SX-Aurora TSUBASA

June 25, 2018
Shigeyuki Aino
NEC Corporation
History of Vector computing

NEC has always provided high sustained performance by vector supercomputer SX series

Performance

1990
1990
Earth Simulator
Earth Simulator
Earth Simulator
Earth Simulator 3
Earth Simulator 2
Earth Simulator
 SX-2
 SX-4
 SX-3
 SX-5
 SX-6
 SX-7
 SX-8
 SX-9
 SX-ACE

Vector Engine (PCI card)

Packed vector technologies accumulated over 30 years into PCI card
Project Aurora

Vector Accelerator Card
✓ NEC’s 30 years vector technology is packed into Vector Engine card

- Compact and flexible
- Hybrid architecture (standard x86 + Vector)
- Economically deliver supercomputer technology
New Architecture

- SX-Aurora TSUBASA = Standard x86 + Vector Engine
- Linux + standard language (Fortran/C/C++)
- Enjoy high performance with easy programming

SX-Aurora TSUBASA Architecture

Hardware
- Standard x86 server + Vector Engine

Software
- Linux OS
- Automatic vectorization compiler
- Fortran/C/C++ → No special programming like CUDA

Interconnect
- InfiniBand for MPI
- VE-VE direct communication support

Easy programming (standard language) → Automatic vectorization compiler → Enjoy high performance
New Architecture

Hybrid architecture combining Vector Processor with x86 Processor
1. SX-Aurora = x86 server + Vector Engine (VE)
2. VE capability is provided on x86/Linux environment
3. Infiniband Interconnect support

SX-Aurora Architecture

Linux OS

x86 Processor

Application

PCIe

Vector Engine

Enables the flexibility

Hardware

- x86 server + VE

Software Environment

- x86 / Linux OS
- Fortran/C/C++ standard programming
- Automatic vectorization by proven vector compiler

Interconnect

- InfiniBand for MPI

NO special programming like CUDA is necessary!
NEC’s Vector technology can invent new Social Values - as the key to accelerate HPC + AI/Big Data Analytics

Financial/Economics

Life

Security

Energy

Manufacturing

Disaster management

Progress of analysis/science

Statistical analysis

Image analysis

Acoustic analysis

Genetic

Geophysical

Fluid analysis

AI/BigData Analytics

Weather Climate

Structural analysis

Simulation (HPC)
Initial BM results: HPL and STREAM

- Aurora provides same range HPL performance as SKL
- Aurora provides highest memory bandwidth

HPL / Node

- Aurora is Vector Engine Type 10-B (1.4GHz, 8core)
- SKL is Intel Skylake 6148 Xeon x2/node
- KNL is Intel Knight Landing x1/node
- V100 is NVIDIA Tesla V100 x1/node
Initial BM results: HPCG

Performance/power of Aurora shows 7 times better than SKL

• Aurora is Vector Engine Type 10-B (1.4GHz, 8core)
• SKL is Intel Skylake 6148 Xeon x2/node
Performance of NEC middleware for ML

Frovedis + VE shows over 100x performance compared to Spark + x86

<table>
<thead>
<tr>
<th></th>
<th>Spark + x86</th>
<th>Frovedis + VE</th>
<th>Spark + x86</th>
<th>Frovedis + VE</th>
<th>Spark + x86</th>
<th>Frovedis + VE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic Regression (web ad)</td>
<td>1</td>
<td>113.2</td>
<td>1</td>
<td>42.8</td>
<td>1</td>
<td>56.8</td>
</tr>
<tr>
<td>K-means (document clustering)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>42.8</td>
<td>1</td>
<td>56.8</td>
</tr>
<tr>
<td>Singular value decomposition (recommendation)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>42.8</td>
<td>1</td>
<td>56.8</td>
</tr>
</tbody>
</table>

- x86: Intel Xeon Gold 6126 x1 socket
- Aurora: Vector Engine Type 10-B (1.4GHz, 8core) x1
- Performance comparison does not include I/O time