is used.)

(7) Example

(a) Problem

Obtain the zero-one vector \boldsymbol{x}^{*} that minimize the objective function

$$
f(\boldsymbol{x})=\boldsymbol{c}^{T} \boldsymbol{x}+\frac{1}{2} \boldsymbol{x}^{T} G \boldsymbol{x}
$$

and the function value $f\left(\boldsymbol{x}^{*}\right)$. where the matrix G and the vector \boldsymbol{c} are given as follows.

$$
\begin{aligned}
& G=\left(\begin{array}{rrrrrr}
1 & -2 & -1 & 3 & 2 & 0 \\
-1 & 4 & 2 & 1 & 5 & -4 \\
0 & 1 & 3 & 0 & -3 & 2 \\
2 & 5 & 0 & -3 & 1 & 3 \\
1 & 1 & 5 & 3 & -3 & 2 \\
4 & 5 & -1 & -1 & 3 & 1
\end{array}\right) \\
& \boldsymbol{c}=(1,1,1,-1,-1,-1)^{T}
\end{aligned}
$$

(b) Input data
$\mathrm{NA}=7, \mathrm{~N}=6, \operatorname{IR} 1=1, \operatorname{IR} 2=1, \operatorname{IPM}(1)=0, \operatorname{RPM}(1)=0.0$, coefficient matrix G and coefficient vector \boldsymbol{c}.
(c) Main program

```
PROGRAM BMCLMZ
```

IMPLICIT NONE
$!$
INTEGER NA

PARAMETER ($\mathrm{NA}=7$)
REAL (8) G(NA,NA) , C(NA) ,RPM (5) , Y, WK (989)
INTEGER N,IR1,IR2,IPM(12),IX (NA), IWK (731), IERR
INTEGER I, J
$!$
$\operatorname{READ}(5, *)$
$\operatorname{READ}(5, *)$
$\operatorname{IR} 1, \operatorname{IR} 2$
$\operatorname{IPM}(1)=0$
$\operatorname{RPM}(1)=0.0 \mathrm{DO}$
$\operatorname{RPM}(1)=0.0 \mathrm{DO}$
$\operatorname{WRITE}(6,6000)$
$\mathrm{NA}, \mathrm{N}, \operatorname{IR} 1$, IR2
WRITE $(6,6010)$
DO $100 \quad I=1, N$
$\operatorname{READ}(5, *)(G(I, J), J=1, N)$
100 CONTINUE
DO 110 I = $1, \mathrm{~N}$
$\operatorname{WRITE}(6,6020)(G(I, J), J=1, N)$
110 CONTINUE
WRITE $(6,6030)$
$\operatorname{READ}(5, *)(C(J), J=1, N)$
WRITE (6,6020) (C(J), J=1,N)
CALL DMCQAZ (G,NA,N,C,IR1, IR2, IPM, RPM, IX , Y, IWK , WK , IERR)
WRITE $(6,6090)$
WRITE (6,6100) IERR
DO $150 \mathrm{~J}=1$, N
WRITE $(6,6110) \mathrm{J}, \operatorname{IX}(\mathrm{J})$
150 CONTINUE
$\operatorname{WRITE}(6,6120) \quad Y$
6000 FORMAT (3X, '** DMCQAZ **',/,/,\&

6010 FORMAT (/,7X, 'MATRIX G')
6020 FORMAT (/,9X,6(F5.1))
6030 FORMAT ($/, ' 7 X$,', VECTOR C')
6090 FORMAT (/,5X,'** OUTPUT **', /)
6100 FORMAT ($8 X$, 'IERR $=$, ,I5, /)
6110 FORMAT $(8 X, ' \operatorname{IX}(', I 2, ')=,, I 5)$
6120 FORMAT $(/, 8 X, ' Y=$
! 6120 FORMAT $(/, 8 X, ' Y \stackrel{\prime}{=}$, , D15.5)

STOP

(d) Output results

```
** DMCQAZ **
    ** INPUT **
    NA = 7 N N N = % 6
    MATRIX G
        1.0 -2.0 -1.0 3.0 2.0
        -1.0
```



```
            2.0 5.0 0.0 -3.0 1.0 3.0
            1.0}101.0 5.0 3.0 -3.0 2.0 
            4.0 5.0 -1.0 -1.0 3.0 1.0
```

 VECTOR C
 \(1.0 \quad 1.0 \quad 1.0-1.0 \quad-1.0 \quad-1.0\)
 ** OUTPUT **
 IERR \(=0\)
 \(\begin{array}{lll}\operatorname{IX}(1) & = & 0 \\ \operatorname{IX}(2) & = & 0 \\ \operatorname{IX}(3) & = & 0 \\ \operatorname{IX}(4) & = & 1 \\ \operatorname{IX}(5) & = & 1 \\ \operatorname{IX}(6) & = & 0\end{array}\)
 \(\mathrm{Y}=\quad-0.30000 \mathrm{D}+01\)

5.8 MINIMIZATION OF A CONSTRAINED FUNCTION OF SEVERAL VARIABLES (NONLINEAR PROGRAMMING)

5.8.1 DMSQPM, RMSQPM

Minimization of a Constrained Function of Several Variables (Nonlinear Constraints)
(1) Function

DMSQPM or RMSQPM obtains \boldsymbol{x}^{*} that locally minimizes the function $f(\boldsymbol{x})$ of several variables under the m inequality constraints

$$
g_{i}(\boldsymbol{x}) \leq 0, \quad i=1, \cdots, m
$$

and ℓ equality constraints

$$
h_{j}(\boldsymbol{x})=0, \quad j=1, \cdots, \ell
$$

and obtains the function value $f\left(\boldsymbol{x}^{*}\right)$ at that time.
(2) Usage

Double precision:
CALL DMSQPM (F, GF, HF, M, ML, X, N, ER, NEV, Y, IWK, WK, IERR)
Single precision:
CALL RMSQPM (F, GF, HF, M, ML, X, N, ER, NEV, Y, IWK, WK, IERR)

(3) Arguments

$\begin{array}{ll}\begin{array}{l}\text { D:Double precision real } \\ \text { R:Single precision real }\end{array} & \begin{array}{l}\text { Z:Double precision complex } \\ \text { C:Single precision complex }\end{array}\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \text { bit Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	F	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	-	Input	Name of function subprogram F(X) that defines the function $f(\boldsymbol{x})$
2	GF	-	-	Input	Name of subroutine GF(X, N, G, MM) that gives inequality constraints.
3	HF	-	-	Input	Name of subroutine HF(X, N, H, ML) that gives equality constraints.
4	M	I	1	Input	Number of constraints $m+\ell$
5	ML	I	1	Input	Number of equality constraints ℓ
6	X	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	N	Input	Initial value of search point \boldsymbol{x}_{0}
				Output	optimal solution \boldsymbol{x}^{*}
7	N	I	1	Input	Number of components of \boldsymbol{x}
8	ER	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Unit for determining 0 (Default value: $2 \times \sqrt{(\text { Unit for determining error })})$
9	NEV	I	1	Input	Maximum number of updates of \boldsymbol{x} (Default value: 100)
				Output	Actual number of updates of \boldsymbol{x}
10	Y	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Output	Function value $f\left(\boldsymbol{x}^{*}\right)$ at the final destination \boldsymbol{x}^{*}
11	IWK	I	M+3	Work	Work area
12	WK	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	See Contents	Work	Work area Size: $4 \times \mathrm{N} \times \mathrm{N}+2 \times \mathrm{M} \times \mathrm{N}+21 \times \mathrm{N}+108 \times \mathrm{M}$
13	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{M}>0$ (except when 0 is entered in order to solve a problem with no constraints)
(b) $\mathrm{ML} \geq 0$
(c) $\mathrm{N}>0$
(d) $\mathrm{N} \geq \mathrm{ML}$
(e) $\mathrm{M} \geq \mathrm{ML}$
(f) $\mathrm{ER}>0.0$ (except when 0.0 is entered in order to set ER to the default value)
(g) NEV ≥ 0 (except when a negative value is entered in order to set NEV to the default value)

(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
1000	Restriction (f) or (g) was not satisfied.	Processing is performed with the default value set for ER or NEV.
1500	Mwas 0.	Processing continues.
3000	One of restrictions (a) through (e) was not satisfied.	Processing is aborted.
3500	Equality constraints of the partial quadratic programming problem were not mutually independent.	The values of X and Y at that time are output and processing is aborted. The value of X satisfies constraints.
3600	The partial quadratic programming problem was not executable.	
3700	(1)A diagonal element of the matrix, which is to be QR decomposed for solving the partial quadratic programming problem, became 0.0 in the processing of decomposition. (The matrix does not have the designed rank.) (2) A diagonal element of the matrix, which is to be $L L^{T}$ decomposed for solving the partial quadratic programming problem, became less than or equal to 0.0 in the processing of decomposition. (The matrix is nearly singular.)	
3800	The partial quadratic programming problem did not converge.	
3900	The step-size became less than or equal to 0.0 in the processing of rectilinear search.	
4000	Equality constraints of the partial quadratic programming problem were not mutually independent.	
4100	The partial quadratic programming problem was not executable.	

IERR value	Meaning	Processing
4200	(1)A diagonal element of the matrix, which is to be QR decomposed for solving the partial quadratic programming problem, became 0.0 in the processing of decomposition. (The matrix does not have the designed rank.) (2) A diagonal element of the matrix, which is to be $L L^{T}$ decomposed for solving the partial quadratic programming problem, became less than or equal to 0.0 in the processing of decomposition. (The matrix is nearly singular.)	The values of X and Y at that time are output and processing is aborted. The value of X does not satisfy constraints.
4300	The partial quadratic programming problem did not converge.	
4400	The step-size became less than or equal to 0.0 in the processing of rectilinear search.	
4500	The problem could not be solved even though the given maximum number of updates of \boldsymbol{x} was reached.	
5000	The problem could not be solved even though the given maximum number of updates of \boldsymbol{x} was reached.	

(6) Notes
(a) The actual name of first argument F must be declared by the EXTERNAL statement of the user program. A function subprogram of the actual name of F must be created beforehand.
The function subprogram (in double-precision) should be created as follows.
REAL (8) FUNCTION $F(X)$
REAL (8) X
DIMENSION X (N)
$\mathrm{F}=\mathrm{f}(\boldsymbol{x})$
RETURN
END
(b) The actual names of the second argument GF and the third argument HF must be declared by the EXTERNAL statement of a user program. Subroutine subprograms of the actual names of GF and HF must be created beforehand.
These subroutine subprograms (in double-precision) should be created as follows.
SUBROUTINE GF(X, N, G, MM)
INTEGER N, MM
REAL(8) X, G
DIMENSION X(N), G(MM)
$\mathrm{G}(1)=g_{1}(\boldsymbol{x})$
$\mathrm{G}(2)=g_{2}(\boldsymbol{x})$
$\mathrm{G}(\mathrm{MM})=g_{\mathrm{MM}}(\boldsymbol{x})$
RETURN
END
SUBROUTINE HF(X, N, H, ML)
INTEGER N, ML
REAL(8) X, H
DIMENSION X(N), H(ML)
$\mathrm{H}(1)=h_{1}(\boldsymbol{x})$
$\mathrm{H}(2)=h_{2}(\boldsymbol{x})$
\vdots
$\mathrm{H}(\mathrm{ML})=h_{\mathrm{ML}}(\boldsymbol{x})$
RETURN
END
The value of argument MM here is the number of inequality constraints.
(c) If the specified maximum number of updates of \boldsymbol{x} is too small and $\operatorname{IERR}=5000$ is returned, perform the calculation using the information calculated up that point. When performing this processing, use the output value of X from the previous time as the input value.

(7) Example

(a) Problem

Minimize the function

$$
f(\boldsymbol{x})=-x_{3}
$$

under the constraints

$$
\begin{aligned}
-x_{1}+x_{2} & \leq 0 \\
x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}-1.0 & =0
\end{aligned}
$$

(b) Input data

Name of function subprogram that calculates the objective function value: F
Name of subroutine that gives inequality constraints: GF
Name of subroutine that gives equality constraints: HF
$\mathrm{N}=3, \mathrm{M}=2, \mathrm{ML}=1, \mathrm{ER}=1.0 \mathrm{D}-14, \mathrm{NEV}=100, \mathrm{X}(1)=-0.1, \mathrm{X}(2)=1.0$ and $\mathrm{X}(3)=0.1$.
(c) Main program

```
!*** PXAGRAM BMSQPM 
    EXAMPLE OF DMS
    INTEGER MO,NO,NWK
    PARAMETER(MO=2,NO=3)
    PARAMETER(NWK=(4*NO+2*MO+21)*NO+108*MO)
    INTEGER M,ML,N ,NEV,IWK(MO+3),IERR, I
    REAL(8) F,X(NO),ER,Y,WK(NWK)
    EXTERNAL F,GF,HF
!
    READ (5,*) M,ML,N
    READ (5,*) ER
    READ (5,*) NEV
    DO 10 I=1,N
    DO 10 I=1,N ( NEAD (5,*) X(I)
    10 CONTINUE
    CALL DMSQPM(F,GF ,HF,M,ML,X,N,ER ,NEV , Y ,IWK,WK,IERR)
```

```
            WRITE (6,601)
            WRITE (6,602) M,ML,N
            IF( IERR.EQ. 3000 .OR. IERR .EQ. 4000 ) GOTO 9999
            WRITE (6,604) NEV
            DO 20 I=1,N
                WRITE (6,605) I,X(I)
            20 CONTINUE
            WRITE(6,606) Y
    9999 CONTINUE
            STOP
    !
        601 FORMAT(' ',/,/,',*** DMSQPM ***',/,2X,'** INPUT **')
        602 FORMAT(6X,'M' =, I4,/,6X,'ML = ',I4,//,6X,'N N ' ',I4)
        603 FORMAT (2X,''** OUTPUT'**',','6X ,'IERR = ',I5)
        604 FORMAT (6X','NEV = ',I5,/)
        605 FORMAT(8X,'X(',I2,') =',1PD18.10)
        606 FORMAT(8X,'Y = ',1PD18.10)
            END
            REAL(8) FUNCTION F(X)
            REAL(8) X (3)
            F = -1.0DO * X (3)
            F = -1
            END
            SUBROUTINE GF(X,N,G,MM)
            INTEGER
            REAL(8) X(N) G(MM)
            G(1) = -1.0DO * X (1) + 1.0DO * X(2)
            RETURN
            SUBROUTINE HF(X,N,H,ML)
            INTEGER
            REAL(8) X(N),H(ML)
            H(1) = X (1)**2 + X (2)**2 + X(3)**2 - 1.0D0
            RETURN
(d) Output results
*** DMSQPM ***
** INPUT **
M
ML
\(\mathrm{ML}=1\)
** \(\mathrm{N} \mathrm{NTPUT}={ }^{=}{ }^{3}\)
\(\begin{array}{lr}\text { IERR }= & 0 \\ \text { NEV } & = \\ \end{array}\)
\(X(1)=-3.6562662107 \mathrm{D}-17\)
\(\mathrm{X}(2)=-3.7019577088 \mathrm{D}-16\)
\(\begin{array}{ll}X(2) & =-3.7019577088 D-16 \\ X(3) & =1.0000000000 D+00\end{array}\)
\(\begin{array}{lll}\mathrm{X}(3) & =1.0000000000 \mathrm{D}+00 \\ \mathrm{Y} & =-1.0000000000 \mathrm{D}+00\end{array}\)
```


5.9 DISTANCE MINIMIZATION ON A GRAPH (SHORTEST PATH PROBLEM)

5.9.1 DMSP1M, RMSP1M

Distance Minimization for a Given Node to the Other Node on a Graph
(1) Function

On a graph that has nodes and m branches and for which all branches have nonnegative weights, this subroutine obtains the path $P=\left(v_{1}, v_{2}, \cdots, v_{p}\right)$ for which the sum $W(P)$ of the weights $w\left(k_{j}\right)\left(v_{j}, v_{j+1}\right)$ of the branches from a given node v_{1} to the other nodes v_{p} is the minimum and this subroutine also obtains the value of $W(P)$ (shortest distance) at that time.

$$
\text { Objective function : } W(P)=\sum_{j=1}^{p-1} w\left(k_{j}\right) \rightarrow \text { Minimum }
$$

(2) Usage

Double precision:
CALL DMSP1M (N, M, ITL, IHD, WGHT, INIT, D, IP, ISW, IWK, WK, IERR)
Single precision:
CALL RMSP1M (N, M, ITL, IHD, WGHT, INIT, D, IP, ISW, IWK, WK, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \mathrm{bit} \text { Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \text { bit Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	N	I	1	Input	Number of nodes n
2	M	I	1	Input	Number of branches m
3	ITL	I	M	Input	Node number of starting point of branch k, tail(k)
4	IHD	I	M	Input	Node number of ending point of branch k, head(k)
5	WGHT	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	M	Input	Weight of branch $k, w(k)$
6	INIT	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Node number of starting point v_{1}
7	D	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	N	Output	Shortest distance from the starting point v_{1} to each node v_{i}. (See Note (a))
8	IP	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	N	Output	New node number of each node v_{i} on the shortest path. (See Note (b))
9	ISW	I	1	Input	$\begin{aligned} & \text { Processing switch. (See Note (c)) } \\ & \text { ISW=0:directed graph } \\ & \text { ISW=1:undirected graph } \\ & \hline \end{aligned}$
10	IWK	I	See Contents	Work	Work area. Size: $4 \times \mathrm{N}+2 \times \mathrm{M}$
11	WK	$\left\{\begin{array}{l}\text { D } \\ \text { R }\end{array}\right\}$	$2 \times \mathrm{M}$	Work	Work area.
12	IERR	I	1	Output	Error indicator

(4) Restrictions
(a) $\mathrm{N} \geq 2$
(b) $\mathrm{M} \geq 1$
(c) $\operatorname{WGHT}(k) \geq 0.0, \quad(k=1, \cdots, \mathrm{M})$
(d) $1 \leq \operatorname{ITL}(k) \leq \mathrm{N}, \quad(k=1, \cdots, \mathrm{M})$
(e) $1 \leq \operatorname{IHD}(k) \leq \mathrm{N}, \quad(k=1, \cdots, \mathrm{M})$
(f) $I S W=0$ or $I S W=1$
(5) Error indicator

IERR value	Meaning	Processing	
0	Normal termination.		
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.	
3100	Restriction (c) was not satisfied.		
3200	Restriction (d) or (e) was not satisfied.		
3300	Restriction (f) was not satisfied.		

(6) Notes
(a) When the value of $D\left(v_{1}, v_{p}\right)$ is negative, no path exists from node v_{1} to node v_{p}.
(b) When the series of nodes on the shortest path from node v_{1} to node v_{p} is $\left(v_{1}, \delta, \cdots, \beta, \alpha, v_{p}\right)$, these nodes are obtained so that $\operatorname{IP}\left(v_{p}\right)=\alpha, \operatorname{IP}(\alpha)=\beta, \cdots, \operatorname{IP}(\delta)=v_{1}$ sequentially from the ending point to the starting point.
(c) For an undirected graph, since each branch is automatically replaced by two directed branches within the subroutine, the input data need not be duplicated in advance.
(7) Example
(a) Problem

Obtain the path for which the sum of the weights of the branches from starting point v_{1} to node v_{p} on the following kind of graph is the minimum. However, assume that the weights of all branches are nonnegative.

(b) Input data
$\mathrm{N}=9, \mathrm{M}=16$, array WGHT for storing the weight of each branch, arrays ITL and IHD for storing the node numbers of the branches, starting point INIT and ISW $=0$.
(c) Main program

```
PROGRAM BMSP1M
IMPLICIT REAL(8)(A-H,0-Z)
PARAMETER ( NMAX=10 )
PARAMETER ( MMAX=40)
DIMENSION ITL(MMAX), IHD (MMAX),IP(NMAX)
DIMENSION WGHT(MMAX),D(NMAX)
```

DIMENSION IWK ($4 *$ NMAX $+2 *$ MMAX $)$,WK ($2 *$ MMAX)
$\operatorname{READ}(5, *) \mathrm{N}, \mathrm{M}$
$\operatorname{READ}(5, *) \operatorname{ITL}(I), \operatorname{IHD}(\mathrm{I}), \mathrm{WGHT}(\mathrm{I})$
$!^{100}$
READ (5,*)ITL (I), IHD (I), WGHT (I)
INIT=1
ISW=0
WRITE $(6,6000) \mathrm{N}, \mathrm{M}$, INIT , ISW
DO $110 \mathrm{I}=1$, M
WRITE (6,6010) ITL (I) , IHD (I) , WGHT (I)
110 CONTINUE
CALL DMSP1M(N,M,ITL,IHD,WGHT,INIT,D,IP,ISW,IWK,WK,IERR)
WRITE $(6,6020)$ IERR
DO $120 \mathrm{I}=1$,
WRITE $(6,6030) I, D(I), I, I P(I)$
CONTINUE
STOP
6000 FORMAT(/,5X,',*** DMSP1M ***', /, \&

8X,'M $=$ ', $15, /$, ,
8X,''INIT $=, ', I 5, /, \&$
$8 X, ' I S W$

6010 FORMAT ($8 \mathrm{X}, \mathrm{I} 5, \mathrm{I} 5, \mathrm{~F} 10.2$)
6020 FORMAT (/,5X,'** OUTPUT **',/,/,\&

END
(d) Output results

5.9.2 DMSPMM, RMSPMM

Distance Minimization for All Sets of Two Nodes on a Graph

(1) Function

On a graph that has nodes and m branches and that satisfies the condition that it contains no branch with a negative weight when it is a nondirected graph or satisfies the condition that it contains no cycle with a negative length when it is a directed graph, this subroutine obtains the path $P=\left(v_{i 1}, v_{i 2}, \cdots, v_{i p}\right)$ for which the sum $W(P)$ of the weights of the branches between two nodes $\left(v_{i 1}, v_{i p}\right)(i=1, \cdots, n)$ is the minimum and this subroutine also obtains the value of $W(P)$ (distance) at that time.

$$
\text { Objective function : } W(P)=\sum_{j=1}^{p-1} w\left(k_{j}\right) \rightarrow \text { Minimum }
$$

(2) Usage

Double precision:
CALL DMSPMM (N, M, ITL, IHD, WGHT, D, IP, ISW, IWK, IERR)
Single precision:
CALL RMSPMM (N, M, ITL, IHD, WGHT, D, IP, ISW, IWK, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \mathrm{bit} \text { Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	N	I	1	Input	Number of nodes n
2	M	I	1	Input	Number of branches m
3	ITL	I	M	Input	Node number of starting point of branch k, $\operatorname{tail}(\mathrm{k})$
4	IHD	I	M	Input	Node number of ending point of branch k, head (k)
5	WGHT	$\left\{\begin{array}{l}\text { D } \\ R\end{array}\right\}$	M	Input	Weight of branch $k, w(k)$
6	D	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	N, N	Output	Shortest distance from the starting point v_{1} to each node v_{i}. (See Note (a))
7	IP	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	N, N	Output	New node number of each node v_{i} on the shortest path. (See Note (b))
8	ISW	I	1	Input	Processing switch. (See Note (c)) ISW=0:directed graph ISW=1:undirected graph
9	IWK	I	N, N	Work	Work area.
10	IERR	I	1	Output	Error indicator

(4) Restrictions

(a) $\mathrm{N} \geq 2$
(b) $\mathrm{M} \geq 1$
(c) $\operatorname{WGHT}(k) \geq 0.0, \quad(k=1, \cdots, \mathrm{M})$
(d) $1 \leq \mathrm{ITL}(k) \leq \mathrm{N}, \quad(k=1, \cdots, \mathrm{M})$
(e) $1 \leq \operatorname{IHD}(k) \leq \mathrm{N}, \quad(k=1, \cdots, \mathrm{M})$
(f) $I S W=0$ or $I S W=1$

(5) Error indicator

IERR value	Meaning	Processing	
0	Normal termination.		
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.	
3100	Restriction (c) was not satisfied.		
3200	Restriction (d) or (e) was not satisfied.		
3300	Restriction (f) was not satisfied.		
4000	The given graph had an negative cycle.		

(6) Notes
(a) When the value of $D\left(v_{1}, v_{p}\right)$ is negative, no path exists from node v_{1} to node v_{p}.
(b) When the series of nodes on the shortest path from node v_{1} to node v_{p} is $\left(v_{1}, \delta, \cdots, \beta, \alpha, v_{p}\right)$, these nodes are obtained so that $\operatorname{IP}\left(v_{1}, v_{p}\right)=\alpha, \operatorname{IP}\left(v_{1}, \alpha\right)=\beta, \cdots, \operatorname{IP}\left(v_{1}, \delta\right)=v_{1}$ sequentially from the ending point to the starting point.
(c) For an undirected graph, since each branch is automatically replaced by two directed branches within the subroutine, the input data need not be duplicated in advance.

(7) Example

(a) Problem

Obtain the path for which the sum of the weights of the branches from starting point v_{1} to node v_{p} on the following kind of graph is the minimum. However, assume that the weights of all branches are nonnegative.

(b) Input data
$\mathrm{N}=6, \mathrm{M}=9$, array WGHT for storing the weight of each branch, arrays ITL and IHD for storing the node numbers of the branches, starting point INIT and ISW=1.
(c) Main program

```
PROGRAM BMSPMM
IMPLICIT REAL(8)(A-H,O-Z)
PARAMETER ( NMAX=6 )
PARAMETER ( MMAX=18)
DIMENSION ITL (MMAX), IHD (MMAX),IP(NMAX,NMAX)
    DIMENSION WGHT(MMAX),D(NMAX,NMAX)
    DIMENSION IWK(NMAX*NMAX)
READ (5,*) N,M
DO 100 I=1,M
READ (5,*)ITL(I),IHD (I) ,WGHT (I)
!
ISW=0
WRITE(6,6000) N,M,ISW
DO 110 I=1,M
        WRITE (6,6010) ITL (I) , IHD (I) ,WGHT (I)
    110 CONTINUE
        CALL DMSPMM(N,M,ITL,IHD,WGHT,D,IP,ISW,IWK,IERR)
WRITE (6,6020) IERR
DO 120 I=1,N
            DO 130 J=1,N
            IF(D(I,J).NE.0) WRITE (6,6030)I,J,D(I, J),I,J,IP(I , J)
    130 CONTINUE
    CONTINUE
    STOP
    6000 FORMAT(/,5X
                ,5X,,*** ** INPUT **',
                8X,5X,'N** INPUT **',
                8X,'M = ','I5,','&
                8X,',ISW = ',I5,/,& WGHT')
    6010 FORMAT(8X,I5,I5,F1O.2)
    6020 FORMAT (/,5X,' ** OUTPUT **',/,/,&
    6030 FORMAT(8X,', IER(, = '; 'I5,')
    6030 FORMAT(8X,' D(','I2,',','I2,') = ',F10.2,&
        END
```

(d) Output results

| *** DMSPMM | *** |
| :---: | :--- | :--- | :--- | :--- | :--- |
| ** INPUT | | **

5.9.3 DMSP11, RMSP11

Distance Minimization for Two Nodes on a Graph

(1) Function

On a graph that has nodes and m branches and for which all branches have nonnegative weights, this subroutine obtains the path $P=\left(v_{1}, v_{2}, \cdots, v_{i}\right)$ for which the sum $W(P)$ of the weights $w\left(k_{j}\right)\left(v_{j}, v_{j+1}\right)$ of the branches from a given node v_{1} to the other nodes v_{p} is the minimum and this subroutine also obtains the value of $W(P)$ (shortest distance) at that time.

$$
\text { Objective function : } W(P)=\sum_{j=1}^{p-1} w\left(k_{j}\right) \rightarrow \min
$$

(2) Usage

Double precision:
CALL DMSP11 (N, M, ITL, IHD, WGHT, INIT, IEND, D, IP, ISW, IWK, WK, IERR)
Single precision:
CALL RMSP11 (N, M, ITL, IHD, WGHT, INIT, IEND, D, IP, ISW, IWK, WK, IERR)
(3) Arguments
$\begin{array}{ll}\text { D:Double precision real } & \text { Z:Double precision complex } \\ \text { R:Single precision real } & \text { C:Single precision complex }\end{array} \quad$ I: $\left\{\begin{array}{l}\operatorname{INTEGER}(4) \text { as for } 32 \mathrm{bit} \text { Integer } \\ \operatorname{INTEGER}(8) \text { as for } 64 \mathrm{bit} \text { Integer }\end{array}\right\}$

No.	Argument	Type	Size	Input/ Output	Contents
1	N	I	1	Input	Number of nodes n
2	M	I	1	Input	Number of branches m
3	ITL	I	M	Input	Node number of starting point of branch k, $\operatorname{tail}(\mathrm{k})$
4	IHD	I	M	Input	Node number of ending point of branch k , head (k)
5	WGHT	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	M	Input	Weight of branch $k, w(k)$
6	INIT	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Node number of starting point v_{1}
7	IEND	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Input	Node number of ending point v_{p}
8	D	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	1	Output	Shortest distance from the starting point v_{1} to each node v_{i}. (See Note (a))
9	IP	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	N	Output	New node number of each node v_{i} on the shortest path. (See Note (b))
10	ISW	I	1	Input	Processing switch. (See Note (c)) ISW=0:directed graph ISW $=1$:undirected graph
11	IWK	I	See Contents	Work	Work area. Size: $4 \times \mathrm{N}+2 \times \mathrm{M}$
12	WK	$\left\{\begin{array}{l}\text { D } \\ \mathrm{R}\end{array}\right\}$	$2 \times \mathrm{M}$	Work	Work area.
13	IERR	I	1	Output	Error indicator

(4) Restrictions

(a) $\mathrm{N} \geq 2$
(b) $\mathrm{M} \geq 1$
(c) $\operatorname{WGHT}(k) \geq 0.0, \quad(k=1, \cdots, \mathrm{M})$
(d) $1 \leq \operatorname{ITL}(k) \leq \mathrm{N}, \quad(k=1, \cdots, \mathrm{M})$
(e) $1 \leq \operatorname{IHD}(k) \leq \mathrm{N}, \quad(k=1, \cdots, \mathrm{M})$
(f) $1 \leq$ INIT \leq N
(g) $1 \leq$ IEND $\leq \mathrm{N}$
(h) $\mathrm{ISW}=0$ or $\mathrm{ISW}=1$
(5) Error indicator

IERR value	Meaning	Processing
0	Normal termination.	
3000	Restriction (a) or (b) was not satisfied.	Processing is aborted.
3100	Restriction (c) was not satisfied.	
3200	Restriction (d) or (e) was not satisfied.	
3300	Restriction (f) or (g) was not satisfied.	
3400	Restriction (h) was not satisfied.	

(6) Notes
(a) When the value of $D\left(v_{1}, v_{p}\right)$ is negative, no path exists from node v_{1} to node v_{p}.
(b) When the series of nodes on the shortest path from node v_{1} to node v_{p} is $\left(v_{1}, \delta, \cdots, \beta, \alpha, v_{p}\right)$, these nodes are obtained so that $\operatorname{IP}\left(v_{p}\right)=\alpha, \operatorname{IP}(\alpha)=\beta, \cdots, \operatorname{IP}(\delta)=v_{1}$ sequentially from the ending point to the starting point.
(c) For an undirected graph, since each branch is automatically replaced by two directed branches within the subroutine, the input data need not be duplicated in advance.
(7) Example
(a) Problem

Obtain the path for which the sum of the weights of the branches from starting point v_{1} to ending point v_{p} on the following kind of graph is the minimum. However, assume that the weights of all branches are nonnegative.

(b) Input data
$\mathrm{N}=9, \mathrm{M}=16$, array WGHT for storing the weight of each branch, arrays ITL and IHD for storing the node numbers of the branches, starting point INIT $=1$, ending point IEND $=8$ and ISW $=0$.
(c) Main program

PROGRAM BMSP11
! IMPLICIT REAL (8) (A-H, $\mathrm{O}-\mathrm{Z}$)
PARAMETER (NMAX $=10$)
PARAMETER ($\operatorname{MMAX}=40)$

```
DIMENSION ITL(MMAX),IHD(MMAX),IP(NMAX)
```

DIMENSION WGHT(MMAX)
DIMENSION IWK (4*NMAX $+2 *$ MMAX $)$, WK ($2 *$ MMAX + NMAX $)$
$\operatorname{READ}(5, *) \mathrm{N}, \mathrm{M}$
D0 100 I $=1, M$
READ ($5, *$) ITL (I) , IHD (I) , WGHT (I)
$!^{100}$
CONTINUE
INIT=1
IEND $=8$
IEND $=8$
ISW $=0$
ISW=0
WRITE $(6,6000) \mathrm{N}, \mathrm{M}$, INIT, IEND, ISW
DO $110 \mathrm{I}=1, \mathrm{M}$
$\operatorname{WRITE}(6,6010)$ ITL (I) , IHD (I) , WGHT (I)
110
CALL DMSP11(N,M,ITL, IHD, WGHT, INIT, IEND, D, IP, ISW, IWK, WK, IERR)
$\operatorname{WRITE}(6,6020)$ IERR
$\operatorname{WRITE}(6,6030)$ D
DO $120 \quad I=1$, N
CONTINUE
000
/,5X,', *** DMSP11 ***', /,\&

8X,',INIT = ','I5,','\&
8X', 'IEND = ','I5,','\&
8X, 'ISW $=, ', I 5, /, \&$
8X
ITL
IHD
6010 FORMAT ($8 \mathrm{X}, \mathrm{I} 5, \mathrm{I} 5, \mathrm{~F} 10.2$)
6020 FORMAT ($/, 5 \mathrm{X},{ }^{2}, * *$ OUTPUT $* *$ ', /, /,\&
$6030 \operatorname{FORMAT}\left(8 \mathrm{X},{ }^{2}, \mathrm{IERR}=, ', \mathrm{I}=/\right.$)
$6030 \operatorname{FORMAT}(8 X, ' D=, ', F 10.2,1)$
$6040 \operatorname{FORMAT}(8 X, ' \operatorname{IP}(,, I 2, ')=, I 5)$
END
(d) Output results

Appendix A

GLOSSARY

(1) Graph

For the finite set of points denoted by $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and the set of pairs of points belonging to V denoted by $V \times V=\left\{\left(v_{i}, v_{j}\right) \mid v_{i} \in V, v_{j} \in V\right\}$, the combination of $E \subseteq V \times V$ and V is called a graph, which is denoted by $G=(V, E)$.

(2) Vertex and Edge

For a given graph $G=(V, E)$, an element of V is called a vertex of graph G and an element of E is called an edge of graph G.
Note: The following is a list of synonyms which have been used in the literature, not always with the indicated pairs:

vertex	point	node	junction	0 -simplex	element
edge	line	arc	branch	1 -simplex	element

(3) Directed edge

For graph $G=(V, E)$, if the elements of E are handled so that $\left(v_{i}, v_{j}\right)$ and $\left(v_{j}, v_{i}\right)\left(v_{i} \in V, v_{j} \in V\right)$ are differentiated, each element of E is called a directed edge. For the directed edge denoted by $e=\left(v_{i}, v_{j}\right)$, $\operatorname{tail}(e)=v_{i}$ and $\operatorname{head}(e)=v_{j}$.
(4) Circuit

For graph $G=(V, E)$, if the collection of elements of V denoted by $p=\left(v_{j_{1}}, v_{j_{2}}, \cdots, v_{j_{m}}\right)$ satisfies $\left(v_{j_{k}}, v_{j_{k+1}}\right) \in E$ for an arbitrary $1 \leq k \leq m-1, p$ is called a path on graph G. In particular, the path for which $v_{j_{1}}=v_{j_{m}}$ is called a circuit.
(5) Tree

A graph containing no circuits is called a tree.
(6) Network

If two types of real numbers called the cost coefficient $c(e)$ and capacity $u(e)$ and two elements of V called the tail of the edge s and head of the edge t are given for each edge $e \in E$ of graph $G=(V, E)$, the combination of G and c, u, s, and t is called a network, which is denoted by $N=(G, c, u, s, t)$. Even when dealing with only some of c, u, s, and t, it is still called a network. For example, when dealing with a problem in which the tail of each edge s and head of each edge t have not specifically been fixed, the network is represented by $N=(G, c, u)$.

(7) Flow

The vector $x(e)$ satisfying $0 \leq x(e) \leq u(e)$ for each edge $e \in E$ of a network is called the flow on network N.
(8) Minimal-cost flow problem

When real numbers $b(v)$ are given for each vertex $v \in V$ of a given network N and the following relationships hold:

$$
\sum_{\operatorname{tail}(e)=v} x(e)-\sum_{\operatorname{head}(e)=v} x(e)=b(v)
$$

$$
\sum_{v \in V} b(v)=0
$$

the problem of obtaining flows $x(e)$ that minimize:

$$
\sum_{e \in E} c(e) x(e)
$$

is called the minimal-cost flow problem.

Appendix B

MACHINE CONSTANTS USED IN ASL

B. 1 Units for Determining Error

The table below shows values in ASL as units for determining error in floating point calculations. The units shown in the table are numeric values determined by the internal representation of floating point data. ASL uses these units for determining convergence and zeros.

Table B-1 Units for Determining Error

Single-precision	Double-precision
$2^{-23}\left(\simeq 1.19 \times 10^{-7}\right)$	$2^{-52}\left(\simeq 2.22 \times 10^{-16}\right)$

Remark: The unit for determining error ε, which is also called the machine ε, is usually defined as the smallest positive constant for which the calculation result of $1+\varepsilon$ differs from 1 in the corresponding floating point mode. Therefore, seeing the unit for determining error enables you to know the maximum number of significant digits of an operation (on the mantissa) in that floating point mode.

B. 2 Maximum and Minimum Values of Floating Point Data

The table below shows maximum and minimum values of floating point data defined within ASL. Note that the maximum and minimum values shown below may differ from the maximum and minimum values that are actually used by the hardware for each floating point mode.

Table B-2 Maximum and Minimum Values of Floating Point Data

	Single-precision	Double-precision
Maximum value	$2^{127}\left(2-2^{-23}\right)\left(\simeq 3.40 \times 10^{38}\right)$	$2^{1023}\left(2-2^{-52}\right)\left(\simeq 1.80 \times 10^{308}\right)$
Positive minimum value	$2^{-126}\left(\simeq 1.17 \times 10^{-38}\right)$	$2^{-1022}\left(\simeq 2.23 \times 10^{-308}\right)$
Negative maximum value	$-2^{-126}\left(\simeq-1.17 \times 10^{-38}\right)$	$-2^{-1022}\left(\simeq-2.23 \times 10^{-308}\right)$
Minimum value	$-2^{127}\left(2-2^{-23}\right)\left(\simeq-3.40 \times 10^{38}\right)$	$-2^{1023}\left(2-2^{-52}\right)\left(\simeq-1.80 \times 10^{308}\right)$

Index

CAM1HH : Vol.1, 85
CAM1HM : Vol.1, 82
CAM1MH : Vol.1, 79
CAM1MM : Vol.1, 76
CAN1HH : Vol.1, 97
CAN1HM : Vol.1, 94
CAN1MH : Vol.1, 91
CAN1MM : Vol.1, 88
CARGJM : Vol.1, 37
CARSJD : Vol.1, 32
CBGMDI : Vol.2, 72
CBGMLC : Vol.2, 64
CBGMLS : Vol.2, 66
CBGMLU : Vol.2, 62
CBGMLX : Vol.2, 74
CBGMMS : Vol.2, 68
CBGMSL : Vol.2, 58
CBGMSM : Vol.2, 54
CBGNDI : Vol.2, 92
CBGNLS : Vol.2, 86
CBGNLU : Vol.2, 82
CBGNLX : Vol.2, 94
CBGMS: Vol.2, 88
CBGNSM : Vol.2, 76
CBHEDI : Vol.2, 216
CBHELS : Vol.2, 211
CBHELX : Vol.2, 218
CBHEMS : Vol.2, 213
CBHEUC : Vol.2, 209
CBHEUD : Vol.2, 207
CBHFDI : Vol.2, 199
CBHFLS : Vol.2, 194
CBHFLX : Vol.2, 201
CBHFMS : Vol.2, 196
CBHFSL : Vol.2, 186
CBHFUC : Vol.2, 192
CBHFUD : Vol.2, 190
CBHPDI : Vol.2, 165
CBHPLX : Vol.2, 167
CBHPMS : Vol.2, 162

D3IEME : Vol.6, 293
D3IERA : Vol.6, 290
D3IESR : Vol.6, 311
D3IESU : Vol.6, 297
D3IETC : Vol.6, 304
D3IEVA : Vol.6, 301
D3TSCD : Vol.6, 347
D3TSME : Vol.6, 326
D3TSRA : Vol.6, 317
D3TSRD : Vol.6, 321
D3TSSR : Vol.6, 350
D3TSSU : Vol.6, 331
D3TSTC : Vol.6, 342
D3TSVA : Vol.6, 338
D41WR1 : Vol.6, 363
D42WR1 : Vol.6, 383
D42WRM : Vol.6, 375
D42WRN : Vol.6, 369
D4BI01 : Vol.6, 438
D4GL01 : Vol.6, 434
D4MU01 : Vol.6, 415
D4MWRF : Vol.6, 391
D4MWRM : Vol.6, 402
D4RB01 : Vol.6, 430
D5CHEF : Vol.6, 447
D5CHMD : Vol.6, 456
D5CHMN : Vol.6, 453
D5CHTT : Vol.6, 450
D5TEMH : Vol.6, 466
D5TESG : Vol.6, 459
D5TESP : Vol.6, 470
D5TEWL : Vol.6, 462
D6CLAN : Vol.6, 518
D6CLDA : Vol.6, 523
D6CLDS : Vol.6, 513
D6CPCC : Vol.6, 482
D6CPSC : Vol.6, 484
D6CVAN : Vol.6, 495
D6CVSC : Vol.6, 498
D6DAFN : Vol.6, 503
D6DASC : Vol.6, 507
D6FALD : Vol.6, 489
D6FAVR : Vol.6, 491
DABMCS : Vol.1, 12
DABMEL : Vol.1, 15
DAM1AD : Vol.1, 47
DAM1MM : Vol.1, 64
DAM1MS : Vol.1, 56
DAM1MT : Vol.1, 67
DAM1MU : Vol.1, 53
DAM1SB : Vol.1, 50
DAM1TM : Vol.1, 70
DAM1TP : Vol.1, 109
DAM1TT : Vol.1, 73

DAM3TP : Vol.1, 111
DAM3VM : Vol.1, 103
DAM4VM : Vol.1, 106
DAMT1M : Vol.1, 59
DAMVJ1 : Vol.1, 114
DAMVJ3 : Vol.1, 118
DAMVJ4 : Vol.1, 122

DARSJD : Vol.1, 21
DASBCS : Vol.1, 17
DASBEL : Vol.1, 19
DATM1M : Vol.1, 61

DBBDLC : Vol.2, 227
DBBDLS : Vol.2, 229
DBBDLU : Vol.2, 225
DBBDLX : Vol.2, 233
DBBDL: Vol.2, 220
DBBPDI: Vol.2, 247
DBBPLX : Vol.2, 249
DBBPSL : Vol.2, 237
BBPUC : Vol.2, 243
DBBPU : Vol.2, 241
DBGMLC : Vol.2, 41
DBGMLS : Vol.2, 43
DBGMLU : Vol.2, 39
DBGMEX: Vol.2, 50

DBGMSL : Vol.2, 35
DBGMSM : Vol.2, 31
PBDI : Vol.2, 106
DBPDLS : Vol.2, 104
DBPDSL : Vol.2, 96
DBPDUC : Vol.2, 102
DBPDUU : Vol.2, 100
DBSMDI : Vol.2, 140
LS : Vol.2, 135
DBSMM : Vol.2, 142
DBSMSL : Vol.2, 127
DBSMUC : Vol.2, 133
DBSMUD : Vol.2, 131
DBSNLS : Vol.2, 150
DBSNUD : Vol.2, 148
DBSPDI : Vol.2, 123
DBSPLS : Vol.2, 118

DBSPMS : Vol.2, 120
DBSPSL : Vol.2, 110

DBSPUC	Vol.2,
DBSPUD	Vol.2, 114
DBTDSL	Vol.2, 251
DBTLCO	Vol.2, 291
DBTLDI	Vol.2, 293
DBTLSL	Vol.2, 288
DBTOSL	Vol.2, 271
DBTPSL	Vol.2, 254
DBTSSL	Vol.2, 274
DBTUCO	Vol.2, 284
DBTUDI	Vol.2, 286
DBTUSL	Vol.2, 281
DBVMSL	Vol.2, 277
DCGBFF	Vol.1, 337
DCGEAA	Vol.1, 148
DCGEAN	Vol.1, 153
DCGGAA	Vol.1, 273
DCGGAN	Vol.1, 278
DCGJAA	Vol.1, 299
DCGJAN	Vol.1, 303
DCGKAA	Vol.1, 305
DCGKAN	Vol.1, 309
DCGNAA	Vol.1, 155
DCGNAN	Vol.1, 158
DCGSAA	Vol.1, 280
DCGSAN	Vol.1, 284
DCGSEE	Vol.1, 292
DCGSEN	Vol.1, 297
DCGSSN	Vol.1, 290
DCGSSS	Vol.1, 286
DCSBAA	Vol.1, 222
DCSBAN	Vol.1, 225
DCSBFF	Vol.1, 233
DCSBSN	Vol.1, 231
DCSBSS	Vol.1, 227
DCSJSS	Vol.1, 260
DCSMAA	Vol.1, 171
DCSMAN	Vol.1, 174
DCSMEE	Vol.1, 182
DCSMEN	Vol.1, 186
DCSMSN	Vol.1, 180
DCSMSS	Vol.1, 176
DCSRSS	Vol.1, 254
DCSTAA	Vol.1, 237
DCSTAN	Vol.1, 240
DCSTEE	Vol.1, 248
DCSTEN	Vol.1, 252
DCSTSN	Vol.1, 246
DCSTSS	Vol.1, 242
DFASMA	Vol.6, 256
DFC1BF	Vol.3, 49
DFC1FB	Vol.3, 45
DFC2BF	Vol.3, 108
DFC2FB	Vol.3, 10

DBSPUD : Vol.2, 114
. Vol.2, 251
DBTLC : Vol.2, 291
DBTLSL : Vol.2, 288
DBTOSL : Vol.2, 271
Vol.2, 254
DBTSSL : Vol.2, 274
DBTUDI : Vol.2, 286
DBTUSL : Vol.2, 281
DBVMSL : Vol.2, 277
DCGBFF : Vol.1, 337
DCGEAA : Vol.1, 148
DCGEAN : Vol.1, 153
DCGGAA : Vol.1, 273
DCGGAN : Vol.1, 278
JAA : Vol.1, 299
DCGJA : Vol.1, 303
DCGKAN : Vol.1, 309
DCGNAA : Vol.1, 155
DCGNAN : Vol.1, 158
DCGSAA : Vol.1, 280
DCGSEE : Vol.1, 292
DCGSEN : Vol.1, 297
DCGSSN : Vol.1, 290
DCGSSS : Vol.1, 286
DCSBAN : Vol.1, 225
DCSBFF : Vol.1, 233
DCSBSN : Vol.1, 231
DCSBSS : Vol.1, 227

DCSMAA : Vol.1, 171
DCSMAN : Vol.1, 174
DCSMEE : Vol.1, 182
DCSMEN : Vol.1, 186
DCSMSN . Vol.1, 180
DCSRSS : Vol.1, 254
DCSTAA : Vol.1, 237
DCSTAN : Vol.1, 240
DCSTEE : Vol.1, 248

DCSTSN : Vol.1, 246
DCSTSS : Vol.1, 242
DFASMA : Vol.6, 256
DFC1BF : Vol.3, 49

DFC2BF : Vol.3, 108
DFC2FB : Vol.3, 104

DGIDPC : Vol.4, 382
DGIDSC : Vol.4, 386
DGIDYB : Vol.4, 439
DGIIBZ : Vol.4, 453
DGIICZ : Vol.4, 433
DGIIMC : Vol.4, 404
DGIIPC : Vol.4, 396
DGIISC : Vol.4, 399
DGIIZB : Vol.4, 444
DGISBX : Vol.4, 449
DGISCX : Vol.4, 429
DGISI1 : Vol.4, 470
DGISI2 : Vol.4, 474
DGISI3 : Vol.4, 482
DGISMC : Vol.4, 377
DGISPC : Vol.4, 369
DGISPO : Vol.4, 455
DGISPR : Vol.4, 458
DGISS1 : Vol.4, 487
DGISS2 : Vol.4, 491
DGISS3 : Vol.4, 498
DGISSC : Vol.4, 372
DGISSO : Vol.4, 461
DGISSR : Vol.4, 464
DGISXB : Vol.4, 435
DH2INT : Vol.4, 263
DHBDFS : Vol.4, 233
DHBSFC : Vol.4, 236
DHEMNH : Vol.4, 239
DHEMNI : Vol.4, 253
DHEMNL : Vol.4, 199
DHNANL : Vol.4, 230
DHNEFL : Vol.4, 209
DHNENH : Vol.4, 246
DHNENL : Vol.4, 221
DHNFML : Vol.4, 279
DHNFNM : Vol.4, 270
DHNIFL : Vol.4, 213
DHNINH : Vol.4, 249
DHNINI : Vol.4, 259
DHNINL : Vol.4, 226
DHNOFH : Vol.4, 242
DHNOFI : Vol.4, 256
DHNOFL : Vol.4, 205
DHNPNL : Vol.4, 217
DHNRML : Vol.4, 274
DHNRNM : Vol.4, 266
DHNSNL : Vol.4, 202
DIBAID : Vol.5, 166
DIBAIX : Vol.5, 162
DIBBEI : Vol.5, 148
DIBBER : Vol. : Vol. 146,168

DIBINX : Vol.5, 117
DIBJMX : Vol.5, 86
DIBJNX : Vol.5, 81
DIBKEI : Vol.5, 152
DIBKER : Vol.5, 150
DIBKMX : Vol.5, 124
DBKNX: Vol.5, 119

DIBSJN : Vol.5, 132
DIBSKN : Vol.5, 140
DIBSYN : Vol.5, 135
DIBYMX : Vol.5, 89

DIEII1 : Vol.5, 192
DIEII2 : Vol.5, 194
DIEII3 : Vol.5, 196
DIEII4 : Vol.5, 198
DIGIG1 : Vol.5, 175

DIICOS : Vol.5, 225
DIIERF : Vol.5, 241
DIISIN : Vol.5, 223
DILEG1 : Vol.5, 245
DILEG2 : Vol.5, 248
DIMTSE : Vol.5, 268
DIOPC2 : Vol.5, 261
DIOPCH : Vol.5, 259
DIOPGL : Vol.5, 263
DIOPHE : Vol.5, 257
DIOPLA : Vol.5, 255
DIOPLE : Vol.5, 250
DIXEPS : Vol.5, 283
IZBSO : Vol.5, 96

DIZBSL : Vol.5, 105
DIZBSN : Vol.5, 100
DIZBYN : Vol.5, 103
DIZGLW : Vol.5, 252
:Vol.6, 31

DJTEGM : Vol.6, 42
DJTEGU : Vol.6, 34
DJTELG : Vol.6, 45
DJTENO : Vol.6, 24
DJTEU : Vol.6, 19
DKFNCS : Vol.4, 67
DKHNCS : Vol.4, 73
:Vol.4, 52

DKSNCA : Vol.4, 46
DKSNCS : Vol.4, 41

DKSSCA : Vol.4, 61
DLARHA : Vol.5, 342
DLNRDS : Vol.5, 348
DLNRIS : Vol.5, 352
DLNRSA : Vol.5, 358
DLNRSS : Vol.5, 355
DLSRDS : Vol.5, 364
DLSRIS : Vol.5, 370
DMCLAF : Vol.5, 436
DMCLCP : Vol.5, 459
DMCLMC : Vol.5, 454
DMCLMZ : Vol.5, 447
DMCLSN : Vol.5, 430
DMCLTP : Vol.5, 465
DMCQAZ : Vol.5, 481
DMCQLM : Vol.5, 476
DMCQSN : Vol.5, 471
DMCUSN : Vol.5, 427
DMSP11 : Vol.5, 500
DMSP1M : Vol.5, 493
DMSPMM : Vol.5, 497
DMSQPM : Vol.5, 487
DMUMQG : Vol.5, 418
DMUMQN : Vol.5, 414
DMUSSN : Vol.5, 422
DMUUSN : Vol.5, 411
DNCBPO : Vol.4, 345
DNDAAO : Vol.4, 319
DNDANL : Vol.4, 328
DNDAPO : Vol.4, 324
DNGAPL : Vol.4, 340
DNLNMA : Vol.6, 550
DNLNRG : Vol.6, 537
DNLNRR : Vol.6, 543
DNNLGF : Vol.6, 560
DNNLPO : Vol.6, 555
DNRAPL: Vol.4, 334
DOFNNF : Vol.4, 104
DOFNNV : Vol.4, 98
DOHNLV : Vol.4, 123
DOHNNF : Vol.4, 117
DOHNNV : Vol.4, 111
DOIEF2 : Vol.4, 134
DOIEV1 : Vol.4, 137
DOLNLV : Vol.4, 129
DOPDH2 : Vol.4, 140
DOPDH3 : Vol.4, 147
DOSNNF : Vol.4, 91
DOSNNV : Vol.4, 84
DPDAPN : Vol.4, 307
DPDOPL : Vol.4, 304
DPGOPL : Vol.4, 316
DPLOPL : Vol.4, 310
DQFODX : Vol.4, 162
DQMOGX : Vol.4, 165
DQMOHX : Vol.4, 168
DQMOJX : Vol.4, 171
DSMGON : Vol.5, 304
DSMGPA : Vol.5, 308
DSSTA1 : Vol.5, 290
DSSTA2 : Vol.5, 293
DSSTPT : Vol.5, 300
DSSTRA : Vol.5, 297
DXA005 : Vol.1, 40

GAM1HH : SMP Functions ${ }^{(*)}, 40$
GAM1HM : SMP Functions, 36
GAM1MH : SMP Functions, 32
GAM1MM : SMP Functions, 28
GAN1HH : SMP Functions, 53
GAN1HM : SMP Functions, 50
GAN1MH : SMP Functions, 47
GAN1MM : SMP Functions, 44
GBHESL : SMP Functions, 131
GBHEUD : SMP Functions, 135
GBHFSL : SMP Functions, 125
GBHFUD : SMP Functions, 129
GBHPSL : SMP Functions, 111
GBHPUD : SMP Functions, 116
GBHRSL : SMP Functions, 118
GBHRUD : SMP Functions, 123
GCGJAA : SMP Functions, 262
GCGJAN : SMP Functions, 266
GCGKAA : SMP Functions, 268
GCGKAN : SMP Functions, 273
GCGRAA : SMP Functions, 254
GCGRAN : SMP Functions, 259
GCHEAA : SMP Functions, 214
GCHEAN : SMP Functions, 218
GCHESN : SMP Functions, 225
GCHESS : SMP Functions, 220
GCHRAA : SMP Functions, 200
GCHRAN : SMP Functions, 204
GCHRSN : SMP Functions, 211
GCHRSS : SMP Functions, 206
GFC2BF : SMP Functions, 324
GFC2FB : SMP Functions, 321
GFC3BF : SMP Functions, 351
GFC3FB : SMP Functions, 347
GFCMBF : SMP Functions, 295
GFCMFB : SMP Functions, 291
HAM1HH : SMP Functions, 40
HAM1HM : SMP Functions, 36

[^2]HAM1MH : SMP Functions, 32
HAM1MM : SMP Functions, 28
HAN1HH : SMP Functions, 53
HAN1HM : SMP Functions, 50
HAN1MH: SMP Functions, 47
HAN1MM : SMP Functions, 44
HBGMLC : SMP Functions, 87
HBGMLU : SMP Functions, 85
HBGMSL : SMP Functions, 81
HBGMSM : SMP Functions, 76
HBGNLC : SMP Functions, 97
HBGNLU : SMP Functions, 95
HBGNSL : SMP Functions, 92
HBGNSM : SMP Functions, 89
HBHESL : SMP Functions, 131
HBHEUD : SMP Functions, 135
HBHFSL : SMP Functions, 125
HBHFUD : SMP Functions, 129
HBHPSL : SMP Functions, 111
HBHPUD : SMP Functions, 116
HBHRSL : SMP Functions, 118
HBHRUD : SMP Functions, 123
HCGJAA : SMP Functions, 262
HCGJAN : SMP Functions, 266
HCGKAA : SMP Functions, 268
HCGKAN : SMP Functions, 273
HCGRAA : SMP Functions, 254
HCGRAN : SMP Functions, 259
HCHEAA : SMP Functions, 214
HCHEAN : SMP Functions, 218
HCHESN : SMP Functions, 225
HCHESS : SMP Functions, 220
HCHRAA : SMP Functions, 200
HCHRAN : SMP Functions, 204
HCHRSN : SMP Functions, 211
HCHRSS : SMP Functions, 206
HFC2BF : SMP Functions, 324
HFC2FB : SMP Functions, 321
HFC3BF : SMP Functions, 351
HFC3FB : SMP Functions, 347
HFCMBF : SMP Functions, 295
HFCMFB : SMP Functions, 291
IIIERF : Vol.5, 243
JIIERF : Vol.5, 243
PAM1MM : SMP Functions, 16
PAM1MT : SMP Functions, 19
PAM1MU : SMP Functions, 13
PAM1TM : SMP Functions, 22
PAM1TT : SMP Functions, 25
PBSNSL : SMP Functions, 105
PBSNUD : SMP Functions, 109

PBSPSL : SMP Functions, 99
PBSPUD : SMP Functions, 103
PCGJAA : SMP Functions, 242
PCGJAN : SMP Functions, 246
PCGKAA : SMP Functions, 248
PCGKAN : SMP Functions, 252
PCGSAA : SMP Functions, 227
PCGSAN : SMP Functions, 232
PCGSSN : SMP Functions, 239
PCGSSS : SMP Functions, 234
PCSMAA : SMP Functions, 189
PCSMAN : SMP Functions, 192
PCSMSN : SMP Functions, 198
PCSMSS : SMP Functions, 194
PFC2BF : SMP Functions, 316
PFC2FB : SMP Functions, 312
PFC3BF : SMP Functions, 342
PFC3FB : SMP Functions, 338
PFCMBF : SMP Functions, 285
PFCMFB : SMP Functions, 281
PFCN2D : SMP Functions, 366
PFCN3D : SMP Functions, 373
PFCR2D : SMP Functions, 382
PFCR3D : SMP Functions, 389
PFPS2D : SMP Functions, 399
PFPS3D : SMP Functions, 406
PFR2BF : SMP Functions, 333
PFR2FB : SMP Functions, 329
PFR3BF : SMP Functions, 360
PFR3FB : SMP Functions, 356
PFRMBF : SMP Functions, 305
PFRMFB : SMP Functions, 301
PSSTA1 : SMP Functions, 422
PSSTA2 : SMP Functions, 425
PXE010 : SMP Functions, 148
PXE020 : SMP Functions, 156
PXE030 : SMP Functions, 164
PXE040 : SMP Functions, 172
QAM1MM : SMP Functions, 16
QAM1MT : SMP Functions, 19
QAM1MU : SMP Functions, 13
QAM1TM : SMP Functions, 22
QAM1TT : SMP Functions, 25
QBGMLC : SMP Functions, 74
QBGMLU : SMP Functions, 72
QBGMSL : SMP Functions, 68
QBGMSM : SMP Functions, 64
QBSNSL : SMP Functions, 105
QBSNUD : SMP Functions, 109
QBSPSL : SMP Functions, 99
QBSPUD : SMP Functions, 103
QCGJAA : SMP Functions, 242
QCGJAN : SMP Functions, 246

QCGKAA : SMP Functions, 248
QCGKAN : SMP Functions, 252
QCGSAA : SMP Functions, 227
QCGSAN : SMP Functions, 232
QCGSSN : SMP Functions, 239
QCGSSS : SMP Functions, 234
QCSMAA : SMP Functions, 189
QCSMAN : SMP Functions, 192
QCSMSN : SMP Functions, 198
QCSMSS : SMP Functions, 194
QFC2BF : SMP Functions, 316
QFC2FB : SMP Functions, 312
QFC3BF : SMP Functions, 342
QFC3FB : SMP Functions, 338
QFCMBF : SMP Functions, 285
QFCMFB : SMP Functions, 281
QFCN2D : SMP Functions, 366
QFCN3D : SMP Functions, 373
QFCR2D : SMP Functions, 382
QFCR3D : SMP Functions, 389
QFPS2D : SMP Functions, 399
QFPS3D : SMP Functions, 406
QFR2BF : SMP Functions, 333
QFR2FB : SMP Functions, 329
QFR3BF : SMP Functions, 360
QFR3FB : SMP Functions, 356
QFRMBF : SMP Functions, 305
QFRMFB : SMP Functions, 301
QSSTA1 : SMP Functions, 422
QSSTA2 : SMP Functions, 425
QXE010 : SMP Functions, 148
QXE020 : SMP Functions, 156
QXE030 : SMP Functions, 164
QXE040 : SMP Functions, 172
R1CDBN : Vol.6, 72
R1CDBT : Vol.6, 114
R1CDCC : Vol.6, 147
R1CDCH : Vol.6, 75
R1CDEX : Vol.6, 132
R1CDFB : Vol.6, 100
R1CDGM : Vol.6, 107
R1CDGU : Vol.6, 135
R1CDIB : Vol.6, 117
R1CDIC : Vol.6, 78
R1CDIF : Vol.6, 104
R1CDIG : Vol.6, 111
R1CDIN : Vol.6, 69
R1CDIS : Vol.6, 97
R1CDIT : Vol.6, 91
R1CDIX : Vol.6, 85
R1CDLD : Vol.6, 138
R1CDLG : Vol.6, 144
R1CDLN : Vol.6, 141
R1CDNC : Vol.6, 81
R1CDNO : Vol.6, 66
R1CDNT : Vol.6, 94
R1CDPA : Vol.6, 126
R1CDTB : Vol.6, 88
R1CDTR : Vol.6, 123
R1CDUF : Vol.6, 120
R1CDWE : Vol.6, 129
R1DDBP : Vol.6, 150
R1DDGO : Vol.6, 154
R1DDHG : Vol.6, 159
R1DDHN : Vol.6, 162
R1DDPO : Vol.6, 157
R2BA1T : Vol.6, 173
R2BA2S : Vol.6, 179
R2BAGM : Vol.6, 191
R2BAHM : Vol.6, 199
R2BAMO : Vol.6, 195
R2BAMS : Vol.6, 186
R2BASM : Vol.6, 203
R2CCMA : Vol.6, 225
R2CCMT : Vol.6, 220
R2CCPR : Vol.6, 231
R2VCGR : Vol.6, 212
R2VCMT : Vol.6, 207
R3IECD : Vol.6, 307
R3IEME : Vol.6, 293
R3IERA : Vol.6, 290
R3IESR : Vol.6, 311
R3IESU : Vol.6, 297
R3IETC : Vol.6, 304
R3IEVA : Vol.6, 301
R3TSCD : Vol.6, 347
R3TSME : Vol.6, 326
R3TSRA : Vol.6, 317
R3TSRD : Vol.6, 321
R3TSSR : Vol.6, 350
R3TSSU : Vol.6, 331
R5CHTT : Vol.6, 450
R5CHMD : Vol.6, 456
R3TSTC : Vol.6, 342
R4RB01 : Vol.6, 430
R3TSVA : Vol.6, 338
R4MWRF : Vol.6, 391
R4MWR $: ~ V o l .6, ~$
R5TEMH : Vol.6, 466
R5TESG : Vol.6, 459
R5TESP : Vol.6, 470
R5TEWL : Vol.6, 462
R6CLAN : Vol.6, 518
R6CLDA : Vol.6, 523
R6CLDS : Vol.6, 513
R6CPCC : Vol.6, 482
R6CPSC : Vol.6, 484
R6CVAN : Vol.6, 495
R6CVSC : Vol.6, 498
R6DAFN : Vol.6, 503
R6DASC : Vol.6, 507
R6FALD : Vol.6, 489
R6FAVR : Vol.6, 491
RABMCS : Vol.1, 12
RABMEL : Vol.1, 15
RAM1AD : Vol.1, 47
RAM1MM : Vol.1, 64
RAM1MS : Vol.1, 56
RAM1MT : Vol.1, 67
RAM1MU : Vol.1, 53
RAM1SB : Vol.1, 50
RAM1TM : Vol.1, 70
RAM1TP : Vol.1, 109
RAM1TT : Vol.1, 73
RAM1VM : Vol.1, 100
RAM3TP : Vol.1, 111
RAM3VM : Vol.1, 103
RAM4VM : Vol.1, 106
RAMT1M : Vol.1, 59
RAMVJ1 : Vol.1, 114
RAMVJ3 : Vol.1, 118
RAMVJ4 : Vol.1, 122
RARGJM : Vol.1, 26
RBGMLS : Vol.2, 43
RARSJD : Vol.1, 21
RASBCS : Vol.1, 17
RBGMDC $: ~ V o l .2, ~$

RBGMLU : Vol.2, 39
Vol.2, 50
RBGMSL : Vol.2, 35
RBGMSM : Vol.2, 31
RBPDDI : Vol.2, 106
RBPDLS : Vol.2, 104
BPDLX : Vol.2, 108
RBPDUC : Vol.2, 102
RBPDUU : Vol.2, 100
RBSMDI : Vol.2, 140
RBSMLS : Vol.2, 135
RBSMLX : Vol.2, 142
RBSMMS : Vol.2, 137
RBSMSL : Vol.2, 127
RBSMUC : Vol.2, 133
Vol.2,131
RBSNSL : Vol.2, 144
RBSNUD : Vol.2, 148
RBSPDI : Vol.2, 123
RBSPLS : Vol.2, 118
RBSPLX : Vol.2, 125
RBSPMS : Vol.2, 120
RBSPSL : Vol.2, 110
RBSPUC : Vol.2, 116
RBSPUD : Vol.2, 114
RBTDSL : Vol.2, 251
RBTLCO : Vol.2, 291
RBTLDI : Vol.2, 293
RBTLSL : Vol.2, 288
RBTOSL : Vol.2, 271
BBIPSL : Vol.2, 254
RBTUCO : Vol.2, 284
RBTUDI : Vol.2, 286
RBTUSL : Vol.2, 281
RBVMSL : Vol.2, 277
RCGEAA : Vol.1, 148
RCGEAN : Vol.1, 153
RCGGAA : Vol.1, 273
RCGGAN : Vol.1, 278
RGGJAA : Vol.1, 299
RCGKAA : Vol.1, 305
RCGKAN : Vol.1, 309
RCGNAA : Vol.1, 155
RCGNAN : Vol.1, 158
A : Vol.1, 280
RCGSEE : Vol.1, 292
RCGSEN : Vol.1, 297

RFR3FB : Vol.3, 150
RFRMBF : Vol.3, 98
RFRMFB : Vol.3, 93
RFWTFF : Vol.3, 272
RFWTFT : Vol.3, 274
RFWTH1 : Vol.3, 249
RFWTH2 : Vol.3, 258
RFWTHI : Vol.3, 264
RFWTHR : Vol.3, 251
RFWTHS : Vol.3, 254
RFWTHT : Vol.3, 261
RFWTMF : Vol.3, 268
RFWTMT : Vol.3, 270
RGICBP : Vol.4, 447
RGICBS : Vol.4, 467
RGICCM : Vol.4, 422
RGICCN : Vol.4, 425
RGICCO : Vol.4, 417
RGICCP : Vol.4, 408
RGICCQ : Vol.4, 410
RGICCR : Vol.4, 412
RGICCS : Vol.4, 414
RGICCT : Vol.4, 419
RGIDBY : Vol.4, 451
RGIDCY : Vol.4, 431
RGIDMC : Vol.4, 391
RGIDPC : Vol.4, 382
RGIDSC : Vol.4, 386
RGIDYB : Vol.4, 439
RGIIBZ : Vol.4, 453
RGIICZ : Vol.4, 433
RGIIMC : Vol.4, 404
RGIIPC : Vol.4, 396
RGIISC : Vol.4, 399
RGIIZB : Vol.4, 444
RGISBX : Vol.4, 449
RGISCX : Vol.4, 429
RGISI1 : Vol.4, 470
RGISI2 : Vol.4, 474
RGISI3 : Vol.4, 482
RGISMC : Vol.4, 377
RGISPC : Vol.4, 369
RGISPO : Vol.4, 455
RGISPR : Vol.4, 458
RGISS1 : Vol.4, 487
RGISS2 : Vol.4, 491
RGISS3 : Vol.4, 498
RGISSC : Vol.4, 372
RGISSO : Vol.4, 461
RGISSR : Vol.4, 464
RGISXB : Vol.4, 435
RH2INT : Vol.4, 263
RHBDFS : Vol.4, 233
RHBSFC : Vol.4, 236

RIOPCH : Vol.5, 259
RIOPGL : Vol.5, 263
RIOPHE : Vol.5, 257
RIOPLA : Vol.5, 255
RIOPLE : Vol.5, 250
RIXEPS : Vol.5, 283
RIZBSO : Vol.5, 96
RIZBS1 : Vol.5, 98
RIZBSL : Vol.5, 105
RIZBSN : Vol.5, 100
RIZBYN : Vol.5, 103
RIZGLW : Vol.5, 252
RJTEBI : Vol.6, 49
RJTECC : Vol.6, 31
RJTEEX : Vol.6, 28
RJTEGM : Vol.6, 42
RJTEGU : Vol.6, 34
RJTELG : Vol.6, 45
RJTENG: Vol.6, 52
RJTENO : Vol.6, 24
RJTEPO : Vol.6, 55
RJTEUN : Vol.6, 19
RJTEWE : Vol.6, 38
RKFNCS : Vol.4, 67
RKHNCS : Vol.4, 73
RKINCT : Vol.4, 52
RKMNCN : Vol.4, 78
RKSNCA : Vol.4, 46
RKSNCS : Vol.4, 41
RKSSCA : Vol.4, 61
RLARHA : Vol.5, 342
RLNRDS : Vol.5, 348
RLNRIS : Vol.5, 352
RLNRSA : Vol.5, 358
RLNRSS : Vol.5, 355
RLSRDS : Vol.5, 364
RLSRIS : Vol.5, 370
RMCLAF : Vol.5, 436
RMCLCP : Vol.5, 459
RMCLMC : Vol.5, 454
RMCLMZ : Vol.5, 447
RMCLSN : Vol.5, 430
RMCLTP : Vol.5, 465
RMCQAZ : Vol.5, 481
RMCQLM : Vol.5, 476
RMCQSN : Vol.5, 471
RMCUSN : Vol.5, 427
RMSP11 : Vol.5, 500
RMSP1M : Vol.5, 493
RMSPMM : Vol.5, 497
RMSQPM : Vol.5, 487
RMUMQG : Vol.5, 418
RMUMQN : Vol.5, 414
RMUSSN : Vol.5, 422

RNCBPO : Vol.4, 345

RNDAPO : Vol.4, 324
RNGAPL : Vol.4, 340
RNLNMA : Vol.6, 550
RNLNRG : Vol.6, 537

RNNLGF : Vol.6, 560
RNRAPL : Vol.4, 334
ROFNNF : Vol.4, 104
ROFNNV : Vol.4, 98
ROHNNF : Vol.4, 117
ROHNNV : Vol.4, 111
ROIEF2 : Vol.4, 134
ROIEV1 : Vol.4, 137
ROLNLV : Vol.4, 129

ROPDH3 : Vol.4, 147
ROSNNF : Vol.4, 91
ROSNNV : Vol.4, 84
RPDAPN : Vol.4, 307
RPDOPL : Vol.4, 304
RPGOPL : Vol.4, 316
RPLOPL : Vol.4, 310
RQFODX : Vol.4, 162
RQMOGX : Vol.4, 165
RQMOHX : Vol.4, 168
RQMOJX : Vol.4, 171
RSMGON : Vol.5, 304
RSMGPA : Vol.5, 308
RSSTA1 : Vol.5, 290
RSSTA2 : Vol.5, 293
RSSTPT : Vol.5, 300
RSSTRA : Vol.5, 297
RXA005 : Vol.1, 40
VIBHOX : Vol.5, 154
VIBH1X : Vol.5, 156
VIBHYO : Vol.5, 158
VIBHY1 : Vol.5, 160
VIBIOX : Vol.5, 107
VIBI1X : Vol.5, 112
VIBJOX : Vol.5, 71
VIBJ1X : Vol.5, 76
VIBKOX : Vol.5, 109
VIBK1X : Vol.5, 114
VIBYOX : Vol.5, 73
VIBY1X : Vol.5, 78
VIECI1 : Vol.5, 188
VIECI2 : Vol.5, 190
VIEJAC : Vol.5, 200
VIEJEP : Vol.5, 211
VIEJTE : Vol.5, 213
VIEJZT : Vol.5, 209
VIENMQ : Vol.5, 203
VIEPAI : Vol.5, 215
VIERFC : Vol.5, 239
VIERRF : Vol.5, 237
VIETHE : Vol.5, 206
VIGAMX : Vol.5, 170
VIGBET : Vol.5, 185
VIGDIG : Vol.5, 183
VIGLGX : Vol.5, 173
VIICNC : Vol.5, 235
VIICND : Vol.5, 233
VIIDAW : Vol.5, 231
VIIEXP : Vol.5, 218
VIIFCC : Vol.5, 229
VIIFSI : Vol.5, 227
VIILOG : Vol.5, 221
VINPLG : Vol.5, 275
VIXSLA : Vol.5, 278
VIXSPS : Vol.5, 271
VIXZTA : Vol.5, 280

WBTCLS : Vol.2, 267
WBTCSL : Vol.2, 263
WBTDLS : Vol.2, 260
WBTDSL : Vol.2, 257
WIBH0X : Vol.5, 154
WIBH1X : Vol.5, 156
WIBHYO : Vol.5, 158
WIBHY1 : Vol.5, 160
WIBIOX : Vol.5, 107
WIBI1X : Vol.5, 112
WIBJOX : Vol.5, 71
WIBJ1X : Vol.5, 76
WIBKOX : Vol.5, 109
WIBK1X : Vol.5, 114
WIBYOX : Vol.5, 73
WIBY1X : Vol.5, 78
WIDBEY : Vol.5, 273
WIECI1 : Vol.5, 188
WIECI2 : Vol.5, 190
WIEJAC : Vol.5, 200
WIEJEP : Vol.5, 211
WIEJTE : Vol.5, 213
WIEJZT : Vol.5, 209
WIENMQ : Vol.5, 203
WIEPAI : Vol.5, 215
WIERFC : Vol.5, 239
WIERRF : Vol.5, 237
WIETHE : Vol.5, 206
WIGAMX : Vol.5, 170

VIEJEP : Vol.5, 211
VIEJTE : Vol.5, 213
VIEJZT : Vol.5, 209
VIENMQ : Vol.5, 203
VIEPAI : Vol.5, 215
VIERFC : Vol.5, 239
IERRF : Vol.5, 237
VIETHE : Vol.5, 206
VIGBET : Vol.5, 185
VIGDIG : Vol.5, 183
VIGLGX : Vol.5, 173
Vol.5, 235

VIICND: Vol.5, 233
VIIEXP : Vol.5, 218
VIIFCO : Vol.5, 229
VIFSI : Vol.5, 227
VILLOG : Vol.5, 221

VIXSLA : Vol.5, 278
VIXSPS : Vol.5, 271

WBTCLS : Vol.2, 267
WBTCSL : Vol.2, 263
WBTDLS : Vol.2, 260
BBIDSL : Vol.2, 257

WIBH1X : Vol.5, 156
WIBHYO : Vol.5, 158
WIBHY1 : Vol.5, 160
Vol.5, 107

WIBJOX : Vol.5, 71
WIBJ1X : Vol.5, 76
WIBKOX : Vol.5, 109
WIBK1X : Vol.5, 114
WIBYOX : Vol.5, 73
WIBY1X. Vol.5, 78

WIECI1 : Vol.5, 188
WIECI2 : Vol.5, 190
WIEJAC : Vol.5, 200
IEJEP : Vol.5, 211

WIEJZT : Vol.5, 209
WIENMQ : Vol.5, 203
WIEPAI : Vol.5, 215
WIERFC : Vol.5, 239

WIETHE : Vol.5, 206
WIGAMX : Vol.5, 170

WIGBET WIGDIG	Vol.5, 185 Vol.5, 183
WIGLGX	Vol.5, 173
WIICNC	Vol.5, 235
WIICND	Vol.5, 233
WIIDAW	Vol.5, 231
WIIEXP	Vol.5, 218
WIIFCO	Vol.5, 229
WIIFSI	Vol.5, 227
WIILOG	Vol.5, 221
WINPLG	Vol.5, 275
WIXSLA	Vol.5, 278
WIXSPS	Vol.5, 271
WIXZTA	Vol.5, 280
ZAM1HH	Vol.1, 85
ZAM1HM	Vol.1, 82
ZAM1MH	Vol.1, 79
ZAM1MM	Vol.1, 76
ZAN1HH	Vol.1, 97
ZAN1HM	Vol.1, 94
ZAN1MH	Vol.1, 91
ZAN1MM	Vol.1, 88
ZANVJ1	Vol.1, 126
ZARGJM	Vol.1, 37
ZARSJD	Vol.1, 32
ZBGMDI	Vol.2, 72
ZBGMLC	Vol.2, 64
ZBGMLS	Vol.2, 66
ZBGMLU	Vol.2, 62
ZBGMLX	Vol.2, 74
ZBGMMS	Vol.2, 68
ZBGMSL	Vol.2, 58
ZBGMSM	Vol.2, 54
ZBGNDI	Vol.2, 92
ZBGNLC	Vol.2, 84
ZBGNLS	Vol.2, 86
ZBGNLU	Vol.2, 82
ZBGNLX	Vol.2, 94
ZBGNMS	Vol.2, 88
ZBGNSL	Vol.2, 79
ZBGNSM	Vol.2, 76
ZBHEDI	Vol.2, 216
ZBHELS	Vol.2, 211
ZBHELX	Vol.2, 218
ZBHEMS	Vol.2, 213
ZBHESL	Vol.2, 203
ZBHEUC	Vol.2, 209
ZBHEUD	Vol.2, 207
ZBHFDI	Vol.2, 199
ZBHFLS	Vol.2, 194
ZBHFLX	Vol.2, 201
ZBHFMS	Vol.2, 196
ZBHFSL	Vol.2, 186

WIGDIG : Vol.5, 183
WIGLGX : Vol.5, 173
WIICNC : Vol.5, 235
WIICND : Vol.5, 233
WIIDAW : Vol.5, 231
WIIEXP : Vol.5, 218
Vol.5, 229
WIIFSI : Vol.5, 227
WINPLG : Vol.5, 275
WIXSLA : Vol.5, 278
WIXSPS : Vol.5, 271
WIXZTA : Vol.5, 280

ZAM1HH : Vol.1, 85
ZAM1HM : Vol.1, 82
ZAM1MH: Vol.1, 79

ZAN1HH : Vol.1, 97
ZAN1HM : Vol.1, 94
ZAN1MH : Vol.1, 91
ZAN1MM : Vol.1, 88

ZARGJM : Vol.1, 37
ZARSJD : Vol.1, 32
ZBGMDI : Vol.2, 72
ZBGMLC:Vol.2, 64
ZBGMLS : Vol.2, 66

ZBGMLX : Vol.2, 74
ZBGMMS : Vol.2, 68
ZBGMSL : Vol.2, 58
ZBGMSM : Vol.2, 54

ZBGNLC : Vol.2, 84
ZBGNLS : Vol.2, 86
ZBGNLU : Vol.2, 82
ZBGNLX : Vol.2, 94
ZBGNMS : Vol.2, 88

ZBGNSM : Vol.2, 76
ZBHEDI : Vol.2, 216
ZBHELS : Vol.2, 211
ZBHELX : Vol.2, 218
ZBHEMS : Vol.2, 213

ZBHEUC : Vol.2, 209
ZBHEUD : Vol.2, 207
ZBHFDI • Vol.2, 199
ZBHFLS : Vol.2, 194

ZBHFMS : Vol.2, 196
ZBHFSL : Vol.2, 186

[^0]: 17 TH ZERO OF J10 67.5904720737 ERR $=-0.354 \mathrm{E}-15$
 18 TH ZERO OF J10 70.7653339962 ERR =
 19 TH ZERO OF J10 73.9372993818 ERR =
 $-0.607 \mathrm{E}-15$
 $0.461 \mathrm{E}-15$
 $-0.163 \mathrm{E}-15$

[^1]: 2.128937
 1.846412
 1.204739
 1.204739
 0.593025
 0.230793
 0.230793
 0.121124
 0.121124
 0.230793
 0.593025
 1.204739
 1.846412

[^2]: (*) DMP Functions: Distributed Memory Parallel Functions
 (*) SMP Functions: Shared Memory Parallel Functions

